Solutions to Practice Final 1

- 1. (a) What is $\phi(20^{100})$ where ϕ is Euler's ϕ -function?
 - (b) Find an integer x such that $140x \equiv 133 \pmod{301}$. Hint: $\gcd(140, 301) = 7$.

Solution

- (a) $\phi(20^{100}) = \phi(4^{100} \cdot 5^{100}) = \phi(2^{200} \cdot 5^{100}) = (2^{200} 2^{199})(5^{100} 5^{99}) = 2^{199}(2 1)5^{99}(5 1) = 2^{199} \cdot 5^{99} \cdot 4 = 2^{201} \cdot 5^{99}$
- (b) Note that $140 = 2^2 \cdot 5 \cdot 7$ and $301 = 7 \cdot 43$ are prime decompositions. also $133 = 7 \cdot 19$. therefore

 $140x \equiv 133 \pmod{301}$ means $7 \cdot 20x \equiv 7 \cdot 19 \pmod{7 \cdot 43}$ and is equivalent to $20x \equiv 19 \pmod{43}$.

Since 43 is prime and it does not divide 20, by the Little Fermat theorem we have that $20^{42} \equiv 1 \pmod{43}$ and hence $20 \cdot 20^{41} \cdot 19 \equiv 19 \pmod{43}$. Therefore we can take $x = 20^{41} \cdot 19$.

- 2. (a) Prove, by mathematical induction, that $1+2+3+...+n=\frac{n(n+1)}{2}$ for every natural number n.
 - (b) Prove that for p an odd prime (that is, p is a prime that is not equal to 2), $1^p + 2^p + 3^p + ... + (p-1)^p \equiv 0 \pmod{p}$.

Solution

- (a) First we check the formula for n=1. we have $1=\frac{1(1+1)}{2}$ so the formula is true there. suppose the formula is proved for $n\geq 1$ and $1+2+3+\ldots+n=\frac{n(n+1)}{2}$. Then $1+2+3+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}$ which means that the formula is true for n+1 also. By induction this means that the formula holds for all natural n.
- (b) Prove that for p an odd prime (that is, p is a prime that is not equal to 2), $1^p + 2^p + 3^p + ... + (p-1)^p \equiv 0 \pmod{p}$.

By Little Fermat theorem we have that $a^{p-1} \equiv 1 \pmod{p}$ for any $a = 1, \ldots, p-1$. Multiplying this by a gives $a^p \equiv a \pmod{p}$ any $a = 1, \ldots, p-1$. Therefore $1^p + 2^p + 3^p + \ldots + (p-1)^p \equiv 1 + 2 + \ldots + (p-1) \equiv \frac{(p-1)p}{2} \pmod{p}$ by part (a). Note that p-1 is even which means that $k = \frac{p-1}{2}$ is an integer. therefore

$$1^p + 2^p + 3^p + \dots + (p-1)^p \equiv kp \equiv 0 \pmod{p}$$

3. Prove that for any odd integer a, a and a^{4n+1} have the same last digit for every natural number n.

Solution

If a is odd and is divisible by 5 then the last digit of a is 5. therefore, the last digit of any power of a is also 5 and the statement is clear.

Now suppose (a,5)=1. Since a is odd this means (a,10)=1 also. By Euler's theorem $a^{\phi(10)}\equiv 1\pmod{10}$, we have $\phi(10)=\phi(2\cdot 5)=(2-1)\cdot (5-1)=4$. Thus $a^4\equiv 1\pmod{10}$, therefore $a^{4k}\equiv 1\pmod{10}$ for any natural k and hence $a^{4k+1}\equiv a\pmod{10}$ which means that a^{4k+1} and a have the same last digit.

4. Recall that a "perfect square" is a number of the form n^2 where n is a natural number. Show that 9120342526523 is not the sum of two perfect squares. Hint: Consider values modulo 4.

