Practice Final 3

1. The Fibonacci sequence is the sequence of numbers $F(1), F(2), \ldots$ defined by the following recurrence relations:
$F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2)$ for all $n>2$.
For example, the first few Fibonacci numbers are $1,1,2,3,5,8,13, \ldots$
(a) Prove by induction that for any $n \geq 1$ the consequtive Fibonacci numbers $F(n)$ and $F(n+1)$ are relatively prime.
(b) Prove by induction that for any $n \geq 1$ the following identity holds

$$
F(2)+F(4)+\ldots F(2 n)=F(2 n+1)-1
$$

2. (a) Find the remainder when $7^{3^{100}}$ is divided by 20 .
(b) Find $2^{p!}(\bmod p)$ where p is an odd prime.
3. Prove that $q_{1} \sqrt{2}+q_{2} \sqrt{6}$ is irrational for any rational q_{1}, q_{2} unless $q_{1}=q_{2}=0$.
4. Suppose $(\phi(m), m)=1$. Here m is a natural number and ϕ is the Euler function.

Prove that \sqrt{m} is irrational.
5. Let $p=11, q=5$ and $E=23$. Let $N=11 \cdot 5=55$. The receiver broadcasts the numbers $N=55, E=23$. The sender sends a secret message M to the receiver using RSA encryption. What is sent is the number $R=2$.
Decode the original message M.
6. (a) Find all complex roots of the equation

$$
z^{6}+(1-i) z^{3}-i=0
$$

(b) Express as $a+b i$ for some real a, b :

$$
\frac{6^{100}}{(3+\sqrt{3} i)^{103}}
$$

7. A complex number is called algebraic if it is a root of a polynomial with integer coefficients.
Prove that the set of algebraic numbers is countable.
8. Suppose $0<\alpha<\pi / 2$ satisfies $\cos \alpha=\frac{1}{6}$. Prove that the angle α can not be trisected with a ruler and a compass.
9. Let S be that set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Prove that $|S|>|\mathbb{R}|$.
10. For each of the following answer "true" or "false". Justify your answer.
a) $\sqrt{\frac{\sqrt{5}}{\sqrt[3]{2}+\sqrt{11}}}$ is constructible.
b) If x is not constructible then \sqrt{x} is also not constructible.
c) If x is constructible then $\sqrt[8]{x}$ is also constructible.

