Practice Final 2

1. Using induction prove that

$$
1^{2}+3^{2}+\ldots+(2 n+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}
$$

2. Let a, b, c be natural numbers.
(a) Show that the equation $a x+b y=c$ has a solution if and only if $(a, b) \mid c$.
(b) Find all integer solutions of $6 x+15 y=9$.
3. Find the last digit of the sum

$$
2\left(1+3+3^{2}+3^{3}+\ldots+3^{309}\right)
$$

4. Let S be infinite and $A \subset S$ be finite. Prove that $|S|=|S \backslash A|$.
5. Let $S=[0,1]$ and $T=[0,2)$. Let $f: S \rightarrow T$ be given by $f(x)=x$ and $g: T \rightarrow S$ be given by $g(x)=x / 2$.
(a) Find S_{S}, S_{T}, S_{∞};
(b) give an explicit formula for a 1-1 and onto map $h: S \rightarrow T$ coming from f and g using the proof of the Schroeder-Berenstein theorem.
6. Let $n=2 p$ where p is an odd prime. Find the remainder when $\phi(n)$! is divided by n. Here $\phi(n)$ is the Euler function of n.
7. Prove that $q_{1} \sqrt{3}+q_{2} \sqrt{5} \neq q_{1}^{\prime} \sqrt{3}+q_{2}^{\prime} \sqrt{5}$ for any rational $q_{1}, q_{2}, q_{1}^{\prime}, q_{2}^{\prime}$ unless $q_{1}=q_{1}^{\prime}, q_{2}=$ q_{2}^{\prime}.
8. Let a be a root of $x^{5}-6 x^{3}+2 x^{2}+5 x-1=0$. Construct a polynomial with integer coefficients which has a^{2} as a root.
Hint: separate even and odd powers.
9. Find all complex roots of $x^{6}+7 x^{3}-8=0$.

Reminder: Real numbers are also complex numbers.
10. Represent $\sin (5 \theta)$ as a polynomial in $\sin (\theta)$.
11. Is $\frac{\sqrt[6]{5}-\sqrt{5}}{1+2 \sqrt{7}}$ constructible? Justify your answer.
12. For each of the following answer "true" or "false". Justify your answer.
a) If $\frac{x}{y}$ is constructible then both x and y are constructible.
b) If x is constructible then $\frac{1}{x}$ is constructible.
c) There is an angle θ such that $\cos \theta$ is constructible but $\sin \theta$ is not constructible.
d) $\sqrt[3]{\frac{10}{27}}$ is constructible.
13. Prove that the equation

$$
\left(1+x^{19}\right)^{3}+\left(1+x^{19}\right)^{2}-3=0
$$

has no constructible solutions.

