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Abstract

In these notes and the accompanying lectures I introduce models
of form PFA(S)[S], a useful class of models of set theory in which
various consequences of both PFA and V = L hold. We list some
of these consequences and topologically derive new results from them.
Then we present some of the characteristic set-theoretic methods used
to prove things in these models.

0 Introduction

Models we shall call “of form PFA(S)[S]” were introduced by Todorcevic
in 2001 who used them to prove the consistency of every compact hereditarily
normal space satisfying the countable chain condition is hereditarily separable
and hereditarily Lindelöf. This was finally written up in [24]. These models
are obtained by fixing a particular coherent Souslin tree S in a ground model
(such trees are obtainable from♦, for example), then iterating proper posets
as in the consistency proof for PFA, but only those that preserve S, thus
producing a model for PFA(S), i.e., PFA restricted to posets that preserve
(the Souslinity of) S. That a countable support iteration of proper posets
that preserve S preserves S is shown in [17]. Finally, one forces with S. A
weaker technique, not requiring large cardinals, is to replace “proper” by
“countable chain condition.”

1Research supported by NSERC grant A-7354.
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If all models formed by forcing with S over a model of PFA(S) satisfy ϕ,
we say “PFA(S)[S] implies ϕ.” If a particular ground model is used, we say
“ϕ holds in a model of form PFA(S)[S].” Which coherent S we use does not
matter. The consistency of a supercompact cardinal is assumed.

Since we will be mainly dealing with locally compact spaces, for
convenience we will assume all spaces are Hausdorff.

The solution by Larson and Todorcevic of Katětov’s problem [16]
depended on showing the remarkable fact that — using the weaker c.c.c.
technique — some of the “Souslin-type” consequences [11] of MAω1 , namely
that compact, first countable, hereditarily separable spaces are hereditarily
Lindelöf, and that first countable, hereditarily Lindelöf spaces are hereditarily
separable, are consistent with some of the “normal implies collectionwise
Hausdorff” consequences of V = L, namely that separable normal first
countable spaces are collectionwise Hausdorff. Since then, the strength
of both types of consequences has been increased. Larson and Tall [15]
dropped the separability in the second type of consequence, by starting
with a particular ground model, while Todorcevic [24] improved [16] to get
from PFA(S)[S] that compact hereditarily separable spaces are hereditarily
Lindelöf. In [22] we obtained another result in the V = L column, getting
that normal spaces which are either first countable or locally compact are
collectionwise Hausdorff.

In [11] a model was constructed in which the “combinatorial”
consequences of MAω1 held, but not the “Souslin-type” consequences. The
current investigations of PFA(S)[S] can be viewed as complementary: we
construct a model in which the Souslin-type consequences of MAω1 , indeed
of PFA, hold, but not the combinatorial ones.

1 Some Easy Consequences

Balogh [1], [2] introduced a technique for proving some locally compact
normal collectionwise Hausdorff (CWH) spaces to be paracompact, assuming
MAω1 + Fleissner’s reflection axiom, Axiom R, [5]. These hypotheses are
known to be mutually consistent. The CWH hypothesis is awkward; we will
consistently eliminate it from Balogh’s theorems. Here is Balogh’s technique:

i) Assuming additional topological hypotheses such as countable tightness,
reflect via Axiom R to show that if there is a non-paracompact
counterexample X, there is one with L(X) = ℵ1.
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ii) Write X as an ω1-increasing union of open Lindelöf spaces with
closures included in the next one. Select a point from each boundary.
The selection is locally countable; by a consequence of MAω1 , it is
σ-closed-discrete. By normality and CWH, expand to a σ-discrete open
collection. Press down to get an uncountable discrete collection of open
sets inside one of the open Lindelöf subspaces, contradiction.

The assertion that locally compact normal spaces are CWH follows from
V = L [27], which contradicts MAω1 . Nonetheless, we can get a model for
this plus Axiom R plus the consequences of MAω1 that Balogh used.

Theorem 1. Assuming the consistency of a supercompact cardinal, there is
a model in which hold:

a) Balogh’s
∑∑∑

(defined below),

b) Locally compact normal spaces are CWH,

c) Axiom R (defined below),

d) P -ideal Dichotomy (defined below).

Although we don’t need them here, it is useful to know that the following
also hold:

e) compact countably tight spaces are sequential,

f) first countable hereditarily Lindelöf spaces are hereditarily separable,

g) b = ℵ2, p = ℵ1,

h) the Open Coloring Axiom,

i) every first countable normal space is CWH,

j) every Aronszajn tree is special.

I haven’t checked the details, but probably only c) and d) require large
cardinals.
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2 Topological Proofs

Treating the model of Theorem 1 as a black box, let’s see how we easily
answer previously difficult questions.

Theorem 2. In the model of Theorem 1,

1) locally compact, perfectly normal spaces are paracompact,

2) (locally) compact spaces with hereditarily normal squares are metrizable,

3) compact hereditarily normal homogeneous spaces are first countable.

Just from the conjunction of
∑∑∑

and “locally compact normal implies
CWH”, useful results easily follow:

Theorem 3. Assume PFA(S)[S]. Let X be locally compact, hereditarily
normal, CCC. Then X is hereditarily Lindelöf.

Proof. Taking the one-point compactification, we may assume that X is
compact. It is hereditarily CWH, so has countable spread and hence
countable tightness. If it were not hereditarily Lindelöf, it would have
an uncountable right-separated subspace. By

∑∑∑
, it would then have an

uncountable discrete subspace, contradiction. By quoting [16] we can get
hereditarily separable as well. As a compact, hereditarily Lindelöf space, X
is first countable. But in this model there are no first countable L-spaces
[16].

Adding “locally compact normal implies CWH” to PFA type results yields
strong conclusions about homogeneity. Juhász, Nyikos, Szentmiklóssy [7]
proved:

Lemma 4. Homogeneous compacta which are homogeneous and hereditarily
strongly ℵ1-CWH are countably tight.

It follows that:

Theorem 5. PFA(S)[S] implies homogeneous hereditarily normal compacta
are first countable.
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The consistency of the conclusion was first shown in a different model by de
la Vega [26]. I first proved this by showing PFA(S)[S] implies open Lindelöf
subspaces of compact hereditarily normal spaces have hereditarily Lindelöf
closures. This conclusion was proved to imply countable tightness for such
compacta in [7]. Another way of doing it is to quote a theorem in the recent
preprint of Todorcevic [24]:

Theorem 6. PFA(S)[S] implies a compact countably tight space has a point
of countable character.

This is easy to quote, but not so easy to prove. It is easy to see that this
plus homogeneity yields first countability.

Lemma 7. In a particular model (the one of [15]) of form PFA(S)[S], every
locally compact, hereditarily normal space which does not include a perfect
pre-image of ω1 is paracompact.

We can turn this result into a characterization as follows.

Theorem 8. There is a model of form PFA(S)[S] in which locally compact
hereditarily normal spaces are (hereditarily) paracompact if and only if they
do not include a perfect pre-image of ω1.

Proof. The backward direction follows from Lemma 7, since a space
is hereditarily paracompact if every open subspace of it is paracompact,
and open subspaces of locally compact spaces are locally compact. The
“hereditarily” version of the other direction is because perfect pre-images of
ω1 are countably compact and not compact, and hence not paracompact.
Without “hereditarily” we need:

Lemma 9 [3]. In a countably tight space, perfect pre-images of ω1 are closed.

Lemma 10 [1, 2, 14]. A locally compact space has a countably tight one-point
compactification if and only if it does not include a perfect pre-image of ω1.

We also now have a partial characterization for locally compact spaces
that are only normal:

Theorem 11. There is a model of form PFA(S)[S] in which a locally compact
normal space is paracompact and countably tight if and only if its countable
subspaces have Lindelöf closures and it does not include a perfect pre-image
of ω1.
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The proof of Theorem 11 is quite long. It is convenient to first prove the
weaker

Theorem 12. There is a model of form PFA(S)[S] in which a locally compact
normal space X is paracompact and countably tight if and only if the closure
of every Lindelöf subspace of X is Lindelöf, and X does not include a perfect
pre-image of ω1.

