Solutions to Practice Final 2

1. Using induction prove that

$$
1^{2}+3^{2}+\ldots+(2 n+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}
$$

Solution

First we verify the base of induction. When $n=0 \mathrm{LHS}=1^{2}=1$ and $\mathrm{RHS}=\frac{1 \cdot 1 \cdot 3}{3}=1$. Induction step. Assume the formula is true for $n \geq 0$ and we need to verify it for $n+1$. Then we have

$$
\begin{aligned}
1^{2}+3^{2}+\ldots+(2 n+1)^{2}+(2 n+3)^{2} & =\frac{(n+1)(2 n+1)(2 n+3)}{3}+(2 n+3)^{2}= \\
\frac{(n+1)(2 n+1)(2 n+3)+3(2 n+3)^{2}}{3} & =\frac{(2 n+3)\left(2 n^{2}+3 n+1+3(2 n+3)\right)}{3} \\
=\frac{(2 n+3)\left(2 n^{2}+9 n+10\right)}{3} & =\frac{(2 n+3)(2 n+5)(n+2)}{3}
\end{aligned}
$$

This completes the induction step and proves the formula for all $n \geq 0$.
2. Let a, b, c be natural numbers.
(a) Show that the equation $a x+b y=c$ has a solution if and only if $(a, b) \mid c$.
(b) Find all integer solutions of $6 x+15 y=9$.

Solution

(a) Suppose $a x+b y=c$ for some integer x and y. If $d \mid a$ and $d \mid b$ then obviously, $d \mid a x+b y=c$. In particular, if $(a, b) \mid c$.
Conversely, suppose $(a, b) \mid c$ so that $c=d \cdot(a, b)$. Then $a x+b y=(a, b)$ has an integer solution by a result from class. Multiplying both sides by d we get $a(x d)+b(y d)=(a, b) \cdot d=c$.
(b) First, divide both sides by 3 . we get $2 x+5 y=3$. We have $(2,5)=1$ and we can find integer solution of $2 x+5 y=1$ using either Euclidean algorithm or just by trying a few small numbers we get
$2 \cdot(-2)+5 \cdot 1=1$. Multiplying by 3 we get $2 \cdot(-6)+5 \cdot(3)=3$ so $x_{0}=-6, y_{0}=3$ is a solution of $2 x+5 y=3$.
It's easy to see that $x=-6-5 k, y=3+2 k$ is a solution of $2 x+5 y=3$ for any k. We claim that any integer solution of $2 x+5 y=3$ has this form.
Suppose $2 x+5 y=3$. we also have $2 \cdot(-6)+5 \cdot(3)=3$. Subtracting these equations we get $2(-6-x)+5(3-y)=0$ or $2(-6-x)=5(y-3)$. This implies that $2 \mid(y-3)$ so that $y-3=2 k$ or $y=3+2 k$. This gives $2(-6-x)=5(y-3)=$ $6 k,-6-x=3 k, x=-6-3 k$.
Thus the general solution is $x=-6-5 k, y=3+2 k$ where k is any integer.
3. Find the last digit of the sum

$$
2\left(1+3+3^{2}+3^{3}+\ldots+3^{309}\right)
$$

Solution

First, we compute

$$
2\left(1+3+3^{2}+3^{3}+\ldots+3^{309}\right)=2 \cdot \frac{3^{310}-1}{3-1}=3^{310}-1
$$

We have $\phi(10)=\phi(2 \cdot 5)=1 \cdot 4=4$. By Euler's theorem this implies that $3^{4} \equiv 1($ $\bmod 10)$. Of course, this can also be seen directly as $3^{4}=81$.
Therefore $3^{4 k} \equiv 1(\bmod 10)$. We have $310=308+2$ and $4 \mid 308$. Therefore $3^{310} \equiv 3^{2}($ $\bmod 10$). This means that the last digit of 3^{310} is 9 and hence the last digit of $3^{310}-1$ is 8 .
4. Let S be infinite and $A \subset S$ be finite. Prove that $|S|=|S \backslash A|$.

