(1) Prove by mathematical induction that \(n^3 + 5n \) is divisible by 6 for any natural \(n \).

Solution

We first check that the statement is true for \(n = 1 \). We have \(1^3 + 5 = 6 \) is divisible by 6.

Suppose the statement is true for \(n \geq 1 \). Let’s show that it’s also true for \(n + 1 \).

We have \((n + 1)^3 + 5(n + 1) = n^3 + 3n^2 + 3n + 1 + 5n + 5 = (n^3 + 5n) + 3n^2 + 3n + 6\). Clearly \(3n^2 + 3n + 6 \equiv 0 \pmod{3} \). Also, either \(n \) or \(n + 1 \) is even so that \(n(n + 1) \) is even and hence is divisible by 2. Therefore \(3n^2 + 3n + 6 \equiv 0 \pmod{2} \). Taken together the above means that \(3n^2 + 3n + 6 \equiv 0 \pmod{6} \). Therefore \((n + 1)^3 + 5(n + 1) = (n^3 + 5n) + 3n^2 + 3n + 6 \equiv 0 \pmod{6} \) by induction assumption.

(2) Find the remainder when \(7^{101} \) is divided by 101.

Solution

Since 101 is prime, By Fermat theorem \(7^{100} \equiv 1 \pmod{101} \) and hence \(7^{107} \equiv 7 \pmod{101} \).

(3) Find the integer \(a \), \(0 \leq a \leq 20 \) such that \(13a \equiv 1 \pmod{20} \).

Solution

We have that \(13 \cdot 3 = 39 \equiv -1 \pmod{20} \). Hence \(13 \cdot (-3) \equiv 1 \pmod{20} \). Since \(-3 \equiv 17 \pmod{20} \) we have \(13 \cdot 17 \equiv 1 \pmod{20} \).

(4) Prove that if \(m \equiv 1 \pmod{\phi(n)} \) and \((a,n) = 1 \) then \(a^m \equiv a \pmod{n} \), where \(\phi \) is Euler’s function.

Solution

We are given \(m \equiv 1 \pmod{\phi(n)} \), i.e \(m = k\phi(n) + 1 \) By Euler’s theorem \(a^{\phi(n)} \equiv 1 \pmod{n} \). Therefore, \(a^{k\phi(n)} \equiv 1 \pmod{n} \) and hence \(a^{k\phi(n)+1} \equiv 1 \cdot a \equiv a \pmod{n} \)

(5) Suppose \(3^{3^{100}} \) is written in ordinary way. What are the last two digits?

Solution

We need to find the remainder when we divide \(3^{3^{100}} \) by 100. Let \(n = 100 = 2^2 \cdot 5^2 \). Then \(\phi(n) = (2^2 - 2^1) \cdot (5^2 - 5^1) = 40 \). therefore, by the previous problem, \(3^{40k+1} \equiv 3 \pmod{100} \). Next observe that \(3^4 = 81 \equiv 1 \pmod{40} \). Therefore, \(3^{100} = (3^4)^{25} \equiv 1 \pmod{40} \). This finally implies that \(3^{3^{100}} \equiv 3 \pmod{100} \). This means that the last two digits of \(3^{3^{100}} \) are 03.
(6) Prove that $\sqrt[3]{\frac{2}{7}}$ is irrational.

Solution

Suppose $\sqrt[3]{\frac{2}{7}} = \frac{a}{b}$ where a, b are integers. we can assume that $(a, b) = 1$. Then $\frac{2}{7} = \frac{a^3}{b^3}$ and $2b^3 = 7a^3$. LHS is even which means that a must be even. Hence $a = 2c$ and we have $2b^3 = 7 \cdot 8c^3$, $b^3 = 28c^3$. Now RHS is even and hence b must be even. That means that both a and b are even which contradicts $(a, b) = 1$.