One direction is easy and is left to the reader. The other direction is
harder, but much of the work has been done elsewhere. We refer to [5] for a
definition of the reflection axiom Axiom R. However, we shall only use the
following three results concerning it. We have:

Lemma 13 [14]. Axiom R holds in the PFA(S)[S] model of [15].

Definition. L(Y ), the Lindelf number of Y , is the least cardinal κ such that
every open cover of Y has a subcover of size ≤ κ.

Lemma 14 [2]. Axiom R implies that if X is a locally Lindelöf, regular,
countably tight space such that every open Y with L(Y ) ≤ ℵ1 has L(Y ) ≤ ℵ1,
then if X is not paracompact, it has a clopen non-paracompact subspace Z
with L(Z) ≤ ℵ1.

Lemma 15 [2]. Axiom R implies that if X is locally Lindelöf, regular,
countably tight, and not paracompact, then X has an open subspace Y with
L(Y ) ≤ ℵ1, such that Y is not paracompact.

We also have:

Lemma 16. If Y is a subset of a locally Lindelöf space of countable tightness
in which closures of Lindelöf subspaces are Lindelöf, then if L(Y ) ≤ ℵ1, then
L(Y ) ≤ ℵ1.

Proof. Left to the reader. �

To finish the proof of Theorem 12 it therefore suffices to prove:

Theorem 17. PFA(S)[S] implies that if X is a locally compact normal space
with L(X) ≤ ℵ1, closures of Lindelöf subspaces of X are Lindelöf, and X
includes no perfect pre-image of ω1, then X is paracompact.

Crucial ingredients in proving this are ℵ1-CWH and:
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Lemma 18 [4]. PFA(S)[S] implies∑∑∑
: if X is compact and countably tight, and Z ⊆ X is such that |Z| ≤ ℵ1

and there exists a collection V of open sets, |V| ≤ ℵ1, and a collection
U = {UV : V ∈ V} of open sets, such that Z ⊆

⋃
V, and for each

V ∈ V, there is a UV ∈ U such that V ⊆ V ⊆ UV , and |UV ∩ Z| ≤ ℵ0,
then Z is σ-closed discrete in

⋃
V.

The conclusion of Lemma 18 had previously been shown under MAω1 by
Balogh [1]. The weaker conclusion asserting that Z is σ-discrete, if it’s locally
countable, was established by Todorcevic. A modification of his proof yields
the stronger result [4]. It follows that:

Corollary 19. PFA(S)[S] implies that if X is locally compact, includes no
perfect pre-image of ω1, and L(X) ≤ ℵ1, and Y ⊆ X, |Y | = ℵ1, is such that
each point in X has a neighbourhood meeting at most countably many points
of Y , then Y is σ-closed-discrete.

We now need some results of Nyikos:

Definition. A space X is of Type I if X =
⋃
α<ω1

Xα, where each Xα is

open, α < β implies Xα ⊆ Xβ, and each Xα is Lindelöf. {Xα : α < ω1} is
canonical if for limit α, Xα =

⋃
β<αXβ.

Lemma 20 [20]. If X is locally compact, L(X) ≤ ℵ1, and every Lindelöf
subset of X has Lindelöf closure, then X is of Type I, with a canonical
sequence.

Lemma 21 [19]. If X is of Type I, then X is paracompact if and only if
{α : Xα −Xα 6= 0} is non-stationary.

Proof of Theorem 17. If X is paracompact, this is straightforward.
Suppose X were not paracompact. X is of Type I so we may pick a canonical
sequence and we may pick a stationary S ⊆ ω1 and xα ∈ Xα −Xα, for each
α ∈ S. By Corollary 19, {xα : α ∈ S} is σ-closed-discrete, so there is a
stationary set of limit ordinals S ′ ⊆ S such that {xα : α ∈ S ′} is closed
discrete. Let {Uα : α ∈ S ′} be a discrete collection of open sets expanding it.
Pressing down yields an uncountable closed discrete subspace of some Xα,
contradiction. �
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Note that Lemma 7 follows from Theorem 12, for consider the closure
of a Lindelöf subspace Y of a locally compact, hereditarily normal space
which does not include a perfect pre-image of ω1. The following argument in
Nyikos [20] will establish that Y is Lindelöf. First consider the special case
when Y is open. Let B be a right-separated subspace of the boundary of Y .
We claim B is countable, whence the boundary is hereditarily Lindelöf, so Y
is Lindelöf. Since the one-point compactification of Y is countably tight, by
Lemma 18, if B is uncountable, it has a discrete subspace D of size ℵ1. D is
closed discrete in Z = Y −(D−D), so in Z there is a discrete open expansion
{Ud : d ∈ D} of D, because Y is hereditarily strongly ℵ1-collectionwise
Hausdorff. Since Y ⊆ Z, {Ud ∩ Y : d ∈ D} is a discrete collection of
non-empty subsets of Y , contradicting Y ’s Lindelöfness.

Now consider an arbitrary Lindelöf Y . Since X is locally compact, Y can
be covered by countably many open Lindelöf sets. The closure of their union
is Lindelöf and includes Y .

A consequence of Corollary 19 is that we can improve Theorem 17 for
spaces with Lindelöf number ≤ ℵ1 to get:

Theorem 22. PFA(S)[S] implies that if X is a locally compact normal space
with L(X) ≤ ℵ1, and X includes no perfect pre-image of ω1, then X is
paracompact.

Proof. As before, it suffices to consider the case of an open Lindelöf Y .
If the closure of Y were not Lindelöf, since it has Lindelöf number ≤ ℵ1
there would be a locally countable subspace Z of size ℵ1 included in Y − Y .
That subspace would then be σ-closed-discrete by Corollary 19. As in the
proof of Lemma 7 from Theorem 12, we obtain a contradiction by getting an
uncountable closed discrete subspace of Y . Since we have σ-closed -discrete,
we only need normality rather than hereditary normality. �

In retrospect, Theorem 22 is perhaps not so surprising: a phenomenon
first evident in [1] is that “normal plus L ≤ ℵ1” can often substitute for
“hereditarily normal” in this area of investigation.

An immediate corollary of Theorem 22 is:

Corollary 23. PFA(S)[S] implies every locally compact normal space of size
≤ ℵ1 with a Gδ-diagonal is metrizable.
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3 Applications of P-ideal Dichotomy

In order to prove Theorem 11, we introduce some known ideas about ideals.

Definition. A collection I of countable subsets of a set X is a P-ideal if
each subset of a member of I is in I, finite unions of members of I are in
I, and whenever {In : n ∈ ω} ⊆ I, there is a J ∈ I such that In−J is finite
for all n.

P (short for P-ideal Dichotomy): For every P -ideal I on a set X,
either

i) there is an uncountable A ⊆ X such that [A]≤ω ⊆ I

or ii) X =
⋃
n<ω Bn such that for each n, Bn ∩ I is finite, for all I ∈ I.

Todorcevic’s proof that PFA(S)[S] implies P appears in [12] and [24].
In [3], Eisworth and Nyikos proved the following remarkable result:

Lemma 24. PID implies that if X is a locally compact space, then either

a) X is the union of countably many ω-bounded subspaces,

or b) X does not have countable extent,

or c) X has a separable closed subspace which is not Lindelöf.

Recall a space is ω-bounded if every countable subspace has compact
closure. ω-bounded spaces are obviously countably compact.

From [6] we have:

Lemma 25. An ω-bounded space is either compact or includes a perfect
pre-image of ω1.

We can now prove Theorem 11.
The forward direction follows from Theorem 12. To prove the other

direction, it suffices to show that if Y is a Lindelöf subspace of our space
X, then Y is Lindelöf. Applying Lemma 24, we see that by Lemma 25, Y
will be σ-compact if we can exclude alternatives b) and c). c) is excluded by
hypothesis, so it suffices to show that Y has countable extent. But that is
easily established, since Y is locally compact normal and hence ℵ1-CWH. A
closed discrete subspace of size ℵ1 in Y could thus be fattened to a discrete
collection of open sets. Their traces in Y would contradict its Lindelöfness.

.
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Corollary 26. There is a model of form PFA(S)[S] in which a locally
compact space is metrizable if and only if it is normal, has a Gδ-diagonal,
and every separable closed subspace is Lindelöf.

