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Abstract. We analyze structure theories of the power-set of ω1

and compare them relative to Cantor’s Continuum Problem. We
also compare these theories with the structure theory of the power-
set of ω under the assumption of the axiom of definable determi-
nacy.

1. Introduction

The success of the large cardinal axioms in determining the true
structure theory of the power-set of ω, or more precisely the true the-
ory of L(R), is well documented in the literature and in particular in
this series of discussions. Note, however, that, unlike the case of P(ω),
any reasonably rich structure theory of P(ω1) must give us a solution to
Cantor’s Continuum Problem. In this note we expose two such struc-
ture theories of P(ω1) based on Baire category axioms and built by
generations of mathematicians for more than a century. As it will be
seen, substantial parts of these structure theories have been imposed on
us by problems arising in other areas of mathematics and so we should
take this into account whenever we propose a solution to Cantor’s prob-
lem. As much as this is possible, in our overview we will try to stress
the analogies between the structure theories of P(ω1) that we choose
to discuss and the structure theory of P(ω) under the assumption of

ADL(R), since it is this theory of P(ω) that is most widely accepted
among all other theories about countable structures. In contrast, how-
ever, it turns out that many deep parts of the theory of P(ω1) are of
low consistency strength, as measured on the scale of the current large
cardinal axioms. This is due to the fact that the theories of P(ω1) that
we develop are based on quite different set-theoretic principles and as a
consequence we must develop another way to measure their inevitabil-
ity. For example, inevitability in this context has to be measured by
the relevance of these theories to the rest of mathematics not just to set
theory itself. This is, of course, not to say that the methods from logic
and philosophy of set theory will not be useful in guiding us toward
the right theory of the power-set of ω1. We shall elaborate more on
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this in the final section of the paper. The paper will end with a brief
discussion of the Continuum Problem and other known axioms of set
theory that have bearing on this problem.

Acknowledgement. This paper was composed as our contribution to
the final meeting of the EFI Project (Harvard University, August 30-
31, 2013). We wish to thank Peter Koellner for the invitation and for
the series of correspondences that help us organize our lecture.

2. Baire category principles at the level of ω1

The Baire Category Theorem, BCω, is an important fact which ap-
pears in disguise as a fundamental result in many areas of mathematics.
For example, it is this principle that underlies such fundamental facts as
the Open Mapping Theorem, the Closed Graph Theorem, the Banach-
Steinhaus Theorem, the Effros Theorem, etc. It is also a principle
which in its unrestricted form (for, say, the class of all compact Haus-
dorff spaces) is equivalent to one of the most frequently used choice
principles, the principle of Dependent Choice, DCω. It is therefore
quite natural that when trying to develop a theory of P(ω1) that par-
allels that of P(ω) one should try to extend this principle to the next
level, the level of ω1. In fact, there is a straightforward way to do this:

BCω1 : For every compact Hausdorff space K, any family of no more
than ℵ1 dense-open subsets of K has non-empty intersection.

However, when one reformulates this in its dual form1 saying that for
every poset P and family of no more than ℵ1 dense sets has a generic
filter, one sees that some restriction is needed, at least the restriction
that P preserves ω1. In fact, it is easily seen that P must preserve all
stationary subsets of ω1. Call this class of posets (compact spaces),
the maximal class,M. Thus BCω1(M) is the strongest Baire category
principle of this sort, it is named as Martin’s Maximum, MM, by the
authors of the following fundamental result (see [12]).

2.1 Theorem (Foreman-Magidor-Shelah). Martin’s Maximum is con-
sistent relative to the consistency of a supercompact cardinal. It implies
that NSω1 is a saturated ideal and that 2ℵ0 = ℵ2.
As it is well known there are natural weaker forms of the Baire cate-
gory principle, principles of the form BCω1(X ) for some more restrictive
class X of posets (compact spaces). For example, in the 1940’s Roth-
berger was considering a principle equivalent to BCω1(X ) for X the
class of compact Hausdorff separable spaces. When X is the class of

1i.e., by looking at a (π-)basis of K as a poset
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all compact Hausdorff spaces satisfying the countable chain condition,
ccc, the Baire category principle BCω1(X ) is Martin’s Axiom, MAω1 ,
of Martin and Solovay [24]. This also has deep historical roots long
before the invention of forcing as the following fact shows (see [45]).

2.2 Theorem (Todorcevic). Martin’s Axiom, MAω1 is equivalent to
the statement that every compact ccc first countable Hausdorff space is
separable.

In other words, Martin’s axiom, MAω1 , is nothing more than a natural
extension of the Souslin Hypothesis from the class of ordered compacta
to the class of first countable compacta. Another intermediate impor-
tant step is the Proper Forcing Axiom, PFA, the principle BCω1(X )
when X is the class of all proper posets. In this paper we shall not
need a fine analysis of the variety of these principles and we prefer to
use the corresponding Baire category numbers to express them (see
[13]).2 Thus, Rothberger’s inequality p > ω1, is a restatement of MAω1

for σ-centered posets, the inequality m > ω1, a restatement of MAω1

itself, and finally, the cardinal inequality mm > ω1 is a restatement of
MM. We shall also need the following important cardinal characteristic
of the continuum

b = min{|F| : F ⊆ NN and F has no upper bounds in (NN, <Fin)}.
Let us discuss some consequences of the Baire category principle

mm > ω1. We split the discussion in the following five subsections
taking samples from a rather rich theory that has been surveyed in [13]
and in [52].

2.1. Failure of Kőnig’s Lemma. This is indeed the most important
fact in the theory of P(ω1) and it is given by the following result proven
some eighty years ago (see [20]).