Solution

Let $A=\left\{s_{1}, \ldots, s_{n}\right\}$. Since S is infinite the set $S \backslash A$ is non empty. Pick any $s_{n+1} \in S \backslash A=S \backslash\left\{s_{1}, \ldots, s_{n}\right\}$. Next, since $S \backslash\left\{s_{1}, \ldots, s_{n+1}\right\} \neq \emptyset$ we can choose $s_{n+2} \in$ $S \backslash\left\{s_{1}, \ldots, s_{n+1}\right\}$. Proceeding by induction we con construct $s_{m+1} \in S \backslash\left\{s_{1}, \ldots, s_{m}\right\}$ for any $m \geq n$.
Now define $f: S \rightarrow S \backslash A$ by the formula $f\left(s_{i}\right)=s_{i+n}$ for any i and $f(x)=x$ if $x \in S \backslash\left\{s_{1}, s_{2}, \ldots\right\}$. By construction, f is 1-1 and onto.
5. Let $S=[0,1]$ and $T=[0,2)$. Let $f: S \rightarrow T$ be given by $f(x)=x$ and $g: T \rightarrow S$ be given by $g(x)=x / 2$.
(a) Find S_{S}, S_{T}, S_{∞};
(b) give an explicit formula for a 1-1 and onto map $h: S \rightarrow T$ coming from f and g using the proof of the Schroeder-Berenstein theorem.

Solution

(a) Note that $1 \notin g(T)$ and therefore $1 \in S_{S}$. Next, we see that $1 / 2 \in S_{S}$ also. Indeed, $1 / 2=g(1)$ and $1=f(1)$. So 1 is the last ancestor of $1 / 2$ and hence $1 / 2 \in S_{S}$. proceeding by induction we see that $\frac{1}{2^{n}} \in S_{S}$ for any $n \geq 0$.
Next observe that $(1 / 2,1) \subset S_{T}$. Indeed, if $1 / 2<x<1$ then $x=g(2 x)$ and $1<2 x<2$ so that $2 x \notin f(S)$.

Proceeding by induction we claim that $\left(\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right) \in S_{T}$ for any $n \geq 0$. We just verified the base of induction.
Induction step. Suppose we know the statement of $n \geq 0$ and we need to prove it for $n+1$. Let $\frac{1}{2^{n+2}}<x<\frac{1}{2^{n+1}}$ then $x=g(2 x)$ and $\frac{1}{2^{n+1}}<2 x<\frac{1}{2^{n}}$. Also, $2 x=f(2 x)$. By induction assumption, $2 x \in S_{T}$ and the last ancestor of x is the last ancestor of $2 x$ so $x \in S_{T}$ also.
This concludes the induction step.
It's obvious that $0 \in S_{\infty}$. Therefore $S_{\infty}=\{0\}, S_{S}=\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots\right\}$ and $S_{T}=\left\{x \in[0,1]\right.$ such that $\left.x \neq 0,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}$.
(b) By the proof os the Shroeder Berenstein Theorem the following map $h: S \rightarrow T$ is $1-1$ and onto.

$$
h(x)=\left\{\begin{array}{l}
x \text { if } x=0,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \\
2 x \text { if } x \neq 0,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots
\end{array}\right.
$$

6. Let $n=2 p$ where p is an odd prime. Find the remainder when $\phi(n)$! is divided by n. Here $\phi(n)$ is the Euler function of n.

Solution

We have $\phi(n)=\phi(2 p)=(2-1)(p-1)=p-1$. By Wilson's theorem $\phi(n)!=(p-1)!\equiv$ $-1(\bmod p) \equiv p-1(\bmod p)$. This measn that $p \mid(p-1)!-(p-1)$. Since p is odd $p-1$ is even and therefore $2 \mid(p-1)!-(p-1)$ also. Since $(2, p)=1$ this implies that $2 p \mid(p-1)!-(p-1)$ or, equivalently $(p-1)!\equiv p-1(\bmod 2 p)$.
Answer: $p-1$.
7. Prove that $q_{1} \sqrt{3}+q_{2} \sqrt{5} \neq q_{1}^{\prime} \sqrt{3}+q_{2}^{\prime} \sqrt{5}$ for any rational $q_{1}, q_{2}, q_{1}^{\prime}, q_{2}^{\prime}$ unless $q_{1}=q_{1}^{\prime}, q_{2}=$ q_{2}^{\prime}.