Proof. Theorem 12 applies, since spaces with Gδ-diagonals do not include
perfect pre-images of ω1. �

This characterization does not hold in ZFC; the tree topology on a
special Aronszajn tree is a locally compact Moore space, and hence has a
Gδ-diagonal. Under MAω1 , it is (hereditarily) normal. See e.g. the survey
article [23]. Every separable subspace of an ω1-tree is bounded in height, and
so is countable.

4 The model, coherent Souslin trees

MAω1 (Martin’s Axiom for meeting ℵ1 dense sets) is proved consistent by
a length ω2 iteration of countable chain condition partial orders. A key
observation is that one only has to consider partial orders of size ≤ ℵ1; one
adds a generic filter for ℵ1 dense subsets of each such partial order at an
initial stage of the iteration. For PFA, this reduction to partial orders of
size ℵ1 is not available; instead, one iterates supercompact many times and
does a reflection argument to prove that suffices. A crucial technical lemma
is that a countable support iteration of proper partial orders is proper. A
variation of the consistency proof for PFA will yield the model of Theorem
1. A weaker version of PFA is produced by starting with a particularly nice
Souslin tree S (a coherent (defined below) one), and iterating partial orders
that keep S Souslin. Not surprisingly, this produces a model for PFA(S),
PFA restricted to partial orders that preserve S. Of course one has to show
that a countable support iteration of posets that preserve S preserves S.
This was accomplished by Miyamoto [17]. Having gone to the trouble of
preserving S, one then kills it by forcing with it! We have created a model
of form PFA(S)[S]. We can create different such models by starting with
particular ground models.

All we ever use about coherence is that such trees satisfy a strong
homogeneity property: the cones above any two elements on the same level
are isomorphic. This ensures that any two generic branches yield essentially
the same model. When trying to prove something about a model of form
PFA(S)[S], one assumes PFA(S) and tries to see what happens when one
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forces with S. This entails that the usual proper forcing arguments become
more difficult, because one has to prove something about, say, an S-name for
a topological space after forcing with S, rather than just proving something
about a space. Coherence restores some measure of control in that, roughly
speaking, it ensures that different generic interpretations of that S-name will
be homeomorphic.

It is not immediately clear why one would want to work much harder
so as to establish that consequences of PFA still hold in models of form
PFA(S)[S]. The reason of course is that some important propositions that
contradict PFA hold in models of form PFA(S)[S]. From our point of view,
the most important such propositions are that normal spaces which are either
first countable or locally compact are CWH. Probably there is a common
generalization to point-countable type, but I haven’t proved that. Notice that
since first countable normal spaces are CWH, there are no Q-sets, so p = ℵ1.
A useful heuristic is that, just as MA(σ-centred) captures the “combinatorial”
consequences of MA but not the “Souslin-type” consequences, model of
form PFA(S)[S] capture the Souslin-type consequences of MAω1 , but not
the combinatorial ones.

Another useful heuristic is that forcing with a Souslin tree is somewhat
like countably closed forcing to add a subset of ω1. Although one only has
ω-distributivity rather than countable closure, that plus the countable chain
condition is sometimes enough to push a similar argument through.

5 My Plan

The well-prepared participant for the remainder of the workshop would be
someone familiar with Todorcevic’s proof, using forcing with elementary
submodels as side conditions, that PFA implies there are no S-spaces, as
in e.g. his book [25]. Unfortunately I suspect that only a few participants in
the workshop are “well-prepared”. Even with well-prepared participants, it
would take at least twice the time I have to go through the details of one of
the proofs I would like to present. What to do? My goal is to give enough
of the intuition behind the proofs and enough of the technical machinery so
that the determined reader will be able to work through the write-ups of
these proofs without undue pain.

In addition to the technical set-theoretic machinery, these proofs use
some rather elementary topology. Suppose A is a locally countable subset
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of ℵ1 points in a compact spaces X, say A = {aα : α < ω1}. Let
{Uα : α < ω1} , {Vα : α < ω1} be open such that aα ∈ Uα ⊆ Uα ⊆ Vα, and
|Vα ∩ A| ≤ ℵ0. By compactness, A has a complete accumulation point z.
If X has some countability property, e.g. Fréchet, there will be a sequence
〈aαn : n < ω〉 from A converging to z. Then for any finite B ⊆ A, almost
all an’s will miss

⋃
{Uβ : β ∈ B}, for if infinitely many were in that union, z

would be in some Uβ ⊆ Vβ, contradiction.
Another variation of the same idea is that a finite union of compact

neighbourhoods must miss almost all of the members of a countable discrete
collection of sets.

The march towards the consistency of there are no S-spaces started
with Kunen’s observation that the way to kill an S-space was to force
an uncountable right-separated subspace to have an uncountable discrete
subspace. So one has α ∈ Uα, and α < β implies β 6∈ Uα. As forcing
conditions one uses finite subsets T of ω1 for which the associated Uα’s
witness the discreteness of T . The main difficulty is to show that the
forcing doesn’t collapse ω1. Kunen [10] showed this if finite powers of X
were hereditarily separable; Szentmiklóssy [21] if X compact, and finally
Todorcevic [25] in general. Balogh [1] observed that for X compact countably
tight, Szentmiklóssy’s proof could be improved so as to get a locally countable
subset σ-discrete, hence obtaining

∑∑∑
. One way to do this is to force an

f : X → ω such that each f−1({n}) will be discrete, and each x will be
in one of them. Kunen, Szentmiklóssy, and Balogh used countable chain
condition forcing; Todorcevic used proper forcing.

The PFA(S)[S] proofs are mainly more difficult versions of the PFA
proofs; one has to show that a “natural” partial order P is both proper
and preserves S, and that forcing with S then creates the desired object
from the generic filter forced by P . For example, P might create a tree of
discrete subspaces indexed and ordered by the Souslin tree, so that forcing
a generic branch through the Souslin tree will make uncountably many of
these discrete subspaces cohere, so that there will be an uncountable discrete
subspace.

How about the proof that there is a model of PFA(S)[S] in which every
locally compact normal space is CWH ? How does that fit in with the
general scenario, given that the conclusion contradicts PFA? The answer
is interesting:

1. By starting with a particular ground model, we need only prove that
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PFA(S)[S] implies locally compact normal spaces are ℵ1-CWH (which also
contradicts PFA). (We actually prove ℵ1-CWH on a club C ⊆ ω1. One
can then quote a theorem of Taylor to get full ℵ1-CWH, or else complicate
the proof to eliminate the club. For the first alternative, see [22]; for the
second, see [4].)

2. Both PFA and PFA(S)[S] imply each closed discrete subspace of size ℵ1
in a locally compact normal space can be expanded to a discrete collection
of compact sets of countable character.

3. After forcing with a Souslin tree, normal spaces are collectionwise normal
with respect to collections of ℵ1 sets of countable character.

Thus the essential core of the proof is a (new) PFA consequence, added to
that is a Souslin tree forcing version of a countably closed forcing argument.
We shall see that 2) shares several features with the argument for making
locally countable subspaces σ-discrete.

I won’t give the proof for 3); it is the same as the argument for getting
normal first countable implies ℵ1-CWH, which was presented by Paul Larson
at a couple of topology conferences around 2004, and appears in our recent
paper in Fundamenta [15]. The idea for that proof is a mashup of Fleissner’s
V = L proof and my countably closed forcing proof for getting normal +
character ≤ ℵ1 implies ℵ1-CWH. We inductively define a name for a partition
of the closed discrete subset in the extension, such that any assignment of
open sets to members of the discrete set that witnesses normality for that
partition is actually a separation. (We are sliding over some details involving
a club.)

2) begins to look similar to the idea for getting Balogh’s
∑∑∑

when we
throw in a couple more easy topological ideas. The first uses an old idea of
Steve Watson [27]. I’ll leave the easy proof to you:

Lemma 27. Let D = {xα : α < ω1} be a closed discrete subspace of a locally
compact normal space. Then {xα : α < ω1} has a right-separated expansion
by compact Gδ’s.