2.3 Theorem (Aronszajn). There is a tree of height ω1 that has count-
able levels but no uncountable branches.

The purpose of this subsection is to examine whether there is any struc-
ture in the class of these counterexamples to Kőnig’s Lemma. More
precisely, we will search for the structure in the class AT of all trees
satisfying the conclusion of Theorem 2.3. It turns out that the iso-
morphism relation ∼= is too fine and that we must retreat to a coarser
relation ≡ given by the following quasi-ordering: S ≤ T iff there is a
strictly increasing map f : S → T. It also turns out that the standard
proofs of Theorem 2.3 do not shed much light and that we need the

2The reader interested in fine fragmentation of these principles can find some
information in [48].
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more canonical constructions given by the author’s concepts of walks
on ordinals. Recall that a �ω-sequence is a sequence Cα (α < ω1) of
sets such that Cα+1 = {α} and such that for a limit ordinal α the set
Cα is a cofinal subset of α of order type ω. Fixing a C-sequence one
defines the notion of a walk β = β0 > β1 > · · · > βk = α from an ordi-
nal β to a smaller ordinal α by letting βi+1 = min(Cβi \α), i.e., letting
βi+1 be the minimal point of Cβi that is bigger than or equal to α. By
studying various characteristics of the walk one obtain a useful metric
theory of countable ordinals capable of producing critical objects in a
variety of contexts (see [49]). For example, if we let ρ2 : [ω1]

2 → ω
count the number of steps in the walk we get a tree

T (ρ2) = {ρ2(·, β) � α : α ≤ β < ω1}

belonging to AT . It turns out that this is not just an ordinary element
of AT , it is a critical object in this class. To see this one first notes that
if S ≤ T then the strictly increasing map f : S → T witnessing this
can be assumed to be level-preserving and that it can be characterized
by the following Lipschitz property3

∆(f(x), f(y)) ≥ ∆(x, y) for all x, y ∈ S.

This leads us to the following definition.

2.4 Definition. A tree T in AT is Lipschitz if every level preserving
map from an uncountable subset of T into T has the Lipschitz property
when restricted to an uncountable subset of its domain.

2.5 Theorem (Todorcevic). The tree T (ρ2) is a Lipschitz tree that
can be decomposed into countably many antichains. Moreover if we
let C(ρ2) denote T (ρ2) ordered lexicographically we get an uncountable
linearly ordered set whose cartesian square C(ρ2) × C(ρ2) can be de-
composed into countably many chains.

It turns out that T (ρ2) and C(ρ2) are critical objects in the category of
counterexamples to Kőnig’s Lemma and the category of uncountable
linear orderings, respectively.

Let us now examine the class of LT of all Lipschitz trees and the
way it is placed in the class AT .
2.6 Theorem (Todorcevic). Assume mm > ω1.

(1) For every S ∈ LT and every T ∈ AT either S ≤ T or else
T ≤ S.

3Here, for two nodes x, y in a given tree T , by ∆(x, y) we denote the ‘distance’
between x and y in T, the height of the maximal node t ∈ T that is below both x
and y.
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(2) The chain LT is discrete, i.e., for every T ∈ LT there is T (1) ∈
LT such that for all S ∈ AT either S ≤ T or T (1) ≤ S.

(3) The chain LT is both cofinal and coinitial in the whole class
AT i.e, for every T ∈ AT there exist S, U ∈ LT such that
S ≤ T ≤ U.

(4) The shift operator associated with the map α 7→ α+1 that gives
T 7→ T (1) naturally extends to other monotone maps g from ω1

into ω1 giving us the corresponding shift operator T 7→ T (g).
Then for all S, T ∈ LT there exists monotone map g such that
either S ≡ T (g) or else T ≡ S(g).

In other words, modulo shifting, there is really only one counterexample
to Kőnig’s lemma. It turns out also that in the class LTk of Lipschitz
trees of some uniform branching degree k ≤ ω the equivalence relation
≡ coincides with the isomorphism relation ∼= and so there was no need
for any retreat after all. In fact, to every T ∈ LT we can associate
an ultrafilter U(T ) on ω1 that is Σ1-definable in the parameter T as
follows,

U(T ) = {A ⊆ ω1 : (∃X ⊆ T )[|X| = ℵ1 ∧∆(X) ⊆ A]},

where for a subset X of T, we let ∆(X) = {∆(x, y) : x, y ∈ X, x 6= y}.
It turns out that T 7→ U(T ) is a complete invariant for ≡, i.e., S ≡ T
iff U(S) = U(T ). It also turns out if we shift U(T (ρ2)) to the domain ω
in such a way that the image is nonprincipal, then we obtain a selective
ultrafilter on ω whose Rudin-Keisler class does not depend on the �ω-
sequence we started with. So, we have the following fact (see [50]).

2.7 Theorem (Todorcevic). Assume mm > ω1. Then there is a selec-
tive ultrafilter U on ω whose Rudin-Keisler class is Σ1-definable with
no parameter. In particular, there is a L(R)-generic ultrafilter for the
boolean algebra P(ω)/Fin.

It turns out that the chain LT /Z—that is, LT modulo the equiv-
alence relation that relates trees that are a finite shift-distance from
each other—is also a canonical object (see [26]).

2.8 Theorem (Martinez-Ranero-Todorcevic). Assume mm > ω1. Then
LT /Z is the ℵ2-saturated linear ordering, i.e., a realization of Haus-
dorff’s η2-set.

2.2. Structure theory of separable linear orderings. Besides the
isomorphism relation in this class of linear orderings it is also useful
to consider the related relations K ≤ L (which holds whenever there
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is an embedding—a strictly increasing map f : K → L) and the cor-
responding equivalence relation K ≡ L (which is given by K ≤ L and
L ≤ K and is coarser than the isomorphism relation).

We start by recalling the following theorem of Cantor who invented
his well known back-and-forth argument for its proof.

2.9 Theorem (Cantor). All countable dense linear orderings are iso-
morphic.

2.10 Corollary. L ≤ Q for every countable linear ordering L.

The strongest structural information about the class of all countable
linear orderings is given in the following result whose proof used Nash-
Williams’ theory of better-quasi-orderings (see [21]).

2.11 Theorem (Laver). The class of countable linear orderings is well-
quasi-ordered, i.e., for every sequence Li (i < ω) of countable linear
orderings there exist i < j < ω such that Li ≤ Lj.

In other words, theory of countable linear orderings parallels very
much the theory of countable ordinals even to the level that there
are analogues of the notion of indecomposable ordinal, Cantor normal
form, etc.

For an infinite cardinal κ, we say that a linear ordering L is κ-dense
if all nontrivial intervals of L (including those with end-points −∞ and
+∞) have cardinality κ. Consider the following principle:

BA(κ) : All separable κ-dense linear orderings are isomorphic.

By Cantor’s theorem, we have that BA(ℵ0) is true and for large κ’s we
have the following facts, the second of which uses author’s theory of
oscillations on NN, a theory that will show up again below.

2.12 Theorem (Dushnik-Miller). BA(c) is false.

2.13 Theorem (Todorcevic). BA(b) is false.

What about BA(ℵ1)? It is, in fact, this statement that belongs to the
theory of P(ω1) that we are trying to describe here in some detail.
We have the following fundamental result that generalizes Cantor’s
theorem (see [4]).

