Solutions to Practice Final 1

1. (a) What is $\phi\left(20^{100}\right)$ where ϕ is Euler's ϕ-function?
(b) Find an integer x such that $140 x \equiv 133(\bmod 301)$. Hint: $\operatorname{gcd}(140,301)=7$.

Solution

(a) $\phi\left(20^{100}\right)=\phi\left(4^{100} \cdot 5^{100}\right)=\phi\left(2^{200} \cdot 5^{100}\right)=\left(2^{200}-2^{199}\right)\left(5^{100}-5^{99}\right)=$ $=2^{199}(2-1) 5^{99}(5-1)=2^{199} \cdot 5^{99} \cdot 4=2^{201} \cdot 5^{99}$
(b) Note that $140=2^{2} \cdot 5 \cdot 7$ and $301=7 \cdot 43$ are prime decompositions. also $133=7 \cdot 19$. therefore
$140 x \equiv 133(\bmod 301)$ means $7 \cdot 20 x \equiv 7 \cdot 19(\bmod 7 \cdot 43)$ and is equivalent to $20 x \equiv 19(\bmod 43)$.
Since 43 is prime and it does not divide 20, by the Little Fermat theorem we have that $20^{42} \equiv 1(\bmod 43)$ and hence $20 \cdot 20^{41} \cdot 19 \equiv 19(\bmod 43)$. Therefore we can take $x=20^{41} \cdot 19$.
2. (a) Prove, by mathematical induction, that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ for every natural number n.
(b) Prove that for p an odd prime (that is, p is a prime that is not equal to 2), $1^{p}+2^{p}+3^{p}+\ldots+(p-1)^{p} \equiv 0(\bmod p)$.

Solution

(a) First we check the formula for $n=1$. we have $1=\frac{1(1+1)}{2}$ so the formula is true there. suppose the formula is proved for $n \geq 1$ and $1+2+3+\ldots+n=\frac{n(n+1)}{2}$. Then $1+2+3+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}$ which means that the formula is true for $n+1$ also. By induction this means that the formula holds for all natural n.
(b) Prove that for p an odd prime (that is, p is a prime that is not equal to 2), $1^{p}+2^{p}+3^{p}+\ldots+(p-1)^{p} \equiv 0(\bmod p)$.
By Little Fermat theorem we have that $a^{p-1} \equiv 1(\bmod p)$ for any $a=1, \ldots, p-1$. Multiplying this by a gives $a^{p} \equiv a(\bmod p)$ any $a=1, \ldots, p-1$. Therefore $1^{p}+2^{p}+3^{p}+\ldots+(p-1)^{p} \equiv 1+2+\ldots(p-1) \equiv \frac{(p-1) p}{2}(\bmod p)$ by part (a). Note that $p-1$ is even which means that $k=\frac{p-1}{2}$ is an integer. therefore

$$
1^{p}+2^{p}+3^{p}+\ldots+(p-1)^{p} \equiv k p \equiv 0 \quad(\bmod p)
$$

3. Prove that for any odd integer a, a and $a^{4 n+1}$ have the same last digit for every natural number n.

Solution

If a is odd and is divisible by 5 then the last digit of a is 5 . therefore, the last digit of any power of a is also 5 and the statement is clear.
Now suppose $(a, 5)=1$. Since a is odd this means $(a, 10)=1$ also. By Euler's theorem $a^{\phi(10)} \equiv 1(\bmod 10)$. we have $\phi(10)=\phi(2 \cdot 5)=(2-1) \cdot(5-1)=4$. Thus $a^{4} \equiv 1$ $(\bmod 10)$. therefore $a^{4 k} \equiv 1(\bmod 10)$ for any natural k and hence $a^{4 k+1} \equiv a(\bmod 10)$ which means that $a^{4 k+1}$ and a have the same last digit.
4. Recall that a "perfect square" is a number of the form n^{2} where n is a natural number. Show that 9120342526523 is not the sum of two perfect squares. Hint: Consider values modulo 4.