Solution

Suppose $q_{1} \sqrt{3}+q_{2} \sqrt{5}=q_{1}^{\prime} \sqrt{3}+q_{2}^{\prime} \sqrt{5}$. Then $\left(q_{1}-q_{1}^{\prime}\right) \sqrt{3}+\left(q_{2}-q_{2}^{\prime}\right) \sqrt{5}=0$. Let $a=q_{1}-q_{1}^{\prime}, b=q_{2}-q_{2}^{\prime}$ are rational and $a \sqrt{3}+b \sqrt{2}=0$. We want to show that $a=b=0$. If $a \neq 0$ this gives $\sqrt{\frac{3}{2}}=-\frac{b}{a}$ which is rational. This is a contradiction since $\sqrt{\frac{3}{2}}$ is irrational. Hence $a=0$. Since $a \sqrt{3}+b \sqrt{2}=0$ this implies $b \sqrt{2}=0, b=0$.
8. Let a be a root of $x^{5}-6 x^{3}+2 x^{2}+5 x-1=0$. Construct a polynomial with integer coefficients which has a^{2} as a root.

Hint: separate even and odd powers.

Solution

We can rewrite the equation as $x^{5}-6 x^{3}+5 x=1-2 x^{2}, x\left(x^{4}-6 x^{2}+5\right)=1-2 x^{2}$. Squaring both sides we get $x^{2}\left(x^{4}-6 x^{2}+5\right)^{2}=\left(1-2 x^{2}\right)^{2}$. Clearly, $y=x^{2}$ satisfies $y\left(y^{2}-6 y+5\right)^{2}=(1-2 y)^{2}$.
9. Find all complex roots of $x^{6}+7 x^{3}-8=0$.

Reminder: Real numbers are also complex numbers.

Solution

Let $z=x^{3}$. Then z satisfies $z^{2}+7 z-8=0$ Solving this quadratic equation we get $z=1, z=-8$. Thus we need to solve $x^{3}=1$ and $x^{3}=-8$. Solving $x^{3}=1$ gives $x=1, x=\cos (2 \pi / 3)+i \sin (2 \pi / 3)=\frac{-1+i \sqrt{3}}{2}, x=\cos (4 \pi / 3)+i \sin (4 \pi / 3)=\frac{-1-i \sqrt{3}}{2}$
Next we write -8 as $2^{3}(\cos \pi+i \sin \pi)$. Thus solving $x^{3}=-8$ we get $x=2(\cos (\pi / 3)+$ $i \sin (\pi / 3))=1+i \sqrt{3}, x=2(\cos (\pi / 3+2 \pi / 3)+i \sin (\pi / 3+2 \pi / 3))=2(\cos \pi+i \sin \pi)=$ $-2, x=2(\cos (\pi / 3+4 \pi / 3)+i \sin (\pi / 3+4 \pi / 3))=2(\cos (5 \pi / 3)+i \sin (5 \pi / 3))=1-i \sqrt{3}$
10. Represent $\sin (5 \theta)$ as a polynomial in $\sin (\theta)$.

Solution

We have $\cos (5 \theta)+i \sin (5 \theta)=(\cos \theta+i \sin \theta)^{5}=(\cos \theta+i \sin \theta)^{2}(\cos \theta+i \sin \theta)^{3}$ We compute separately $(\cos \theta+i \sin \theta)^{2}=\left(\cos ^{2} \theta-\sin ^{2} \theta+2 i \sin \theta \cos \theta\right)$ and $(\cos \theta+$ $i \sin \theta)^{3}=(\cos \theta+i \sin \theta)^{2}(\cos \theta+i \sin \theta)=\left(\cos ^{2} \theta-\sin ^{2} \theta+2 i \sin \theta \cos \theta\right)(\cos \theta+$ $i \sin \theta)=\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \cos \theta-2 \sin ^{2} \theta \cos \theta+i\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin \theta+2 i \sin \theta \cos ^{2} \theta=$ $\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta+i\left(3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta\right)$.
Combining these together we get $\cos (5 \theta)+i \sin (5 \theta)=(\cos \theta+i \sin \theta)^{5}=(\cos \theta+$ $i \sin \theta)^{2}(\cos \theta+i \sin \theta)^{3}=\left(\cos ^{2} \theta-\sin ^{2} \theta+2 i \sin \theta \cos \theta\right)\left(\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta+i\left(3 \sin \theta \cos ^{2} \theta-\right.\right.$ $\left.\left.\sin ^{3} \theta\right)\right)=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta\right)-2 \sin \theta \cos \theta\left(3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta\right)+$ $i\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta\right)+2 i \sin \theta \cos \theta\left(\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta\right)$.
Therefore, $\sin (5 \theta)=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta\right)+2 \sin \theta \cos \theta\left(\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta\right)=$ $\left(1-2 \sin ^{2} \theta\right)\left(3 \sin \theta\left(1-\sin ^{2} \theta\right)-\sin ^{3} \theta\right)+2 \sin \theta \cos ^{4} \theta-6 \sin ^{3} \theta \cos ^{2} \theta=\left(1-2 \sin ^{2} \theta\right)(3 \sin \theta(1-$ $\left.\left.\sin ^{2} \theta\right)-\sin ^{3} \theta\right)+2 \sin \theta\left(1-\sin ^{2} \theta\right)^{2}-6 \sin ^{3} \theta\left(1-\sin ^{2} \theta\right)$.
11. Is $\frac{\sqrt[6]{5}-\sqrt{5}}{1+2 \sqrt{7}}$ constructible? Justify your answer.