2.14 Theorem (Baumgartner). Assume mm > ω1. Then all separable
ℵ1-dense linear orderings are isomorphic.

2.15 Corollary. Assume mm > ω1. Then every pair K and L of
separable linear orderings of cardinality ℵ1 are equivalent, i.e., K ≤ L
and L ≤ K.

It should be also noted that the corollary holds the information of
the theorem since under the assumption of p > ω1 its conclusion gives
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the conclusion of Baumgartner’s theorem. Baumgartner’s theorem is
an interesting structural result that has been analyzed by many set
theorists. In particular, while analyzing its proof, the author was led
to the following interesting graph-theoretic principle:

[OGA] For every open graph G = (X,E) on a separable metric space
X either G is countably chromatic or else G has an uncountable clique.

2.16 Theorem (Todorcevic). mm > ω1 implies OGA.

The Open Graph Axiom, OGA, is a graph-theoretic dichotomy that
is quite easy to understand and use in place of the often technically de-
manding applications of Baire category principles such as mm > ω1. So
it is not surprising that it has been used in other areas in mathematics.
The following is its typical application (see [10]).

2.17 Theorem (Farah). Under OGA all automorphisms of the Calkin
algebras are inner.

This dichotomy tends to transfer problems about structures of cardi-
nality continuum to those of cardinality ℵ1 and so it is quite relevant
to the discussion of this paper. In particular, OGA gains some ex-
tra power if supplemented by assumptions like m > ω1. The following
(see [7]) is a typical application of such a combination which actually
uses the generic version OGA+ of OGA where the uncountable clique
has some generic behavior, a version which is still a consequence of
mm > ω1.

4

2.18 Theorem (Woodin). Assume OGA+ and m > ω1. For every
compact Hausdorff space K every algebraic norm on the Banach algebra
C(K,C) is equivalent to the uniform norm.

It turns out that OGA has also a substantial ‘ZFC-shadow’ as it is
provable in ZFC for open graphs whose sets of vertices are Σ1

1. In fact,
in the descriptive set-theoretic context it is more natural to strengthen
the second alternative to saying that G has a clique spanned by a perfect
set of vertices. Then we have the following result where PD denotes
the axiom of determinacy of projective sets of reals.

2.19 Theorem (Feng). PD implies OGA for open graphs spanned by
projective sets of vertices.

Similarly, ADL(R) implies OGA for open graphs spanned by sets of
reals from L(R) (see [11]). The first use of OGA was in showing that
this principle is giving us an essentially complete picture about the
spectrum of gaps in the quotient boolean algebra P(ω)/Fin and that

4More precisely, OGA+ is used in the proof of this result to show that the linear
ordering (2ω1 , <lex) does not embed into the quotient algebra P(ω)/Fin.
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Hausdorff’s (ω1, ω
∗
1)-gap in this quotient algebra is the only critical

object in this category (see [18]). One statement of this result is the
following (see [41]).

2.20 Theorem (Todorcevic). OGA implies that Hausdorff’s (ω1, ω
∗
1)-

gap in P(ω)/Fin is the only gap in this quotient algebra with regular
uncountable sides.

This had led us to the following surprising consequence (see [41]).

2.21 Corollary (Todorcevic). OGA implies b = ω2.

This leads us to the following natural question.

2.22 Question (Todorcevic). Does OGA imply c = ω2?

If this turns out to be the case this would certainly match Gödel’s at-
tempt to solve the Continuum Problem as seen from his well-known
unpublished manuscript (see [17] and [5]). Recall that Gödel was in-
spired by Hausdorff’s work on gaps in quotient structures like NN/Fin
and P(ω)/Fin and by the notions of small sets of reals, or more pre-
cisely by Borel’s notion of strong measure zero for sets of reals. In
particular, he wanted to decompose the reals into ℵ2 sets that are both
of strong measure zero and are equal to unions of at most ℵ1 closed
sets of reals. Using the <Fin-well-ordered and <Fin-unbounded subset
A of N↑N of order type ω2 given by Theorem 2.21 and the author’s
oscillation theory of N↑N we get that OGA is also giving us a decompo-
sition of R into ℵ2 sets X that are small in another very precise sense,
they are small from the point of view of oscillation theory (see [40],
[41], [44]). More precisely, we say X ⊆ 2N is small if there is h ∈ NN
such that every real r from X is coded by an uncountable subset B of
A(h) = {f ∈ A : f ≤ h} in the sense that for every f 6= g in B there is

k ≥ ∆(f, g) such that osc(f, g) =
∑k

0 r(i)2
i. Note that if B and B′ are

subsets of A(h) that code two different members r and r′ of X then
their intersection must be finite, so the set X appears indeed as quite
small. Determining whether this places a bound on its cardinality is
now an interesting task. An attempt towards this is given in [27].

2.3. Structure theory of non-separable linear orderings. Re-
turning to the structure theory of uncountable linear orderings, one
must first note that separability is an essential assumption in Baum-
gartner’s theorem since the class5

AL = {L ∈ LO>ℵ0 : L ⊥ {ω1, ω
∗
1,R}}

5Here ⊥ signifies the fact that L shares no uncountable subordering with any
linear ordering in the set.
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of uncountable linear orderings is not empty. For example, it is oc-
cupied by any lexicographically ordered Aronszajn tree as well as any
linear ordering given by the following well-known result (see [34]) which
is also a consequence of Theorem 2.5 above.

2.23 Theorem (Shelah). There is an uncountable linear ordering L
whose cartesian square L× L can be decomposed into countably many
chains.

When he proved this theorem some forty years ago, Shelah has conjec-
tured that all orderings satisfying the conclusion of this theorem must
be equivalent (modulo of course taking reverses if necessary). This led
him to further conjecture that every ordering from AL must contain
a subordering with this property. This has been verified only thirty
years later (see [29]).

2.24 Theorem (Moore). Assume mm > ω1. Then every linear or-
dering L from the class AL contains an uncountable subset C whose
cartesian square C×C can be decomposed into countably many chains.
Moreover the class AL has a universal element QC.

Using this and Baumgartner’s theorem we get the following result6.

2.25 Corollary. Assume mm > ω1. The class of uncountable linear
orderings has a five-element basis, {ω1, ω

∗
1, B, C, C

∗}.
It follows in particular that the class AL has some properties simi-
lar to the class of countable linear orderings which also has a univer-
sal element Q and a two-element basis {ω, ω∗}. For example the class
ALF = {L ∈ A : QC � L} allows to be ranked using C-sums and
C∗-sums in a similar way Hausdorff was ranking countable scattered
orderings using ω-sums and ω∗-sums. It turns out that we also have
the analogue of Laver’s theorem and therefore a full classification of
AL (see [25]).