The following lemma is also not difficult, and is also left to you:

Lemma 28. If D as above has such a right-separated expansion which is also
σ-relatively discrete, then D has a discrete expansion by compact Gδ’s.

Thus, as with
∑∑∑

, we shall force a right-separated collection to be
σ-discrete.
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6 Some Proofs

PFA(S)[S] proofs are technically rather difficult. I could spend the whole
workshop trying to prove one theorem – in fact, it took me around five hours
to go through the proof of locally compact normal implies CWH for one
reasonably bright set-theorist. My intention is therefore to go through a
relatively simple proof of something not very interesting – which nonetheless
contains many of the characteristic PFA(S)[S] features – with the idea that
if you understand this proof, you will be able to follow the write-ups of more
difficult proofs.

Theorem 29. PFA(S)[S] implies that if Y = {yα}α<ω1
is a locally countable

subspace of a compact Fréchet space, then Y includes an uncountable discrete
subspace.

We’ll actually get that there is a club C ⊆ ω1 such that {yα : α ∈ C} is
σ-discrete, which suffices. This theorem tells us that PFA(S)[S] implies there
are no first-countable compact S-spaces. There are significant additional
steps needed in order to weaken “Fréchet” to “sequential” and then to
“countably tight”, hence getting rid of all compact S-spaces. One can also
improve the conclusion to get Y to be σ-discrete, and indeed to get Balogh’s∑∑∑

.
Proofs that require looking carefully at the forcing with a coherent Souslin

tree are technically difficult – at least for me – but usually there are simple
ideas that make the machinery work in a particular case. One of the ideas
that pops up in several crucial instances is that if a sequence from a subset
Y of a space X converges to an x ∈ X − Y , then almost all of the points
in the sequence are outside of Y . I say “almost all” rather than “all but
finitely many” because this principle is true for the more general notion of
convergence along an ultrafilter U on ω. We say that xn →U x if for each
open V containing x, {n : xn ∈ V } ∈ U . Thinking of a set in the ultrafilter
as of measure 1, we say “almost all” elements of the sequence are in V .

Every PFA(S)[S] proof needs the following:

Lemma 30. P is proper and preserves S if for all sufficiently large regular
θ and for a closed unbounded family C (in [Hθ]

ℵ0) of countable elementary
submodels M of Hθ with P , S ∈M , letting δ = M ∩ω1, for every p ∈ P ∩M ,
there is a q ≤ p such that for all s ∈ S of height δ, 〈q, s〉 is (P×S,M)-generic.
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Proof. This is due to Miyamoto [17]. Since the lemma is not quite stated
there in this form, and the proof is short, we give it here. First of all, for
any 〈q, s〉 ∈ P × S, if 〈q, s〉 is (P × S,M)-generic, then q is (P ,M)-generic,
so P is proper. Suppose P forces Ȧ to be a maximal antichain of S. Let
A′ = {〈r, s〉 ∈ P ×S : r 
 s ∈ Ȧ}. Let p ∈ P . Take θ regular and sufficiently
large, and let M ∈ C be a countable elementary submodel of Hθ containing
p, A′, P , and S. A′ is predense in P×S, and by assumption, there is a q ≤ p
such that for all s of height δ, 〈q, s〉 is (P × S,M)-generic. Thus A′ ∩M is
predense below 〈q, s〉 for all s of height δ. Therefore q 
 “for all s of height
δ, there is a t ∈ Ȧ such that s extends t.” But then q 
 “Ȧ ⊆ S | δ.” �

The overall strategy for using Miyamoto’s lemma is the same as in the proof
that PFA implies there are no S-spaces, and many other proofs as well: “copy”
the “growth” of a condition into an elementary submodel by a finite induction,
using elementarity at each step.

Todorcevic’s proof [24] that PFA(S)[S] implies there are no compact
S-spaces depends on showing that such spaces are sequential. This allows him
to reduce an uncountable amount of information down to a countable amount,
which Souslin tree forcing can handle. Our proof that PFA(S)[S] implies locally
compact normal spaces are ℵ1-CWH is along the same lines: we in effect use
the fact that any countably infinite subset of an uncountable closed discrete
subspace in a locally compact normal space has a discrete expansion by compact
Gδ’s which converges to the point at infinity in the one-point compactification
of the space.

Large portions of PFA(S)[S] proofs are independent of the particular problem
we are working on, but instead involve general properties of Souslin trees, in
particular, coherent ones. To emphasize this and to render the technology more
accessible we have organized much of the proofs of our baby version of

∑∑∑
and

of the CWH theorem as a sequence of lemmas and notation having nothing to
do with topology.

Lemma 31. Let S be a Souslin tree and N a countable elementary submodel
of some Hθ containing S. Suppose A ⊆ S, A ∈ N , t ∈ A−N . Suppose there
is an s ∈ S ∩ N , s below t. Then there is a u ∈ [s, t) ∩ N such that A is
dense above u.
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Proof. If s itself is not the desired u, let

E = {x ∈ S : s is below x, the cone above x does not contain a member

of A, and x is minimal among elements of [s, x] with that

property}.

Then E ∈ N and E is an antichain of S, so E is countable. Therefore E ⊆ N .
Let η = sup{ht(x) : x ∈ E}. Then η ∈ N . Let u be the predecessor of t on
the (η + 1)th level of S. Then u ∈ N and u ∈ [s, t). If A were not dense
above u, there would be a y above u such that the cone above y would not
include a member of A. The height of the least such y would be greater than
η, contradiction. �

Definition. An m-chain with possible repetitions is an m-tuple
〈a1, . . . , am〉, each ai ∈ S, such that ai+1 extends ai. We admit the possibility
that ai+1 = ai.

Definition. Let A be a family of chains with possible repetitions of a Souslin
tree S. A is dense above s ∈ S if for each s′ extending s, there is an A ∈ A
such that minA extends s′. We shall use “s′ above s” and “s′ extends s”
synonymously, and admit the possibility that s′ = s.

Corollary 32. Let S be a Souslin tree and N a countable elementary
submodel of some Hθ containing S. Suppose A is a family of chains
with possible repetitions of S, A ∈ N , and suppose there is an A0 ∈ A,
minA0 6∈ N . Suppose s ∈ S ∩ N , s below t = minA0. Then there is a
u ∈ S ∩N , u ∈ [s, t), such that A is dense above u.

Proof. Let A∗ = {minA : A ∈ A}. Apply Lemma 31. �

Before proceeding further, let us say what “coherent” means, since we will be
using it. We quote from [16]; also see the references listed there, as well as [9].

Definition. A coherent tree is a downward closed subtree S of <ω1ω with
the property that {

⇀

ξ ∈ dom s ∩ dom t : s(
⇀

ξ) 6= t(
⇀

ξ)} is finite for all s, t ∈ S.
A coherent Souslin tree is a Souslin tree given by a coherent family of
functions in <ω1ω closed under finite modifications.
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As noted in [16], for S a coherent (König calls these uniformly coherent)
Souslin tree, and s, t on the same (ηth) level of S, there is a canonical
isomorphism σSst between the cones above (we think of our trees as growing
upwards) s and t, defined by letting σSst(s

′)(α) be t(α) if α < η and s′(α)
otherwise, for each s′ extending s. These isomorphisms are such that
σSsu = σStu ◦ σSst and σSst = (σSts)

−1. See [13] for a construction of a coherent
Souslin tree from ♦.

Intuitively, what coherence does for us is it deals with the following problem:
in trying to go from a PFA proof to a PFA(S)[S] proof, we have much less
control over what the P-generic S-name becomes when we force with S, than
we would have over simply an object — rather than a name — we construct
with PFA. A coherent Souslin tree, however, has — up to automorphism —
only one generic branch. Therefore the possible interpretations of a name will
be “isomorphic,” i.e. although there are many possible objects to deal with, they
are all essentially the same. We do not yet, however, have a clear understanding
of under which circumstances this intuition leads to a PFA(S)[S] proof from a
PFA proof.

It is somewhat easier to force an uncountable discrete subspace than
it is to make the latter σ-discrete; however, once one has figured out the
right notation, it is not too much more difficult to do the σ-discrete version.
Moreover, it is a useful technique I have not found written anywhere other
than in my recent as yet unpublished papers, although it is due to Todorcevic.
So we will do σ-proofs.