Solution

If $a \equiv 0(\bmod 4)$ or $a \equiv 2(\bmod 4)$ then $a^{2} \equiv 0(\bmod 4)$. If $a \equiv 1(\bmod 4)$ or $a \equiv 3$ $(\bmod 4)$ then $a^{2} \equiv 1(\bmod 4)$. Thus the only possible values of $a^{2}(\bmod 4)$ or 0 and 1.

Therefore the only possible values $(\bmod 4)$ for $a^{2}+b^{2}$ are $0+0=0,0+1=1$ and $1+1=2$.

On the other hand we have $9120342526523=91203425265 \cdot 100+23 \equiv 23 \equiv 3(\bmod 4)$ (we used that $100 \equiv 0(\bmod 4)$. thus 9120342526523 can not be written as $a^{2}+b^{2}$.
5. (a) Are there rational numbers a and b such that $\sqrt{3}=a+b \sqrt{2}$? Justify your answer.
(b) Prove that $\frac{\sqrt{5}}{\sqrt{2}+\sqrt{11}}$ is irrational.

Solution

(a) Suppose $\sqrt{3}=a+b \sqrt{2}$ where a and b are rational. taking squares of both sides we get $3=a^{2}+2 a b \sqrt{2}+2 b^{2}, 3-a^{2}-2 b^{2}=2 a b \sqrt{2}$. Note that we can not have $a=0$ since it would mean $\sqrt{3}=b \sqrt{2}, \sqrt{\frac{3}{2}}=b$ is rational. This is easily seen to be impossible. Similarly we can not have $b=0$ as this would mean that $\sqrt{3}=a$ is rational. Thus $3-a^{2}-2 b^{2}=2 a b \sqrt{2}$ means $\sqrt{2}=\frac{3-a^{2}-2 b^{2}}{2 a b}$ is rational. this is impossible and therefore we can not write $\sqrt{3}=a+b \sqrt{2}$ with rational a, b.
(b) Suppose $\frac{\sqrt{5}}{\sqrt{2}+\sqrt{11}}=q$ is rational. then $\sqrt{5}=q(\sqrt{2}+\sqrt{11})$. Note that q can not be equal to zero.
taking squares of both sides we get $5=q^{2}(2+11+2 \sqrt{22})$. This means $\frac{5}{q^{2}}=$ $13+2 \sqrt{22}, \sqrt{22}=\frac{5-13 q^{2}}{2 q^{2}}$ is rational. This is a contradiction and hence $\frac{\sqrt{5}}{\sqrt{2}+\sqrt{11}}$ is irrational.
6. (a) What is the cardinality of the set of roots of polynomials with constructible coefficients? Justify your answer.
(b) Let \mathbb{N} denote the set of all natural numbers. What is the cardinality of the set of all functions from \mathbb{N} to $\{1,3,5\}$? Justify your answer.

Solution

(a) Let S be the set of roots of polynomials with constructible coefficients. It's easy to see that $|S| \geq|\mathbb{N}|$. On the other hand, it was proved in class that a root of a polynomial with constructible coefficients is also a root of a polynomial with rational coefficients. Therefore all elements of S are algebraic and hence $|S| \leq|\mathbb{N}|$. By Schroeder-Berenstein this implies that $|S|=|\mathbb{N}|$.
(b) Let \mathbb{N} denote the set of all natural numbers. What is the cardinality of the set S of all functions from \mathbb{N} to $\{1,3,5\}$?
First observe that any such function corresponds to a sequence $a_{1}, a_{2}, a_{3}, \ldots$ where each a_{i} is equal either 1,3 or 5 . Consider the map
$f: S \rightarrow \mathbb{R}$ given by $f\left(a_{1}, a_{2}, a_{3}, \ldots\right)=0 . a_{1} a_{2} a_{3} \ldots$. Clearly f is $1-1$ which means that $|S| \leq|\mathbb{R}|$.
On the other hand recall that $|\mathbb{R}|=|P(\mathbb{N})|$ and $P(\mathbb{N})$ is equal to the set of functions from N to $\{0,1\}$. Since $|\{0,1\}| \leq|\{1,3,5\}|$ we have that $|\mathbb{R}|=|P(\mathbb{N})| \leq$ $|S|$.
By Schroeder-Berenstein theorem this implies that $|S|=|\mathbb{R}|$.
7. Let θ be an angle between 0 and 90 degrees. Suppose that $\cos \theta=\frac{3}{4}$. Prove that $\frac{\theta}{3}$ is not a constructible angle.