2.26 Theorem (Martinez-Ranero). Assume mm > ω1. The class AL
is well-quasi-ordered.

In fact we have more structural properties here. For example, for each
ordinal α < ω1 there are two incomparable linear orderings D−α and D+

α

of rank α that split the whole class into four pieces, those equivalent to
one of the D−α and D+

α , those that are embeddable into both D−α and
D+
α and those that embed both D−α and D+

α

2.4. Tukey classification theory. In this category the following no-
tion of reducibility provides an optimal classification scheme. For two
partially ordered sets P and Q we say that P is Tukey reducible to

6Here B is any set of reals of cardinality ℵ1
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Q and write P ≤T Q whenever there is a mapping f : P → Q such
that for every (upwards) unbounded subset X of P the image f [X]
is (upwards) unbounded in Q. Let ≡T be the corresponding equiva-
lence relation. This may appear as coarse relation but if P and Q are
(upwards) directed then P ≡T Q holds if and only if they both can
be embedded as cofinal subsets of some directed set R (see [53]). It
is for this reason that in the category of directed sets the equivalence
classes of ≡T are called cofinal types. It is easily seen that 1, ω, ω1,
ω × ω1, and [ω1]

<ω viewed as directed sets with their natural order-
ings represent different cofinal types. Are there any other cofinal types
of directed sets of cardinality at most ℵ1? The following results an-
swers this question giving also the Tukey classification of the class of
all posets of cardinality not bigger than ℵ1 (see [39], [43]).

2.27 Theorem (Todorcevic). Assume mm > ω1. Then every directed
set of cardinality at most ℵ1 is Tukey-equivalent to one on the list of
five directed sets: 1, ω, ω1, ω × ω1, and [ω1]

<ω.
Moreover letting D0 = 1, D1 = ω, D2 = ω1, D3 = ω × ω1, and

D4 = [ω1]
<ω, every partially ordered set of cardinality at most ℵ1 is

Tukey equivalent to one of these:

(a)
⊕

i<5 niDi (i < 5, ni < ω),

(b) ℵ0 · 1⊕
⊕4

i=2 niDi (2 ≤ i < 5, ni < ω),
(c) ℵ0 · ω1 ⊕ n4[ω1]

<ω (n4 < ω),
(d) ℵ0 · [ω1]

<ω,
(e) ℵ1 · 1.

Thus we have a complete Tukey classification of posets with domain
ω1.

7 This result has triggered a renewed interest in the Tukey classifi-
cation scheme in other contexts. For example, the Tukey classification
appears quite natural in the context of descriptive set theory as many
posets of interest to the rest of mathematics can be represented in a
Borel or, more generally, in a projective way. This may seem at first
impossible as the Tukey maps are not assumed to be definable but a
deeper analysis shows that in many context these maps can always be
replaced by definable ones. Another context where the Tukey classifi-
cation scheme sheds some light is the theory of cardinal characteristics
of the continuum where cardinal inequalities can very frequently be
replaced by Tukey inequalities. This comes from the fact that the re-
lation P ≤T Q implies that cof(P ) ≤ cof(Q) and add(P ) ≥ add(Q).
For example, if M denotes the σ-ideal of all meager subsets of R and
N the σ-ideal of all measure-zero sets of reals, then we haveM≤T N ,

7In a correspondence about Theorem 2.27 Peter Koellner mentions a similarity
with the work of Woodin [56] which identifies the cardinals below |[ω1]ω| using ADR.
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a Tukey reduction witnessed by a simply definable map. Note that
CH sheds no light here as it implies that I ≡T ω1 for all c-generated
σ-ideals I on R. This is one of the reasons why one retreats to the
Tukey theory of structures of lower type without loosing the informa-
tion. For example, we can replace N by the Banach lattice `1 and M
by the ideal NWD of compact nowhere dense subsets of R and have the
inequality NWD ≤T `1 that holds all the nontrivial information about
the inequalityM≤T N . For posets of higher descriptive complexity it
is natural to use PD or ADL(R) as the following result shows (see [14]).

2.28 Theorem (Fremlin). Assume PD. The Tukey types of directed
sets of the form K(X) where X is a projective set of reals are well-
ordered in type ω.

Here K(X) is the lattice of compact subsets of X. The first few Tukey
types in this classification result are easily identifiable. The Tukey
Type 1 corresponds to compact X, the second Tukey type on this list
corresponds to locally compact noncompact X and the third to Polish
non-locally compact. More generally, the Tukey type of a K(X) on this
list depends on the minimal n such that X is Π1

n at least when n ≥ 2.
It would be interesting to extend this result to sets from L(R) using

ADL(R). We should also mention that some assumption is needed here
since in the Gödel’s constructible universe, for example, from K(X) ≤T
K(Q) we can’t conclude that X is Π1

1.
The analysis of the proof of Theorem 2.27 has led us to the following

interesting dichotomy (see [46], [51]).

PID: For every P-ideal I of countable subsets of some set S either

(1) there is uncountable X ⊆ S such that [X]ℵ0 ⊆ I, or else
(2) there is a decomposition S =

⋃
n<ω Sn such that Sn ∩ a is finite

for all n < ω and a ∈ I.

More precisely, we have the following result (see [46]).

2.29 Theorem (Todorcevic). mm > ω1 implies PID. Moreover, PID
is consistent with CH relative to the consistency of the existence of a
supercompact cardinal.

PID is an interesting set-theoretic principle saying that in the cat-
egory of P-ideals of countable sets there exactly two kind of critical
objects, the P-ideals [S]≤ℵ0 of all countable subsets of some set S and
the P-ideals generated by a sequence Sn (n < ω) of subsets of some set
S as follows

{a ∈ [S]≤ℵ0 : a ∩ Sn is finite for all n < ω}.
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It turns out that PID has some properties in common with the principle
OGA discussed above. In particular, it has a similar effect on the
structure of gaps in the quotient algebra and so, in particular, we have
the following influence on the Continuum Problem.

2.30 Theorem (Todorcevic). PID implies that Hausdorff’s (ω1, ω
∗
1)-

gap in P(ω)/Fin is the only gap in this quotient algebra with regular
uncountable sides.

2.31 Corollary (Todorcevic). PID implies b ≤ ℵ2.
This leads us to the following interesting question.

2.32 Question (Todorcevic). Does PID imply c ≤ ℵ2?
It should be noted, however, that unlike OGA, the P-ideal dichotomy

has a strong influence throughout the whole universe of sets, rather
than just sets of reals. Here are samples from the list of its influences
(see [46], [55], [38]) that show this very clearly.