Solution

If $a \equiv 0 \pmod{4}$ or $a \equiv 2 \pmod{4}$ then $a^2 \equiv 0 \pmod{4}$. If $a \equiv 1 \pmod{4}$ or $a \equiv 3 \pmod{4}$ then $a^2 \equiv 1 \pmod{4}$. Thus the only possible values of $a^2 \pmod{4}$ or 0 and 1.

Therefore the only possible values $\pmod{4}$ for $a^2 + b^2$ are 0 + 0 = 0, 0 + 1 = 1 and 1 + 1 = 2.

On the other hand we have $9120342526523 = 91203425265 \cdot 100 + 23 \equiv 23 \equiv 3 \pmod{4}$ (we used that $100 \equiv 0 \pmod{4}$). thus 9120342526523 can not be written as $a^2 + b^2$.

- 5. (a) Are there rational numbers a and b such that $\sqrt{3} = a + b\sqrt{2}$? Justify your answer.
 - (b) Prove that $\frac{\sqrt{5}}{\sqrt{2}+\sqrt{11}}$ is irrational.

Solution

- (a) Suppose $\sqrt{3}=a+b\sqrt{2}$ where a and b are rational. taking squares of both sides we get $3=a^2+2ab\sqrt{2}+2b^2, 3-a^2-2b^2=2ab\sqrt{2}$. Note that we can not have a=0 since it would mean $\sqrt{3}=b\sqrt{2}, \sqrt{\frac{3}{2}}=b$ is rational. This is easily seen to be impossible. Similarly we can not have b=0 as this would mean that $\sqrt{3}=a$ is rational. Thus $3-a^2-2b^2=2ab\sqrt{2}$ means $\sqrt{2}=\frac{3-a^2-2b^2}{2ab}$ is rational. this is impossible and therefore we can not write $\sqrt{3}=a+b\sqrt{2}$ with rational a,b.
- (b) Suppose $\frac{\sqrt{5}}{\sqrt{2}+\sqrt{11}}=q$ is rational. then $\sqrt{5}=q(\sqrt{2}+\sqrt{11})$. Note that q can not be equal to zero. taking squares of both sides we get $5=q^2(2+11+2\sqrt{22})$. This means $\frac{5}{q^2}=13+2\sqrt{22},\sqrt{22}=\frac{5-13q^2}{2q^2}$ is rational. This is a contradiction and hence $\frac{\sqrt{5}}{\sqrt{2}+\sqrt{11}}$ is irrational.

- 6. (a) What is the cardinality of the set of roots of polynomials with constructible coefficients? Justify your answer.
 - (b) Let \mathbb{N} denote the set of all natural numbers. What is the cardinality of the set of all functions from \mathbb{N} to $\{1, 3, 5\}$? Justify your answer.

Solution

- (a) Let S be the set of roots of polynomials with constructible coefficients. It's easy to see that $|S| \geq |\mathbb{N}|$. On the other hand, it was proved in class that a root of a polynomial with constructible coefficients is also a root of a polynomial with rational coefficients. Therefore all elements of S are algebraic and hence $|S| \leq |\mathbb{N}|$. By Schroeder-Berenstein this implies that $|S| = |\mathbb{N}|$.
- (b) Let \mathbb{N} denote the set of all natural numbers. What is the cardinality of the set S of all functions from \mathbb{N} to $\{1,3,5\}$?

First observe that any such function corresponds to a sequence a_1, a_2, a_3, \ldots where each a_i is equal either 1, 3 or 5. Consider the map

 $f: S \to \mathbb{R}$ given by $f(a_1, a_2, a_3, \ldots) = 0.a_1 a_2 a_3 \ldots$ Clearly f is 1-1 which means that $|S| \leq |\mathbb{R}|$.

On the other hand recall that $|\mathbb{R}| = |P(\mathbb{N})|$ and $P(\mathbb{N})$ is equal to the set of functions from N to $\{0,1\}$. Since $|\{0,1\}| \le |\{1,3,5\}|$ we have that $|\mathbb{R}| = |P(\mathbb{N})| \le |S|$.