Solution

let $x=\cos \frac{\theta}{3}$. Suppose x is constructible. using the formula $\cos (\theta)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}$ we see that $4 x^{3}-3 x=\frac{3}{4}$. therefore $16 x^{3}-12 x=3$. If x is constructible then so is $y=2 x$ which must satisfy $2 y^{3}-6 y=3,2 y^{3}-6 y-3=0$. this is a cubic polynomial with rational coefficients. If it has a constructible root it must have a rational one. Suppose $\frac{p}{q}$ is a rational root of $2 y^{3}-6 y-3=0$ where p, q are relatively prime integers. Then $p \mid 3$ and $q \mid 2$. Thus the only possibilities for $\frac{p}{q}$ are $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$. Plugging those numbers into $2 y^{3}-6 y-3$ we see that none of them are roots. This is a contradiction and hence, x is not constructible.
8. For each of the following numbers, state whether or not it is constructible and justify your answer.
(a) $\cos \theta$ where the angle $\frac{\theta}{3}$ is constructible
(b) $\sqrt[3]{\frac{25}{8}}$
(c) $\sqrt{7+\sqrt{5}}$
(d) $(0.029)^{1 / 3}$
(e) $\tan 22.5^{\circ}$

Solution

(a) $\cos (\theta)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}$, therefore it's constructible if $\cos \theta$ is.
(b) $\sqrt[3]{\frac{25}{8}}=\frac{\sqrt[3]{25}}{2}$. If it were constructible then so would be $\sqrt[3]{25}$ which is a root of $x^{3}-25=0$. This is a cubic polynomial with rational coefficients. If it has a constructible root it must have a rational root which has to be an integer dividing 25 . The only possibilities are $\pm 1, \pm 5, \pm 25$. None of these are roots of $x^{3}-25=0$ and hence $\sqrt[3]{\frac{25}{8}}$ is not constructible.
(c) $\sqrt{7+\sqrt{5}}$ belongs to F_{2} for the tower of fields $\mathbb{Q}=F_{0} \subset F_{1}=F_{0}(\sqrt{5}) \subset F_{2}=$ $F_{1}(\sqrt{7+\sqrt{5}})$. Therefore $\sqrt{7+\sqrt{5}}$ is constructible.
(d) $(0.029)^{1 / 3}=\sqrt[3]{\frac{29}{1000}}$ is not constructible by the same argument as in (b).
(e) $22.5^{\circ}=\frac{90^{\circ}}{4}$. Since we can bisect an angle with ruler and compass, the angle $45^{\circ}=\frac{90^{4}}{2}$ is constructible and $22.5^{\circ}=\frac{45^{\circ}}{2}$ is also constructible. Intersecting the angle with the unit circle we can construct the point with coordinates $\left(\cos 22.5^{\circ}, \sin 22.5^{\circ}\right)$. Therefore $\tan 22.5^{\circ}=\frac{\sin 22.5^{\circ}}{\cos 22.5^{\circ}}$ is also constructible.
9. Find all complex solutions of the equation $z^{6}+z^{3}+1=0$.

Solution

Let $x=z^{3}$. Then x satisfies $x^{2}+x+1=0$ so $x=\frac{-1 \pm \sqrt{-3}}{2}=\frac{-1 \pm \sqrt{3} i}{2}$. We have two possibilities