In dealing with proofs of properness, one first wants to fix a regular κ
such that everything one wants to talk about, e.g. P , is in Hκ. Then one
looks at an even bigger cardinal θ, say θ = (2κ)+.

I want to go as far as I can toward proving that a partial order P is
proper and preserves S without actually telling you what the partial order
is. The elements of P will consist of ordered pairs, the first coordinate
of which will be a finite partial function (or a k-tuple of such functions)
taking values in V , where V |= PFA(S). (Unlike the situation with proper
posets, I do not know how to make the machinery work with countable
partial functions). The second coordinate will be a finite ∈-chain of countable
elementary submodels of Hκ. (If your knowledge of elementary submodels is
minimal, I recommend chapter 24 of [8]). Let p = 〈fp,Np〉 ∈ P . E.g. if we
want to generically partition a set of size ℵ1 into countably many pieces, fp
(or its first component) will be a finite partial function from ω1 into ω. We
think of f−1p ({n}) as a “level” and require that Np separates each level in the
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sense that if fp(s) = fp(s
′) = n, then if s 6= s′, there is an N ∈ Np such that

s ∈ N and s′ 6∈ N .
Let M be a countable elementary submodel of Hθ containing everything

relevant. (There will be a club of such M ’s.) Let δ = M ∩ω1. Let p ∈ P ∩M .
Let pM = 〈fp,Np ∪ {M ∩Hκ}〉. Then, by a standard argument, pM ∈ P .

The advantage of the method of proper forcing with elementary
submodels as side conditions is that you know what the generic condition
should be, namely pM . In the PFA(S)[S] situation, there is a natural
variation on this.

Let t
M

be an arbitrary node at the δth level of S. We will show 〈pM , tM〉
is generic. Let D ∈ M be a given dense open subset of P × S and let 〈q, t〉
be a given extension of 〈pM , t

M
〉. We need to show 〈q, t〉 is compatible with

some member of D ∩M . Extending 〈q, t〉, we may assume that 〈q, t〉 ∈ D.
Moreover, by extending further (since D is open), we may assume that t is
not in the largest model of Nq, and that this model contains all the members
of dom fq. (Here and elsewhere, we omit proofs that are simple if one works
and plays well with elementary submodels. If not, the proofs are in [22].)

Let qM = q |M . What this means will depend on the partial order P .
E.g. if fq is a single partial function, q |M = 〈fq ∩M,Nq ∩M〉. Since finite
subsets of M are members of M , qM ∈ M . If the partial order is at all
reasonable, qM will be in M and q will extend it. fq ∩M will be another
finite partial function like fq; to see that Nq ∩ M separates the levels of
Nq ∩M , consider an N ∈ Nq such that ht(s) ∈ N and ht(s′) /∈ N . Since
ht(s′) ∈M ∩Hκ ∈ Nq, N must be a member of M ∩Hκ, so N ∈ Nq

M
.

Here is the picture, temporarily ignoring the t’s:
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〈q, t〉 ∈ D; we want to get an 〈r, tr〉 ∈ M , tr below t, such that 〈r, tr〉 “is
just like 〈q −M, t〉” and in particular, r and q|M have a common extension
R ∈M such that 〈R, tr〉 is in D. By elementarity this is not difficult to do; it
is also not difficult to take r sufficiently high up in M so that it is compatible
with q|M . The hard part is to find such an r which is also compatible with
q−M . This is accomplished by a finite induction, at each stage of which one
decides one of the finitely many elements of r. Toward making that decision,
one constructs ℵ1 many possible candidates for that element. Then, finally
using not just general machinery, but the particulars of the partial order
and the assumptions of whatever result one is trying to prove, one argues
that there are ℵ0 of the possible candidates such that almost all of them are
suitable – they don’t conflict with q −M . This is the place where one uses
e.g. the easy topological facts about sequences I mentioned earlier. This
process is repeated finitely many times, winding up with an r such that 〈 the
common extension of r and q −M, tr〉 is in D ∩M and is compatible with
〈q, t〉.

The rather weak assumptions we have made about P now enable us to
develop some machinery.

We may assume that the maximal model of Nq
M

contains all the members
of dom fq

M
(= dom fq ∩M), else we could have extended Nq to ensure this.

For let N∗ be that maximal model. Since N∗ ∈M∩Hκ, it is not the maximal
model of Nq, so N∗ ∈ N ′, where N ′ is the minimal model of Nq which is not
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in M . Then N ′ = M∩Hκ. Then we can adjoin to Nq a countable elementary
submodel of Hκ in M containing N∗ and dom fq ∩M .

Let δ
M

be the intersection of ω1 with the maximal model of Nq
M

. By
taking the maximal model large enough, we may ensure that the projection of
(dom fq ∪ {t})−M on the δth level of S has the same size as its projection
on the δ

M
th level. To see this, note that there is a δ∗ < δ such that the

projection of (dom fq ∪ {t}) −M on the δ∗th level has the same size as its
projection on the δth level, since δ is a limit ordinal and S is a normal tree.
Then add to Nq a countable elementary submodel N of Hκ, N ∈M , with δ∗

and the maximal model of Nq
M

as members.
Let {u1, . . . , un}, {v1, . . . , vn} respectively enumerate these projections on

the δ
M

th and δth levels, such that ui = vi | δM , i ≤ n, and such that u1 =
t | δ

M
and v1 = t | δ. For 1 ≤ i, j ≤ n, let σij be the canonical isomorphism

which moves ui to uj. Note σ−1ij = σji, and σii is the identity isomorphism.
Let Nq

M
be the maximal model of Nq

M
. For any 〈r, tr〉 ∈ P × S that is

≤ 〈qM , u1〉, define:

Fr = {x ∈ (dom fr ∪ {tr})−Nq
M

: x | δM = some uix and

some σ1ix(t) extends x}.

Then, considering t as tq, claim:

Fq = {x ∈ (dom fq ∪ {t})−M : x | δ = some vix and σ1ix(t) extends x} .

Clearly Fq includes the right-hand side. On the other hand, if x ∈
dom fq − Nq

M
, then x /∈ M , so ht(x) ≥ δ. No two vi’s project onto the

same uj, so if x | δM = uix , then x | δ = vix .

We claim that if vi and vj are projections of elements of Fq, then σij(vi) =
vj. To see this, first note that if x ∈ Fq extends vi, then σi1(vi) ≤ σi1(x) ≤
t. Hence σi1(vi) = v1, since both are of height δ below t. It follows that
σij(vi) = σ1j ◦ σi1(vi) = σ1j(v1) = vj. We then have that for such vi and vj,
vi | [δM , δ) = vj | [δM , δ).

For x ∈ Fq, let x̂ = σ−11ix
(x). For an m-tuple

⇀
x = 〈x1, . . . , xm〉, if x̂j is

defined for 1 ≤ j ≤ m, let
⇀̂
x = 〈x̂1, . . . , x̂m〉. In particular, let F̂q be the

chain with possible repetitions of length |Fq| : 〈x̂ : x ∈ Fq〉. Similarly define

F l
q and F̂ l

q for l ∈ L = {l : doml fq 6= 0}. We can make analogous definitions
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of F̂r etc. for an arbitrary 〈r, tr〉 extending 〈qM , u1〉. Let c = length F̂q = |Fq|
and cl = length F̂ l

q = |F l
q|. We use sequence notation and chains with possible

repetitions to avoid losing information when we pass from Fq to F̂q.
The intent of the next three paragraphs is to define in M the set of all

conditions in D that “look just like 〈q, t〉”.
Let D0 = {〈r, tr〉 ∈ D : 〈r, tr〉 ≤ 〈qM , u1〉 and

i) qM is an initial part of r, i.e. for each l, doml fq
M

is an initial segment
of doml fr, and Nq

M
is an initial segment of Nr,

ii) the height of each node in Fr − Fq is > δM ,

iii) Lr = L, each |F l
r| = cl, |Fr| = c,

iv) fr(the jth element of Fr) = fq(the jth element of Fq),

v) the height of tr is greater than the height of any of the nodes in dom
fr}.