2.33 Theorem (Todorcevic). PID implies that �(θ) fails for all regu-
lar cardinals > ω1.

2.34 Theorem (Viale). PID implies the Singular Cardinals Hypothe-
sis.

2.35 Theorem (Steel). PID implies ADL(R).

In particular, PID has a substantial large cardinal strength. It is our
opinion however that the real interest in PID will come from the rest
of mathematics since this is a rather simple principle that is quite easy
to use and therefore accessible to the non-experts to this area. One
example of such use is the following remarkable metrization result that
solved a sixty year old problem of Maharam (see [23],[3])

2.36 Theorem (Balcar-Jech-Pazak). PID implies that every complete
weakly distributive algebra satisfying the countable chain condition sup-
ports a strictly positive continuous submeasure.

So, in particular, PID implies the Souslin Hypothesis.

2.5. A well-ordering of P(ω1). The purpose of this section is to
point out the well-known fact that our Baire category assumptions
are sufficient to give us a definable well-ordering of the inner model
L(P(ω1)) as this is one of the important contrasts with the case of

L(P(ω)) under ADL(R). By now we have several descriptions of such
a well-ordering, the first being that of Woodin [57] in the context of
the Pmax forcing extension which also uses the least amount of the
axiom of choice, the existence of a stationary and costationary subset
of ω1. Here we briefly sketch the description due to the author (see
[47]) which uses a different instance of choice. We could have also
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described yet another description of such a well-ordering using a bit
stronger instance of choice due to Moore [28] and a bit weaker instance
of the Baire category principle mm > ω1. We think that in this context
the choice of parameters parameters is a feature that should not be
ignored.8 The parameter in the coding that we choose to describe here
is an arbitrary one-to-one sequence rξ (ξ < ω1) of elements of {0, 1}ω.
This allows us to associate to every countable set of ordinals X, the
real rX = rotp(X).

For a pair x and y of distinct members of {0, 1}ω, set

∆(x, y) = min{n < ω : x(n) 6= y(n)}.
Note that for three distinct members x, y and z of {0, 1}ω, the set

∆(x, y, z) = {∆(x, y),∆(y, z),∆(x, z)}
has exactly two elements.

2.37 Theorem (Todorcevic). For every subset S of ω1 there is a sta-
tionary set preserving poset PS which does not add reals and forces the
existence of three ordinals γ > β > α ≥ ω1 and an increasing contin-
uous decomposition γ =

⋃
ν<ω1

Nν of the ordinal γ into countable sets
such that for all ν < ω1,

Nν ∩ ω1 ∈ S iff ∆(rNν∩α, rNν∩β) = max ∆(rNν∩α, rNν∩β, rNν ).

It turns out that while for a particular subset S of ω1 the poset PS does
not add reals, if we want to have simultaneously all the correspond-
ing instances of the Baire category principle mm > ω1 (and therefore
describe a well-ordering of P(ω1)), the Continuum Hypotthesis must
be false and, in fact, we must have Luzin’s Continuum Hypothesis
2ℵ0 = 2ℵ1 . This is an interesting phenomenon appearing in all known
descriptions of well-orderings of P(ω1) from parameters from P(ω1).

2.6. Permanence under forcing. We finish this section by briefly
listing some results showing that the theory of P(ω1) we have just
sketched has substantial permanence properties. These are results
about forcing absoluteness of certain theories under the assumption
of large cardinals. The first such result is the following well-known
theorem.

2.38 Theorem (Woodin). Assume there is a proper class of Woodin
cardinals. Then the theory of L(R) is invariant under any set forcing.

8Recall, for example, that if we assume ADL(R), add an ω1-sequence of Cohen
reals, and then form L(P(ω1)) in the generic extension, this inner model will have
an ω1-sequence of distinct reals, but it will not have any counterexamples to König’s
Lemma and so, in particular, it will not have any �ω-sequence or any other critical
objects of the theory of P(ω1) described above on the basis of such a sequence.
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The relevance of this to our present discussion is given by the fol-
lowing fact.

2.39 Theorem (Woodin). Assume ADL(R). Then there is a homoge-
neous forcing notion Pmax in L(R) which forces (over L(R)!) all the
consequences of the Baire category principle mm > ω1 about objects
from the structure (H(ℵ2),∈), and more.9

Note that the homogeneity of Pmax implies that the inner model L(R)
can see all the sentences true in the Pmax-forcing extension and thus
the connection with Theorem 2.38. It is unknown if there is a natural
strengthening of mm > ω1 which implies that L(P(ω1)) is a Pmax-
forcing extension of L(R). That would make the theory of L(P(ω1))
invariant under any set forcing that forces this version of mm > ω1.
However, we do have a quite satisfactory result in that direction proved
recently by M. Viale [54].

2.40 Theorem (Viale). Assume there is a proper class of superhuge
cardinals and that a natural strengthening of the Baire category prin-
ciple mm > ω1 is true. Then the theory of H(ℵ2) is preserved by
any stationary-set preserving poset which forces this strengthening of
mm > ω1.

3. P(ω1) under CH

In this section we first list some of the well-known consequences of
CH and in particular those which Godel [16] calls ‘paradoxical’. What
we can observe here is that CH is giving us an extremely rich array of
different mathematical objects with no apparent relationships between
them. We therefore must examine whether there could be an interesting
structure theory of P(ω1) that is compatible with CH and that could
give us some explanation of its consequences.

3.1. Consequences of CH. As it is well known, the early survey of
consequences of CH in various parts of mathematics appeared in Sier-
pinski’s book [37] which has been commented upon both by Luzin [22]
and Gödel [16]. For example, Gödel makes his well-known comments
on the following consequences.

3.1 Theorem (Luzin). Assume CH. Then there is an uncountable set
of reals which has countable intersection with every meager set of reals.

3.2 Theorem (Brown-Sierpinski). Assume CH. Then there is an un-
countable subset X of [0, 1]N such that for every uncountable Y ⊆ X
and for all but finitely many n, the nth projection maps Y onto [0, 1].

9More precisely, all of the consequences of Woodin’s axiom (∗)
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3.3 Theorem (Hurewicz). Assume CH. Then there is an infinite-
dimensional subset X of [0, 1]N such that all uncountable subsets Y
of X have infinite dimension.