1) $x=\frac{-1+\sqrt{3} i}{2}=\cos (2 \pi / 3)+i \sin (2 \pi / 3)$. Solving $z^{3}=x=\cos (2 \pi / 3)+i \sin (2 \pi / 3)$ we get $z=\cos \left(2 \pi / 9+\frac{2 \pi k}{3}\right)+i \sin \left(2 \pi / 9+\frac{2 \pi k}{3}\right)$ where $k=0,1,2$. This gives 3 solutions when $k=0$ we get $z_{1}=\cos (2 \pi / 9)+i \sin (2 \pi / 9)$
when $k=1$ we get $z_{2}=\cos \left(2 \pi / 9+\frac{2 \pi}{3}\right)+i \sin \left(2 \pi / 9+\frac{2 \pi}{3}\right)=\cos \left(\frac{8 \pi}{9}\right)+i \sin \left(\frac{8 \pi}{9}\right)$
when $k=2$ we get $z_{3}=\cos \left(2 \pi / 9+\frac{4 \pi}{3}\right)+i \sin \left(2 \pi / 9+\frac{4 \pi}{3}\right)=\cos \left(\frac{14 \pi}{9}\right)+i \sin \left(\frac{14 \pi}{9}\right)$
2) $x=\frac{-1-\sqrt{3} i}{2}=\cos (4 \pi / 3)+i \sin (4 \pi / 3)$. Solving $z^{3}=x=\cos (4 \pi / 3)+i \sin (4 \pi / 3)$ we get $z=\cos \left(4 \pi / 9+\frac{2 \pi k}{3}\right)+i \sin \left(4 \pi / 9+\frac{2 \pi k}{3}\right)$ where $k=0,1,2$. As before, this gives 3 solutions
when $k=0$ we get $z_{4}=\cos (4 \pi / 9)+i \sin (4 \pi / 9)$
when $k=1$ we get $z_{5}=\cos \left(4 \pi / 9+\frac{2 \pi}{3}\right)+i \sin \left(4 \pi / 9+\frac{2 \pi}{3}\right)=\cos \left(\frac{10 \pi}{9}\right)+i \sin \left(\frac{10 \pi}{9}\right)$ when $k=2$ we get $z_{6}=\cos \left(4 \pi / 9+\frac{4 \pi}{3}\right)+i \sin \left(4 \pi / 9+\frac{4 \pi}{3}\right)=\cos \left(\frac{16 \pi}{9}\right)+i \sin \left(\frac{16 \pi}{9}\right)$
10. Let $p=3, q=11$ and $e=7$. Let $N=3 \cdot 11=33$. The receiver broadcasts the numbers $N=33, e=7$. The sender sends a secret message M to the receiver using RSA encryption. What is sent is the number $R=6$.

Decode to find the original message M.

Solution

We compute $\phi(N)=\phi(33)=(3-1) \cdot(11-1)=20$. We need to find a natural number D such that $D e \equiv 1(\bmod \phi(N))$, i.e. such that $7 D \equiv 1(\bmod 20)$. This can be done Using Euclidean algorithm. We compute $20=2 \cdot 7+6,7=1 \cdot 6+1$ so that $1=\operatorname{gcd}(20,7)$. Also, from $20=2 \cdot 7+6$ we can express 6 as $6=20-2 \cdot 7$. Plugging this into the second formula we get $1=7-6=7-(20-2 \cdot 7)=3 \cdot 7-20 \cdot 1$. Therefore we can take $D=3$.
To decode the message we need to compute $R^{D}\left(\bmod N\right.$, i.e. $6^{3}(\bmod 33)$. We compute $6^{3}=216=6 \cdot 3+18$ and hence $M=18$.
Answer: $M=18$.
11. Construct a polynomial with integer coefficients which has $\sqrt{2}+\sqrt{5}$ as a root.

Solution

Let $x=\sqrt{2}+\sqrt{5}$. Then it satisfies $x-\sqrt{2}=\sqrt{5}$. Squaring both sides we get $(x-\sqrt{2})^{2}=(\sqrt{5})^{2}=5, x^{2}-2 x \sqrt{2}+2=5, x^{2}-3=2 x \sqrt{2}$. Again squaring both sides we get $\left(x^{2}-3\right)^{2}=(2 x \sqrt{2})^{2}=8 x^{2}, x^{4}-6 x^{2}+9=8 x^{2}, x^{4}-14 x^{2}+9=0$.
Answer: $\sqrt{2}+\sqrt{5}$ is a root of $x^{4}-14 x^{2}+9=0$.