The above requirements will ensure that the natural correspondence between
r and q induces a natural correspondence of Fr and F̂r to Fq and F̂q respectively.

Notice that the ui’s and hence the σij’s are in M , and so D0 ∈ M by
definability. Clauses iii) and iv) do not violate definability, since c and the
cl’s are just natural numbers and so are in M . Similarly, the range of fq
is just a finite subset of ω, so we could rewrite iv) using specific natural
numbers.

F =
{
F ∈ Sc : F = F̂r for some 〈r, tr〉 ∈ D0

}
,

and

Fl =
{
F ∈ Scl : F = F̂ l

r for some 〈r, tr〉 ∈ D0

}
are also in M and in Hκ as well.

Since M ∩Hκ ∈ N for each N ∈ Nq −M , it follows that F and Fl ∈ N ,

for all such N . Note that F̂q ∈ F and F̂ l
q ∈ Fl, since 〈q, t〉 ∈ D0. Note also

that the terms of F̂ l
q are separated by models of Nq. To see this, recall t is not

in the largest model of Nq, which does contain all the members of dom fq. If

x̂, x̂′ are terms of F̂ l
q, then there is an N ∈ Nq such that x ∈ N and x′ /∈ N .

Then x̂ ∈ N , and x̂′ /∈ N , else x′ ∈ N . N 6∈M , so the σij’s ∈ N .
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Our plan is to reflect 〈q, t〉 to an 〈r, tr〉 ∈ D0 ∩ M by using elementarity
to systematically reflect the members of Fq down into M . Our topological
hypotheses will be used to obtain such a reflection which is also compatible with
〈q, t〉. Let N ′q be a minimal subchain of Nq containing M ∩Hκ at its bottom

and separating F̂ l
q for each l. Let N ′q = {Na}a≤m−1 ordered by inclusion, with

N0 = M ∩Hκ. F̂q is a chain with possible repetitions; let us write it as:

〈⇀̂x1, . . . ,
⇀̂
xm−1, t〉

where
⇀̂
xa = 〈x̂a,1, . . . , x̂a,da〉 enumerates in increasing order F̂q ∩ (Na−Na−1),

a ≥ 1. Thus the length of the vector
⇀
xa is equal to the size of Fq ∩ (Na−Na−1).

Since F ∈ Nm−1,

F(
⇀
x1, . . . ,

⇀
xm−1) =

{
x ∈ S : 〈⇀̂x1, . . . ,

⇀̂
xm−1, x〉 ∈ F

}
∈ Nm−1. By Lemma 31, there is a ym ∈ Nm−1 ∩ S, ym ∈ [max

⇀̂
xm−1, t), such

that F(
⇀
x1, . . . ,

⇀
xm−1) is dense above ym. Next, consider:

F(
⇀
x1, . . . ,

⇀
xm−2) =

{
〈⇀x, y〉 ∈ Sdm−1+1 : 〈⇀x, y〉 is a chain with

possible repetitions and F(
⇀
x1, . . . ,

⇀
xm−2,

⇀
x) is dense above y

}
.

Then F(
⇀
x1, . . . ,

⇀
xm−2) ∈ Nm−2 and 〈⇀̂xm−1, ym〉 ∈ F(

⇀
x1, . . . ,

⇀
xm−2). As

before, this time by Corollary 32, with F(
⇀
x1, . . . ,

⇀
xm−2), 〈

⇀̂
xm−1, ym〉, Nm−2

playing the roles of A, A0, N respectively, we can find a ym−1 ∈ Nm−2 ∩
S, ym−1 ∈ [max

⇀̂
xm−2,min

⇀̂
xm−1), such that F(

⇀
x1, . . . ,

⇀
xm−2) is dense above

ym−1. Continuing, in m steps we find a y1 ∈ N0, y1 ∈ [u1, v1), such that:

F(∅) =
{
〈⇀x, y〉 ∈ Sd1+1 : 〈⇀x, y〉 is a chain with possible

repetitions and F(
⇀
x) is dense above y

}
is ∈ N0 and dense above y1.

One of the virtues of Souslin-tree forcing is that, roughly speaking, for
each countable piece of information about the final model, there is a level
such that all nodes of the tree at that level decide that information. Thus,
club often, all nodes of the tree decide what’s going on below, e.g. whether
or not the point α is in the open set U̇β about β for α, β’s below that level.
It is therefore convenient to use such a club in the proofs, thereby getting
a locally countable subspace is σ-discrete on a club, or a closed discrete
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subspace of size ℵ1 is separated on a club. By working harder, one can avoid
this annoyance – see [4].

Let Ẋ1 be a name for:{
〈α1, . . . , αd1〉 ∈ (C◦)d1 : for some 〈⇀z, w〉 ∈ F(∅), {⇀z, w} ⊆ B and

for each i, 1 ≤ i ≤ d1, ht(zi)
− = αi

}
.

Then Ẋ1 ∈M . Let Ẋ ′1 be a name for

{
⇀

ξ ∈ X1 : min
⇀

ξ > δM}.

Claim: y1 
 Ẋ ′1 6= 0.

Proof. Given any y′1 extending y1, since F(∅) is dense above y1, we can find
a 〈⇀z, w〉 ∈ F(∅) with minimal element of height greater than δM extending
y′1. Take y′′1 above 〈⇀z, w〉. Then y′′1 
 〈ht(z1)−, . . . , ht(zd1)−〉 ∈ Ẋ ′1.

There is a level of height greater than δM at which all extensions of y1 at

that level decide a
⇀̇

ξ which y1 forces to be a member of X ′1 to be some
⇀

ξ and

also decide a corresponding 〈⇀z, w〉(
⇀

ξ). Let µ1 be the sup of the components

of these countably many
⇀

ξ’s and repeat the process, extending each of the
aforementioned extensions of y1 to a level of height greater than µ1, deciding
⇀

ξ as before, but with the minimal component of such
⇀

ξ’s greater than µ1.
Continuing, we form a subtree of height ω of the cone above y1, such that

each element of each level of the subtree decides
⇀̇

ξ ∈ Ẋ1 and a corresponding
〈⇀z, w〉(

⇀

ξ), and such that the
⇀

ξ’s of one level all have minimal components

greater than the maximal components of the
⇀

ξ’s of the previous level.
By elementarity, there is such a subtree in M . Therefore the sup ζ of

the heights in S of the elements of the subtree is less than δ. We can thus
take {y1,j : j < ω} strictly ascending below v1, all of height less than ζ, and

associated strictly increasing
⇀

ξ1j ’s and their corresponding 〈⇀z1j , w1
j 〉’s, with

〈⇀z1j , w1
j 〉 ∈ F(∅) ∩ M and y1,j 
 〈⇀z1j , w1

j 〉 ⊆ Ḃ, and πd(
⇀

ξ1j ) = ht(πd(
⇀
z1j ))

−,

where πd(
⇀

ξ1j ) (πd(
⇀
z1j )) is its d-th component.

Now, finally, we want to look at some specific partial orders. The first
one will show that:
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Theorem 33. PFA(S)[S] implies that if {xα : α < ω1} is a right-separated
subspace of a compact space Z with finite products Fréchet-Urysohn, then
there is a club C ⊆ ω1 such that {xα : α ∈ C} is σ-discrete.

Refinement of the argument which we won’t get into will enable us to

a) replace “C” by “ω1”,

b) replace “right-separated” by “locally countable”,

c) replace “finite products Fréchet-Urysohn” by “sequential”, and finally,

d) replace “sequential” by “countably tight”.

In order to get the σ-closed-discrete version of
∑∑∑

, we seem to need a
somewhat different partial order [4].

To prove the Theorem, we have S-names Ż, U̇α, α < ω1, such that S
forces Ż is such a space and:

i) α ∈ U̇α, which is open,

ii) β < α implies α 6∈
⋃{

U̇β : β < α
}

.