Solution

$\frac{\sqrt[6]{5}-\sqrt{5}}{1+2 \sqrt{7}}$ is not constructible. We argue by contradiction. Assume $\frac{\sqrt[6]{5}-\sqrt{5}}{1+2 \sqrt{7}}$ is constructible. Since $\sqrt{5}$ and $\sqrt{7}$ are constructible this implies that $\sqrt[6]{5}$ is constructible and hence $(\sqrt[6]{5})^{2}=\sqrt[3]{5}$ is also constructible. $\sqrt[3]{5}$ is a root of $x^{3}-5=0$ which is a cubic equation with integer coefficients. By a theorem from class if it has a constructible root it must have a rational root as well. Let $\frac{m}{n}$ be a rational root where $(m, n)=1$. Then $m \mid 5$ and $n \mid 1$ which means that $\frac{m}{n}= \pm 1, \pm 5$. Plugging these numbers into $x^{3}-5=0$ we see that none of them are roots.
This is a contradiction and therefore $\frac{\sqrt[6]{5}-\sqrt{5}}{1+2 \sqrt{7}}$ is not constructible.
12. For each of the following answer "true" or "false". Justify your answer.
a) If $\frac{x}{y}$ is constructible then both x and y are constructible.
b) If x is constructible then $\frac{1}{x}$ is constructible.
c) There is an angle θ such that $\cos \theta$ is constructible but $\sin \theta$ is not constructible.
d) $\sqrt[3]{\frac{10}{27}}$ is constructible.

Solution

a) False. For example, take $x=y=\pi$. Then X and y are not constructible but $x / y=1$ is constructible.
b) True. See figure below. Draw segments of lengths 1 and x on one side of an angle and a segment of length 1 on the other side. Connect x and 1 on opposite sides by a line a draw a parallel line through 1 on the same side as x. It intersect the second side of the angle at distance y. Then from similar triangles we get $\frac{x}{1}=\frac{1}{y}$ or $y=\frac{1}{x}$

c) False. If $\cos \theta$ is constructible then so is $1-\cos ^{2} \theta$. Hence $\sin \theta= \pm \sqrt{1-\cos ^{2} \theta}$ is also constructible since a square root of a constructible number is constructible.
d) False. We argue by contradiction. Suppose $x=\sqrt[3]{\frac{10}{27}}$ is constructible. It satisfies the equation $27 x^{3}-10=(3 x)^{3}-10=0$. If x is constructible then so is $y=3 x$ which satisfies the equation $y^{3}-10=0$. This is a cubic equation with integer coefficients. If it has a constructible root it must also have a rational one. We can write that rational root as $\frac{a}{b}$ where $(a, b)=1$. Then $a \mid 10$ and $b \mid 1$ which means that $y=\frac{a}{b}= \pm 1 \pm 2 \pm 5$ or ± 10. By plugging these numbers into $y^{3}-10=0$ we see that none of them are roots. This is a contradiction and therefore $\sqrt[3]{\frac{10}{27}}$ is not constructible.
13. Prove that the equation

$$
\left(1+x^{19}\right)^{3}+\left(1+x^{19}\right)^{2}-3=0
$$

has no constructible solutions.

Solution

Suppose x is a constructible root. Then $y=x^{19}+1$ is also constructible and it satisfies $y^{3}+y^{2}-1=0$. This is a cubic equation with integer coefficients. If it has
a constructible root it must also have a rational one. We can write that rational root as $\frac{a}{b}$ where $(a, b)=1$. Then $a \mid 1$ and $b \mid 1$ which means that $y=\frac{a}{b}= \pm 1$. But neither $y=1$ nor $y=-1$ solve $y^{3}+y^{2}-1=0$. This is a contradiction which means that $\left(1+x^{19}\right)^{3}+\left(1+x^{19}\right)^{2}-3=0$ has no constructible solutions.

