Practice Final 1

1. (a) What is $\phi\left(20^{100}\right)$ where ϕ is Euler's ϕ-function?
(b) Find an integer x such that $140 x \equiv 133(\bmod 301)$.

Hint: $\operatorname{gcd}(140,301)=7$.
2. (a) Prove, by mathematical induction, that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ for every natural number n.
(b) Prove that for p an odd prime (that is, p is a prime that is not equal to 2), $1^{p}+2^{p}+3^{p}+\ldots+(p-1)^{p} \equiv 0(\bmod p)$.
3. Prove that for any odd integer a, a and $a^{4 n+1}$ have the same last digit for every natural number n.
4. Recall that a "perfect square" is a number of the form n^{2} where n is a natural number. Show that 9120342526523 is not the sum of two perfect squares. Hint: Consider values modulo 4.
5. (a) Are there rational numbers a and b such that $\sqrt{3}=a+b \sqrt{2}$? Justify your answer.
(b) Prove that $\frac{\sqrt{5}}{\sqrt{2}+\sqrt{11}}$ is irrational.
6. (a) What is the cardinality of the set of roots of polynomials with constructible coefficients? Justify your answer.
(b) Let \mathbb{N} denote the set of all natural numbers. What is the cardinality of the set of all functions from \mathbb{N} to $\{1,3,5\}$? Justify your answer.
Hint: You can use the fact that $|P(\mathbb{N})|=|\mathbb{R}|$.
7. Let θ be an angle between 0 and 90 degrees. Suppose that $\cos \theta=\frac{3}{4}$. Prove that $\frac{\theta}{3}$ is not a constructible angle.
8. For each of the following numbers, state whether or not it is constructible and justify your answer.
(a) $\cos \theta$ where the angle $\frac{\theta}{3}$ is constructible
(b) $\sqrt{7+\sqrt{5}}$
(c) $(0.029)^{1 / 3}$
(d) $\tan 22.5^{\circ}$
9. Find all complex solutions of the equation $z^{6}+z^{3}+1=0$.
10. Let $p=3, q=11$ and $e=7$. Let $N=3 \cdot 11=33$. The receiver broadcasts the numbers $N=33, e=7$. The sender sends a secret message M to the receiver using RSA encryption. What is sent is the number $R=6$.
Decode to find the original message M.
11. Construct a polynomial with integer coefficients which has $\sqrt{2}+\sqrt{5}$ as a root.