Let C be a closed unbounded subset of ω1 such that for each δ ∈ C, every

node of the δth level of S decides all statements of the form α ∈ U̇β. To
see that there is such a club, note that we may take a maximal antichain

A deciding α ∈ U̇β. Since A is countable, we can choose h(α, β) < ω1

above sup {ht(a) : a ∈ A}. Let C be closed unbounded such that h(α, β) < δ
whenever β, α < δ ∈ C. Let C◦ = {δ ∈ C : sup(C ∩ δ) < δ}. For δ ∈ C◦, let
δ− = sup(C ∩ δ). Note that every member of C is a δ− for some δ ∈ C◦. For
δ ∈ C, let δ+ be the least element of C greater than δ.

Let P be the collection of all pairs p = 〈fp,Np〉 where:

1) fp is a finite partial function from S |C◦ to ω. Let doml fp = {s : fp(s) =
l}. We require that each non-empty doml fp consists of nodes of different
heights.

2) Np is a finite ∈-chain of countable elementary submodels of Hκ where κ
is regular and sufficiently large, containing all relevant objects, such that
Np separates each doml fp in the sense that if s, s′ ∈ doml fp with s 6= s′,
then there is an N ∈ Np such that s ∈ N and s′ /∈ N .
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3) If s, s′ ∈ doml fp and s′ strictly extends s and ht(s′) = τ and ht(s) = σ,

then s′ 
 σ− 6∈ U̇ τ− .

The rationale for the “if s extends s′” clause is that we are coding the
σ-discrete subspace by a generic branch, and don’t care what happens off that
branch. The superscript minuses are there because we only expect conditions
of height α to know about things of smaller index.

It is now routine to show that this partial order does what it is intended
to do. To show that the partial order is proper and preserves S, note that
by compactness, X1, as a subspace of a finite power of Z, has a complete
accumulation point x; by right-separation, x does not project to any of
the xα’s. By Fréchet-Urysohn, there is a sequence {xαn}n<ω from X1 which
converges to x. Since the projections of x are not in any of the Uα’s for s’s
of height α in the condition we are trying to get away from, for n sufficiently
large, xαn will not be in them either. The endgame for this proof is almost
identical to the CWH proof to which we now detour.

As mentioned earlier, in order to prove the CWH result, it will
suffice to expand the points in a club C ⊆ ω1 to compact Gδ’s which
are σ-left-separated by the right-separating U ’s. We shall do this by
simultaneously both approximating a countable partition of ω1 by finite
partial functions from ω1 into ω and approximating finitely many of the
desired compact Gδ’s by finite decreasing sequences of compact Gδ’s.

From now on, we assume PFA(S). We have an S-name Ż, such that S
forces Ż is a locally compact normal space. It is convenient to assume that
{α : α < ω1} is a closed discrete subspace of Z. We shall usually omit the
“ˇ” that should be placed over elements of the ground model. Let Ė be a
name such that S forces Ė to be the collection of non-empty compact Gδ’s
of Ż. We shall assume that for each α < ω1, we have S-names U̇α, K̇α, K̇α,β,
β < α, such that S forces:

i) α ∈ U̇α,

ii) U̇α is open, U̇α is compact,

iii) α 6= β implies α /∈ U̇β,

iv) α ∈ K̇α ⊆ U̇α,

v) K̇α ∈ Ė , K̇α,β ∈ Ė ,
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vi) β < α implies K̇α ∩ U̇β = 0

vii) for each α, {K̇α,β : β < α} ⊆ Ė is discrete, with β ∈ K̇α,β ⊆ K̇β, and if
α < γ, then K̇γ,β ⊆ K̇α,β.

vii) is easy to accomplish: discretely separate {β : β < α}, shrink
the separating open sets to compact Gδ’s, and then intersect with the
corresponding Kβ’s. We then can recursively shrink the compact Gδ’s
to get Kγ,β ⊆ Kα,β. That is, having gotten say the discrete collection
{K ′γ,β : β < γ}, let Kγ,β = K ′γ,β ∩

⋂
{Kα,β : α < γ}.

Let C be a closed unbounded subset of ω1 such that for each δ ∈ C, every

node of the δth level of S decides all statements of form K̇γ,β ∩ U̇α = 0 for
all β < γ ≤ α < δ.

Let P be the collection of all triples p = 〈fp, Ep,Np〉 where:

1) fp is a finite partial function from S |C◦ to ω. Let doml fp = {s : fp(s) =
l}. We require that each non-empty doml fp consists of nodes of different
heights.

2) Np is a finite ∈-chain of countable elementary submodels of Hκ where κ
is regular and sufficiently large, containing all relevant objects, such that
Np separates each doml fp in the sense that if s, s′ ∈ doml fp with s 6= s′,
then there is an N ∈ Np such that s ∈ N and s′ /∈ N .

3) Ep is a finite partial function from ω × S |C◦ to ω1 such that, letting π2
be the projection map from ω × S |C◦ onto S |C◦,

a) π2[dom Ep] = dom fp

b) Ep(n, s) ≥ ht(s),

c) whenever s ∈ N ∈ Np, Ep(n, s) ∈ N ,

d) if s, s′ ∈ doml fp and s′ strictly extends s and ht(s′) = τ , then

s′ 

⋂
{K̇Ep(n,s),ht(s)− : 〈n, s〉 ∈ dom Ep} ∩ U̇ τ− = 0

For p, q ∈ P , we let p ≤ q if and only if:

4) fp | dom fq = fq,

5) Ep | dom Eq = Eq.
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6) Np ⊇ Nq.

Clause 3c) will ensure that the restriction of a condition p to N will be a
member of N.

Lemma 34. Let Ds = {p ∈ P : s ∈ dom fp}. Let Ds,n = {p ∈ P : 〈n, s〉 ∈
dom Ep}. Then for each s ∈ S | C◦, and each n < ω, Ds and Ds,n are dense.

Proof. Given any q ∈ P , if q 6∈ Ds, take m > max{fq(t) : t ∈ dom fq}.
Then 〈fq ∪ {〈s,m〉}, (Eq ∪ {〈〈0, s〉, ht(s)〉},Nq〉 is the required extension of q
in Ds. Given q ∈ Ds − Ds,n, suppose k is least such that 〈k, s〉 ∈ dom Eq.
Let q′ = 〈fq, Eq ∪ {〈〈n, s〉, Eq(k, s)〉},Nq〉. Then q′ is ≤ q and is a member of
Ds,n. �

Lemma 35. PFA(S)[S] implies that C has a σ-left-separated, right-
separated expansion by compact Gδ’s, and hence a discrete expansion by
compact Gδ’s.

Proof. Let G be P-generic for the Ds’s and the Ds,n’s. Let f =
⋃
{fp : p ∈

G}. Let e =
⋃
{Ep : p ∈ G}. Then e : ω × S |C◦ → ω1. For γ = ht(s)−,

s ∈ B |C◦, where B is the generic branch of S, let Eγ =
⋂
{Ke(n,s),γ :

n < ω}. Then S forces that {Eγ : γ ∈ C}˙ is the required right-separated,
σ-left-separated expansion of C by compact Gδ’s. �

Since for x ∈ dom fq − M , ht(x) ≥ δ, such x decides whether or not

K̇
ζ,πd(

⇀
ξ1j )

− meets U̇ht(x)− . Since Uht(x)− is compact and for fixed d the πd(
⇀

ξ1j )
−’s

are distinct, there is a jx ∈ ω such that for each d ≤ d1, x forces:

(†)
⋃{

K̇
ζ,πd(

⇀
ξ1j )

− : j ≥ jx

}
∩ U̇ht(x)− = 0.

For the
∑∑∑

proof, we replace this by πd(
⇀

ξ1j )
− 6∈ Uht(x)−. To see this, note that

x certainly forces that there is such a jx. Then for some jx, some extension of
x forces (†). But then x must have already forced this, since it had decided

whether K̇
ζ,πd(

⇀
ξ1j )

− met U̇ht(x)− .