Sets satisfying the conclusion of Theorem 3.1 are called Luzin sets. The
same result is true for the σ-ideal of measure zero sets of reals but this
follows from the following ‘Duality Principle’.

3.4 Theorem (Erdős-Sierpinski). There is a bijection f : R→ R such
that f 2 = id and such that a subset X of R is meager if and only if its
image f [X] is of measure zero.

Some other typical uses of CH in mathematics that appeared after
Sierpinski’s book [37] are as follows.

3.5 Theorem (Parovichenko). Assume CH. Then P(ω)/Fin is a sat-
urated boolean algebra and so, in particular, a universal object in the
class of boolean algebras of cardinality at most ℵ1.
Note how discretely this avoids the structural result of Hausdorff that
P(ω)/Fin has (ω1, ω

∗
1)-gap. In fact this manages to avoid even so basic

object such as a one-to-one sequence rξ (ξ < ω1) of reals (elements
of 2ω)! To see this consider the following two orthogonal families in
P(2<ω)/Fin which can’t be separated,

C0 = {c0ξ : ξ < ω1} and C1 = {c1ξ : ξ < ω1},
where ciξ = {rξ � n : n < ω and rξ(n) = i} (ξ < ω1, i < 2).

We mention another (similar) use of CH but in another area of math-
ematics (see [6], [9]).

3.6 Theorem (Dales, Esterle). Assume CH. Then for every infinite
compact Hausdorff space K there exists a discontinuous algebraic mono-
morphism from C(K,C) into a Banach algebra. So, in particular, there
is an algebraic norm on C(K,C) that is not equivalent to the uniform
norm.

We mention also the following result (see [32]) that is similarly related
to a structural result of Section 2 ( Theorem 2.17).

3.7 Theorem (Phillips-Weaver). Assume CH. Then the Calkin algebra
has 2ℵ1 automorphisms and so, in particular, there is one which is not
inner.

More typical uses of CH involve diagonalization procedures of length
ω1. CH is used to ensure that during this procedure enough require-
ments have been met so that the resulting structure will have no un-
countable substructures with a particular property. Here is a typical
result of this sort (see [31]).
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3.8 Theorem (Kunen). Assume CH. Then there is a non-metrizable
scattered compact Hausdorff space K such that the function space C(K)
has no uncountable biorthogonal systems.

Other typical uses of CH go through the weak diamond principle of
Devlin and Shelah [8]. Here are typical such consequence which should
be compared with the corresponding results from Section 2 above.

3.9 Theorem (Todorcevic). Assume CH. The class of Lipschitz trees
is not totally ordered under ≤ . In fact, there is a family of cardinality
2ℵ1 of pairwise incomparable Lipschitz trees.

3.10 Theorem (Martinez-Ranero). Assume CH. Let CL be the class of
all uncountable linear orderings whose cartesian squares can be decom-
posed into countably many chains. Then CL is not well-quasi-ordered
under the relation ≤ of isomorphic embedding. In fact, CL contains a
subfamily of cardinality 2ℵ1 of pairwise incomparable orderings.

It can be seen that many consequences of CH can be expressed as
Σ2

1-sentences. The following result shows that, in some sense,10 CH is
the most powerful sentence of this complexity.

3.11 Theorem (Woodin). Assume that there exist unboundedly many
measurable Woodin cardinals. Then if one Σ2

1-sentence is true in one
forcing extension then it is also true in all forcing extensions satisfying
the Continuum Hypothesis.

One common feature seen in the many applications of CH is the fact
that they give us an immense quantity of objects with no apparent
relationships between each other, or better said, no theory that would
explain their existence. So we are left to search for additional set-
theoretic principles that would give us some of the structure theory
comparable to that from Section 2. We discuss this in the following
subsection.

3.2. Baire category principles compatible with CH. We are look-
ing for a Baire category principle BCω1(X ) consistent with CH and
where X is maximal relative to that requirement. The deepest part of
Shelah’s iteration theory (see [36]) was invented for the purpose of find-
ing this class of posets X . It has been realized quite early that a poset
P from such X must be more than just proper and not add reals—P
must be complete relative to some simply definable ‘completeness sys-
tem’ which itself must be at least ‘2-complete’. In fact, to preserve
not adding reals P must be ‘α-proper’ for every countable ordinal α.
For example, the P-ideal dichotomy is a consequence of BCω1(X ) for
X the class of posets that are α-proper for all α < ω1 and are complete

10We refer the reader to the paper [19] of Koellner that makes this precise.
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relative to some simple σ-complete completeness system, a principle
proved by Shelah [36] to be consistent with CH relative to the con-
sistency of the existence of a supercompact cardinal. The problem of
using PID in the context of CH is that there are not many P-ideals
around to apply this principle.

More precisely, PID becomes powerful only if joined by additional
assumptions like p > ω1 or m > ω1 since they turn PID into a dual
dichotomy that applies to arbitrary ideals of countable sets that are in
some precise sense ℵ1-generated.

In fact, this was the original way these ideal-dichotomies were stated
before the realization that the dual dichotomy PID is consistent with
CH. It turns out that any natural variation on PID requires iteration
theory for a class X of posets that fail to satisfy one of the two key
requirements above. In particular, Shelah asked whether BCω1(X ) is
consistent when X is the class of all posets that are complete relative to
some simple σ-complete completeness system, i.e., with no requirement
of α-properness for all countable ordinals α. Recently, the difficulty was
in part explained by the following result, which hints towards the non-
existence of the maximal class X .
3.12 Theorem (Asperó-Larson-Moore). There exist two Π2 sentences
ψ1 and ψ2 of L(P(ω1)) such that

(1) ψ1 is true in a forcing extension by proper posets that does not
add new reals,

(2) if there is an inaccessible limit of measurable cardinals then ψ2

is true in a proper forcing extension that does not add new reals,
(3) the conjunction of ψ1 and ψ2 implies Luzin’s hypothesis 2ℵ0 =

2ℵ1 .

The point here is that ψ1 and ψ2 require two different iteration theo-
rems for proper forcing that do not add new reals, two different Baire
category principles BCω1(X1) and BCω1(X2) that can’t be joined to-
gether if we are to keep CH (see the discussion in [1]). Thus, here we
have something quite different from the case described above in Sec-
tion 2. In other words, we are still far from any structure theory of
P(ω1) compatible with CH. An analogous analysis of this sort that uses
Ω-logic has been given by Koellner [19].