By Schroeder-Berenstein theorem this implies that $|S| = |\mathbb{R}|$.

7. Let θ be an angle between 0 and 90 degrees. Suppose that $\cos \theta = \frac{3}{4}$. Prove that $\frac{\theta}{3}$ is not a constructible angle.

Solution

let $x=\cos\frac{\theta}{3}$. Suppose x is constructible. using the formula $\cos(\theta)=4\cos^3\frac{\theta}{3}-3\cos\frac{\theta}{3}$ we see that $4x^3-3x=\frac{3}{4}$. therefore $16x^3-12x=3$. If x is constructible then so is y=2x which must satisfy $2y^3-6y=3$, $2y^3-6y-3=0$. this is a cubic polynomial with rational coefficients. If it has a constructible root it must have a rational one. Suppose $\frac{p}{q}$ is a rational root of $2y^3-6y-3=0$ where p,q are relatively prime integers. Then p|3 and q|2. Thus the only possibilities for $\frac{p}{q}$ are $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$. Plugging those numbers into $2y^3-6y-3$ we see that none of them are roots. This is a contradiction and hence, x is not constructible.

- 8. For each of the following numbers, state whether or not it is constructible and justify your answer.
 - (a) $\cos \theta$ where the angle $\frac{\theta}{3}$ is constructible

- (b) $\sqrt[3]{\frac{25}{8}}$
- (c) $\sqrt{7+\sqrt{5}}$
- (d) $(0.029)^{1/3}$
- (e) $\tan 22.5^{\circ}$

Solution

- (a) $\cos(\theta) = 4\cos^3\frac{\theta}{3} 3\cos\frac{\theta}{3}$, therefore it's constructible if $\cos\theta$ is.
- (b) $\sqrt[3]{\frac{25}{8}} = \frac{\sqrt[3]{25}}{2}$. If it were constructible then so would be $\sqrt[3]{25}$ which is a root of $x^3 25 = 0$. This is a cubic polynomial with rational coefficients. If it has a constructible root it must have a rational root which has to be an integer dividing 25. The only possibilities are $\pm 1, \pm 5, \pm 25$. None of these are roots of $x^3 25 = 0$ and hence $\sqrt[3]{\frac{25}{8}}$ is not constructible.
- (c) $\sqrt{7+\sqrt{5}}$ belongs to F_2 for the tower of fields $\mathbb{Q}=F_0\subset F_1=F_0(\sqrt{5})\subset F_2=F_1(\sqrt{7+\sqrt{5}})$. Therefore $\sqrt{7+\sqrt{5}}$ is constructible.
- (d) $(0.029)^{1/3} = \sqrt[3]{\frac{29}{1000}}$ is not constructible by the same argument as in (b).
- (e) $22.5^{\circ} = \frac{90^{\circ}}{4}$. Since we can bisect an angle with ruler and compass, the angle $45^{\circ} = \frac{90^{\circ}}{2}$ is constructible and $22.5^{\circ} = \frac{45^{\circ}}{2}$ is also constructible. Intersecting the angle with the unit circle we can construct the point with coordinates $(\cos 22.5^{\circ}, \sin 22.5^{\circ})$. Therefore $\tan 22.5^{\circ} = \frac{\sin 22.5^{\circ}}{\cos 22.5^{\circ}}$ is also constructible.
- 9. Find all complex solutions of the equation $z^6 + z^3 + 1 = 0$.