Let j1 = max{jx : x ∈ dom fq −M}. Let z1,d be the element of height

πd(
⇀

ξ1j1)
+ below xd, for xd ∈ Fq ∩ (N1 − N0). Let

⇀
z1 = 〈z1,1, . . . , z1,d1〉. Let

w1 = w1
j1

. Then 〈⇀̂z1,w1〉 = 〈⇀z1j1 , w
1
j1
〉 ∈ F(∅) and for all x ∈ dom fq −M , x

forces K̇ζ,ht(z1,d)− ∩ U̇ht(x)− = 0, for all d ≤ d1. Notice that 〈⇀z1,w1〉 ∈M .
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We now need to iteratively peel off the remaining “layers” of Fq. Let Ẋ2 be
a name for:{
〈α1, . . . , αd2〉 ∈ (C◦)d2 : for some 〈⇀z, w〉, 〈⇀̂z, w〉 ∈ F(

⇀
z1), {

⇀
z, w} ⊆ B

and for each i, 1 ≤ i ≤ d2, ht(zi)
− = αi}.

We now carry out the same argument as before, with an infinite strictly
ascending sequence of y2,j’s below v1 extending y1,j1 and deciding

⇀

ξ ∈ X2,

where min
⇀

ξ > max
⇀

ξ1j1 . As before, we obtain a
⇀
z2 ∈ M , each z2,d below

xd ∈ Fq ∩ (N2 − N1), and with each ht(z2,d) > ht(z1,d1), such that for each
x ∈ dom fq −M , x forces K̇ζ,ht(z2,d)− ∩ Uht(x)− = 0, for all d ≤ d2.

Continuing, after m steps we will find 〈⇀̂z1, . . . ,
⇀̂
zm,w1〉 ∈ F , each

component of each
⇀
za below some vi, and hence in M . Since

〈⇀̂z1, . . . ,
⇀̂
zm,w1〉 ∈ F , there is an 〈r, tr〉 ∈ D0 ∩ M such that F̂r =

〈⇀̂z1, . . . ,
⇀̂
zm,w1〉. Then w1 = tr. Now w1 = w1

j1
is below y1,j1 , since otherwise

y1,j1 , could not force it to be in B. Therefore it is below v1 and so tr ≤ t.
We claim that 〈r, tr〉 is compatible with 〈q, t〉, which will finish the proof.

Since r ≤ qM , it follows that fr ∪ fq is a function. Let Er,q = Er ∪Eq | (ω×
(dom fq − dom fr)) ∪ {〈〈ni,d + 1, zi,d〉, ζ〉 : zi,d ∈ dom fr}, where ni,d is the
maximal integer such that 〈ni,d, zi,d〉 ∈ dom Er. Then Er,q satisfies 3c) in the
definition of P .

We next note that Nr ∪Nq is an ∈-chain, for by construction, Nr ∈ M ,
so Nr ∪{M ∩Hκ} is an ∈-chain. Now Nq = Nq

M
∪ (Nq−Nq

M
); the elements

N of Nq −Nq
M

all have M ∩Hκ in them, for if not, such an N would be in
M . Nr ∪Nq is thus the ∈-chain Nr ∪ {M ∩Hκ} ∪ (Nq −NqM ).

Let R = 〈〈fr ∪ fq, Er,q,Nr ∪Nq〉, t〉.
Since dom fr ⊆ M and r ≤ q

M
, each doml (fr ∪ fq) consists of nodes of

different heights. Suppose b, c ∈ doml (fr ∪ fq). The only case of interest is
when b ∈ doml fr and c ∈ doml fq. If c ∈ M , then c ∈ doml fqM and the
members of Nr separate b and c since r ≤ q

M
. If c /∈ M , then an N ∈ Nr

containing b will not contain c, since N ⊆ M . To finish showing that the
first component of R is a condition, suppose s′ ∈ doml fq, s ∈ doml fr, and s′

extends s. If s ∈ doml fqM , this is trivial, so suppose s ∈ doml fr−doml fqM .
Since s′ extends s and also extends some vi, it follows that vi extends s, which
then extends ui, since ht(s) > δM . Then u1 is below σi1(s) which is below v1
which is below t. Then s is below σ1i(t). But then s ∈ Fr. By construction
then, 3d) of the definition of P is satisfied, so indeed 〈fr ∪ fq, Er,q,Nr ∪Nq〉 ∈
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P and is below both r and q. But then R ∈ P × S is below both 〈r, tr〉 and
〈q, t〉 as required.

The proof that PFA(S)[S] implies compact countably tight spaces are
sequential [24] has only recently become available. Todorcevic’s original proof
of the σ-discrete form of

∑∑∑
used this; however I found a proof of

∑∑∑
which

used a weaker version of Moore-Mrowka, which was in Larson’s notes [12] on
Todorcevic’s Erice lectures. To state this weaker version, I must temporarily
abandon my treatment of PFA(S)[S] as if it were an axiom.

Theorem 36. Assume PFA(S). Let U be an ultrafilter on ω. Then S forces
that if X is compact countably tight, and Y ⊆ X is neither Lindelöf nor
closed, then there is a sequence in Y that U-converges to a point in X − Y .

In other words, if X is countably tight, then X is U -sequential for each
ground model U . We will see how to use this later, and give some idea of its
proof.

An important notion introduced by Arhangel’skǐi is that of a free
sequence.

Definition. 〈xα : α < λ〉 is free if for each β < λ, {xα : α < β} ∩
{xα : β ≤ α < λ} = 0.

The canonical example of a free sequence is ω1. Note that closed discrete
sequences are free, and uncountable free sequences include uncountable
discrete sequences. Arhangel’skǐi proved that:

Lemma 37. A compact Hausdorff space is countably tight if and only if it
has no uncountable free sequences.

The key idea in the proofs involving tightness and sequentiality is to
set up a partial order such that the generic branch of S will then code an
uncountable free sequence, just as in our previously presented proof sketches
S codes a compact Gδ expansion or a σ-discretizing function. These proofs
are easier in the respect that they do not need the σ-aspect, but harder in
that in addition to the general machinery we have laid out, they also – as in
the corresponding PFA proofs – involve working with filters.

Todorcevic then goes on (in his preprint [24]) to prove that if the space is
U -sequential for all such U , then it’s actually sequential. However the easier
halfway result is enough to get

∑∑∑
: we use it in the form that a non-closed

set is not sequentially closed to do our usual trick of getting a sequence of
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candidates, almost all of which stay away from the condition we want to
avoid. See [4].

To prove Theorem 36, one sets up a partial order that forces an
uncountable free sequence – contradicting countable tightness. We then prove
the partial order is proper and preserves S by showing that if there were a
non-closed subset X which was sequentially closed, X would be countably
compact, so not Lindelöf, else it would be compact and closed. We then have
a sequence going from X to a point outside of X, and so can do the usual
tricks.

I will mention 2 questions of interest:

1) (Todorcevic) Does PFA(S)[S] imply there are no S-spaces?

2) Is there a model of PFA(S)[S] in which every first countable perfect
pre-image of ω1 includes a copy of ω1?

Conjecture 1. MM(S)[S] implies every first countable perfect pre-image of
ω1 includes a copy of ω1.

If so, by unpublished work of mine, MM(S)[S] implies every T5 manifold of
dimension > 1 is metrizable, which would answer a 1983 question of Nyikos
[18].
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restrictions on some homogeneous compacta. Proc. Amer. Math. Soc.
133, 9 (2005), 2741–2750.

[8] Just, W., and Weese, M. Discovering Modern Set Theory, II. Amer.
Math. Soc., Providence, 1997.

[9] König, B. Local coherence. Ann. Pure Appl. Logic 124, 1-3 (2003),
107–139.

[10] Kunen, K. Strong S and L spaces under MA. In Set Theoretic Topology,
G. M. Reed, Ed. Academic Press, 1977.

[11] Kunen, K., and Tall, F. D. Between Martin’s axiom and Souslin’s
hypothesis. Fund. Math. 102, 3 (1979), 173–181.

[12] Larson, P. Notes on Todorcevic’s Erice lectures on forcing with a
coherent Souslin tree. Preprint.

[13] Larson, P. An Smax variation for one Souslin tree. J. Symbolic Logic
64, 1 (1999), 81–98.

[14] Larson, P., and Tall, F. D. On the hereditary paracompactness
of locally compact hereditarily normal spaces. Canad. Math. Bull., to
appear.

[15] Larson, P., and Tall, F. D. Locally compact perfectly normal
spaces may all be paracompact. Fund. Math. 210 (2010), 285–300.

[16] Larson, P., and Todorcevic, S. Katětov’s problem. Trans. Amer.
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