3.3. Well-orderings. Recall that in Subsection 2.5 we have seen that
the Baire category assumption mm > ω1 was giving us a well-ordering
of P(ω1) (and of P(ω)) that is definable in L(P(ω1)) so it is natural to
ask the following.
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3.13 Question. Are there any interesting Baire category assumptions
compatible with CH that would give give us a well-ordering of P(ω1)
which belongs to L(P(ω1))?

Note that in the context of CH well-orderings of P(ω) must be of
lengths shorter than the lengths of well-orderings of P(ω1) and in fact
subjects of the theory of P(ω1) that we are searching for. This is an
important distinction from the case of Section 2. The importance of
well-ordering of R of length ω1 in any analysis of CH was first stressed
by Luzin [22] in his early writing about the Continuum Problem. Luzin
asks that they be ‘effective’.11 Well-orderings of R in this context are
used to derive other objects which the theory must explain, so perhaps
it is more to the point to ask that they be ‘canonical’ enough so that
the analysis is possible. The purpose of this section is to expose the
analysis of Moore [30] which sheds some light in this direction.

Fix a ω1-sequence ~r = (rα : α < ω1) of distinct reals (elements
of {0, 1}ω). We shall associate to it in a canonical way a sequence
Tξ(~r) (ξ < ξ(~r)) of some length ξ(~r) ≤ ω2 using an index function
ind : [ω1]

≤ℵ0 → ω such that sup(x) < ind(x) and a C-sequence Cα
(α < ω1) as parameters which could of course be read from ~r if this is
an enumeration of all the reals. Elements of each Tξ(~r) will be closed
countable subsets of ω1 with the end-extension as a tree ordering. We
shall also have that for s and t in some Tξ(~r), if sup(s) = sup(t) =
sup(s ∩ t) then s = t. This provides the uniqueness of an ω1-branch if
there is one. Other properties of this functor of our interest here are
summarized as follows.

3.14 Theorem (Moore). The functor ~r 7→ (Tξ(~r) : ξ < ξ(~r)) has the
following properties:

(1) ξ(~r) = 0 exactly when (ω1)
L[~r] < ω1;

(2) Tξ(~r) has an uncountable branch if and only if ξ 6= ξ(~r)− 1;

11Here is the quote from page 130 of [22]: “Le seule preuve de la vérité
de l’hypothèse de Cantor consisterait à donner une correspondance univoque et
réciproque Z, effective, c’est-à-dire décrite d’une manière précise et sans ambigüıté
possible, entre les points d’une ligne droite et les nombres transfinis de seconde
classe. Cette effectivité aurait un très grand intérêt et une grande importance,
puisque, dans ce cas, elle serait une source d’un très grand nombre d’importantes
relations arithmétiques, algébriques, geométriques et analytiques. Or, on sait que
non seulement nous ne pouvons pas attendre que les progrès de la Science nous
amènent à une telle correspondance Z effective, mais que, au contraire, c’est le
fait inverse qui est beaucoup plus probable: un jour les ressources de la théorie
de M. Hilbert seront peut-être si avancées qu’on pourra tenter avec succès une
démonstration de la non-existence d’aucune correspondance Z effective, bien que
l’existence d’une correspondance Z non effective soit non contradictoire.”
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(3) if ξ = ξ(~r)− 1 then either R * L[~r] or else Tξ(~r) is completely
proper12 in an any outer model with the same reals;13

(4) if ξ(~r) = ω2 then R * L[~r];
(5) for every ξ < ω2 the (partial) function ~r 7→ Tξ(~r) is Σ1 defin-

able, so in an outer model for a given ~r the associated sequence
of trees may increase in length but it must maintain the entries
from the old model.

3.15 Corollary (Moore). If X is the class of all completely proper
posets then the corresponding Baire category principle BCω1(X ) implies
the negation of the Continuum Hypothesis.

Thus we have here a functor which to every well-ordering<w of the reals
of order type ω1 associates an ordinal ξ(<w) < ω2 which is canonical
enough to expect that any important structure theory of P(ω1) should
explain it. Unfortunately, the following consequence of an unpublished
result of Shelah shows that if such a theory exists it will not be invariant
under forcing extensions of completely proper posets.

3.16 Theorem (Shelah). For every well-ordering ~r = (rα : α < ω1) of
R and every ordinal ξ < ω2 there is a forcing extension with the same
reals such that ξ(~r) ≥ ξ.

4. Further remarks

The previous two sections show that while the Baire category as-
sumptions like mm > ω1 reveal a fine structure theory of P(ω1) that
could also address problems coming from different areas of mathemat-
ics, nothing comparable to this is known if we require CH to be true.
The purpose of this section to further speculate on this.

4.1. Theory of P(ω) versus the theory of P(ω1). Let us recall some

of the known facts about the structure theory of P(ω) under ADL(R).

(a) ADL(R) provides a structure theory of L(R) which is a natural
extension of the structure theory that can be established for
sets of reals of lower complexity in ZFC.

(b) ADL(R) follows from the structure theory of L(R) that it yields.

(c) ADL(R) follows from Large Cardinal Axioms.

12i.e., proper and compete relative to some simple σ-complete completeness
system.

13In other words, if ~r enumerates all the reals, then ξ(~r) is a successor ordinal
< ω2 (see (4)) and the last tree in the sequence, as a forcing notion, is completely
proper although it has no uncountable branches. In particular, this shows that if
CH holds then we can’t have BCω1(X ) for X the class of all completely proper
forcing notions.
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(d) The Large Cardinal Axioms give an Ω-complete theory of L(R).

(e) ADL(R) is equivalent to the existence of inner models of certain
Large Cardinal Axioms.

(f) ADL(R) is implied by any other statement of sufficiently strong
consistency strength (measured on the scale of the Large Car-
dinal Axioms).

Thus, there is a very close relationship between ADL(R), the structure
theory of L(R) it yields and the standard Large Cardinal Axioms. As it
has been observed quite early, the standard Large Cardinal Axioms are
quite insensitive to the Continuum Problem. So the structure theory
of P(ω1), since it must give an answer to the Continuum Problem,
cannot be so closely tied with standard Large Cardinal Axiom. In
particular, we can’t have (c), (e) and (f) in this context. In Section 2,
we have seen that both OGA and PID have substantial ‘ZFC-shadows’,
so to some extent we do have the analogue of (a). For the analogue of
(b) we can take either Woodin’s (*) (see [57]) or Fuchino’s Potential
Embedding Principle with perhaps some adjustments (see [15]). Some
work is needed to achieve something comparable to (d) but the work
of Viale [54] is a start. Finally we mention that, since PID (which is

compatible both with CH and its negation) implies ADL(R), we have
the compatibility between the two structure theories.