Solution

Let $x=z^3$. Then x satisfies $x^2+x+1=0$ so $x=\frac{-1\pm\sqrt{-3}}{2}=\frac{-1\pm\sqrt{3}i}{2}$. We have two possibilities

- 1) $x = \frac{-1+\sqrt{3}i}{2} = \cos(2\pi/3) + i\sin(2\pi/3)$. Solving $z^3 = x = \cos(2\pi/3) + i\sin(2\pi/3)$ we get $z = \cos(2\pi/9 + \frac{2\pi k}{3}) + i\sin(2\pi/9 + \frac{2\pi k}{3})$ where k = 0, 1, 2. This gives 3 solutions when k = 0 we get $z_1 = \cos(2\pi/9) + i\sin(2\pi/9)$ when k = 1 we get $z_2 = \cos(2\pi/9 + \frac{2\pi}{3}) + i\sin(2\pi/9 + \frac{2\pi}{3}) = \cos(\frac{8\pi}{9}) + i\sin(\frac{8\pi}{9})$ when k = 2 we get $z_3 = \cos(2\pi/9 + \frac{4\pi}{3}) + i\sin(2\pi/9 + \frac{4\pi}{3}) = \cos(\frac{14\pi}{9}) + i\sin(\frac{14\pi}{9})$
- 2) $x = \frac{-1-\sqrt{3}i}{2} = \cos(4\pi/3) + i\sin(4\pi/3)$. Solving $z^3 = x = \cos(4\pi/3) + i\sin(4\pi/3)$ we get $z = \cos(4\pi/9 + \frac{2\pi k}{3}) + i\sin(4\pi/9 + \frac{2\pi k}{3})$ where k = 0, 1, 2. As before, this gives 3 solutions

when k = 0 we get $z_4 = \cos(4\pi/9) + i\sin(4\pi/9)$

when
$$k = 1$$
 we get $z_5 = \cos(4\pi/9 + \frac{2\pi}{3}) + i\sin(4\pi/9 + \frac{2\pi}{3}) = \cos(\frac{10\pi}{9}) + i\sin(\frac{10\pi}{9})$
when $k = 2$ we get $z_6 = \cos(4\pi/9 + \frac{4\pi}{3}) + i\sin(4\pi/9 + \frac{4\pi}{3}) = \cos(\frac{16\pi}{9}) + i\sin(\frac{16\pi}{9})$

10. Let p = 3, q = 11 and e = 7. Let $N = 3 \cdot 11 = 33$. The receiver broadcasts the numbers N = 33, e = 7. The sender sends a secret message M to the receiver using RSA encryption. What is sent is the number R = 6.

Decode to find the original message M.

Solution

We compute $\phi(N)=\phi(33)=(3-1)\cdot(11-1)=20$. We need to find a natural number D such that $De\equiv 1\pmod{\phi(N)}$, i.e. such that $7D\equiv 1\pmod{20}$. This can be done Using Euclidean algorithm. We compute $20=2\cdot 7+6, 7=1\cdot 6+1$ so that $1=\gcd(20,7)$. Also, from $20=2\cdot 7+6$ we can express 6 as $6=20-2\cdot 7$. Plugging this into the second formula we get $1=7-6=7-(20-2\cdot 7)=3\cdot 7-20\cdot 1$. Therefore we can take D=3.

To decode the message we need to compute R^D (mod N, i.e. 6^3 (mod 33). We compute $6^3 = 216 = 6 \cdot 3 + 18$ and hence M = 18.

Answer: M = 18.

11. Construct a polynomial with integer coefficients which has $\sqrt{2} + \sqrt{5}$ as a root.

Solution

Let $x = \sqrt{2} + \sqrt{5}$. Then it satisfies $x - \sqrt{2} = \sqrt{5}$. Squaring both sides we get $(x - \sqrt{2})^2 = (\sqrt{5})^2 = 5, x^2 - 2x\sqrt{2} + 2 = 5, x^2 - 3 = 2x\sqrt{2}$. Again squaring both sides we get $(x^2 - 3)^2 = (2x\sqrt{2})^2 = 8x^2, x^4 - 6x^2 + 9 = 8x^2, x^4 - 14x^2 + 9 = 0$.

Answer: $\sqrt{2} + \sqrt{5}$ is a root of $x^4 - 14x^2 + 9 = 0$.