4.2. The set-theoretic universe. At this stage it is difficult to pre-
dict the picture of the set theoretic universe that would accommodate
the right structure theory of P(ω1) and so, in particular, solve the Con-
tinuum Problem, but we can still speculate. For example, recent work
of Woodin [58] on the ultimate version of Gödel’s constructible universe
L gives us a hint towards the ultimate culmination of the Inner Model
Program whose goal is to give us a fine analysis of the standard Large
Cardinal Axioms. To give a comparable analysis of the right structure
theory of P(ω1), and therefore give still a more precise picture of the
universe of sets, one would need to invest in yet another program that
would analyze possible maximal (forcing?) extensions of this Ultimate-
L. In correspondence Peter Koellner mentions the possibility that the
universe of sets is equal to the Ultimate-L and that the right structure
theory of P(ω1) holds in an inner model, having in mind the historical

retreat from AD to ADL(R) in order to accommodate AC whose role
in the case of P(ω1) would be played by the CH. However, the retreat

from AD to ADL(R) was ‘forced on us’ by the enormous success of AC
in the rest of mathematics where it gave us key representation and du-
ality theorems making this axiom generally acceptable (true). We do
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not have anything resembling this in case of CH so the retreat seems
doubtful at this stage of our knowledge. While at this point, note that
important parts of the theory exposed in Section 2 are not really about
just structures from L(P(ω1)) but about structures that could not be
captured by inner models of the form L(X) for X a set. So it is quite
unclear that the theory could be captured by a homogeneous forcing
extension of an inner model of determinacy. It is true that only part of
the theory seen at the level of L(P(ω1)) is important for the solution of
the Continuum Problem. But cutting off a large part of the theory for
such a reason in not acceptable if we are serious about discovering the
true set-theoretic universe. Nevertheless, we think that the analogies
between the theory of L(R) under ADL(R) and the theory of L(P(ω1))
under mm > ω1 should be further analyzed before we could make a
proper philosophical analysis. The principles like PD and ADL(R) are
really helping us with countable objects, or more precisely, objects that
could be coded by a countable amount of information. On the other
hand, the structure theory of L(P(ω1)) is about objects of cardinality
at most ℵ1 and this is why the Baire category principles at the level
ω1 are useful. So indeed there is some analogy here. Looking more
closely, one observes that ADL(R) gives us the fine structure theory for
objects living in the inner model L(R) (i.e., the pleasant Wadge hi-
erarchy, the structure theory of cardinals, etc) avoiding us having to
say something about structures that depend on a well-ordering of the
reals. The inner model L(P(ω1)), on the other hand, has a definable
well-ordering and OGA, PID, and eventually mm > ω1, have to treat
the structures that depend in it. Note that the short well-ordering of
P(ω1) of order type ω2 joined with the assumption mm > ω1 is giv-
ing us the non-structure situation at the level of subsets of P(ω1),

14 so
we too have to retreat to simpler objects like ‘open graphs, ‘P-ideals’,
etc. So, if there is a stronger form of analogy here it should perhaps
be between the power-set of R and the power-set of P(ω1). The max-
imality considerations in the large cardinal hierarchy has given us the
structure theory of P(R) ∩ L(R) and the maximality consideration in
the hierarchy of the Baire category principles at the level ω1 has given
us the structure theory of Psimple(P(ω1)) partly exposed above in Sec-
tion 2. Note that if we want to move from Psimple(P(ω1)) to P(P(ω1))
we would need to perform yet another maximality consideration but
now among the Baire category principles at the level of ω2, those that
are analogous to the Baire category principles at level ω1 compatible
with CH. When discovering more about the set-theoretic universe we

14i.e., the situation quite analogous to that discussed above in Section 3.
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will be faced with the mathematical as well as philosophical problem
of determining the proper order and the precise relationships between
these different maximality considerations.

4.3. Other axioms. One of the earliest alternatives to CH found in
the literature is Luzin’s hypothesis 2ℵ0 = 2ℵ1 found in his paper [22].
Looking closely one sees that Luzin was really after the following prin-
ciple:

L: All sets of reals of cardinality ℵ1 are co-analytic.

Today we know that this statement could be adjusted as follows:

B: All sets of reals of cardinality ℵ1 are pairwise equivalent as linear
orderings.

When one postulates some properties of large cardinals to hold at
the level of small cardinals like ω1 or ω2 one sometimes gets statements
sensitive to the Continuum Problem. Here is a typical example of such
a result (see [35]).

4.1 Theorem (Shelah). If the quotient algebra P(ω1)/NSω1 has a dense
subset of cardinality ℵ1 then Luzin’s Continuum Hypothesis 2ℵ0 = 2ℵ1

is true.

Unfortunately, this assumption contradicts even a weak form of the
Baire category principle m > ω1 but the following result gives a natural
recovery (see [57]).

4.2 Theorem (Woodin). If there is a measurable cardinal and if the
quotient algebra P(ω1)/NSω1 satisfies the ℵ2-chain condition then 2ℵ0 >
ℵ1.

Recall that Kőnig’s Lemma has also been generalized to a notion of
compactness which gives us the notions of weakly compact and strongly
compact cardinals. However, there is another way to generalize the
notion of compactness, which was discovered by Richard Rado, who
was motivated by his early results about intersection graphs on families
of intervals of linearly ordered sets. In particular Rado [33] states the
following conjecture.

RC: Suppose that an intersection graph G of a family of intervals of
some linearly ordered set is not countably chromatic. Then G has a
subgraph of cardinality ℵ1 which is also not countably chromatic.

It is still not clear what is the largest class of graphs for which such
a compactness principle can hold at this level. For example, it is not
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known if the conjecture can be extended to the class of all incompara-
bility graphs on posets. It definitely cannot be extended to the class
of all graphs since for example there is a graph on the vertex set of
cardinality c+ which is not countably chromatic but all subgraphs of
smaller cardinality are countable chromatic.

The influence of RC on the cardinality of the continuum is given by
the following result (see [42]).

4.3 Theorem (Todorcevic). RC implies 2ℵ0 ≤ ℵ2.
Unfortunately, RC contradicts the consequence of m > ω1 saying that
all trees of cardinality at most ℵ1 with no uncountable branches can be
decomposed into countably many antichains, and therefore, it does not
allow much of the structure theory of P(ω1) from Section 2. However,
in this case, if necessary, the structure theory could be recovered using
the following result.

4.4 Theorem (Todorcevic). If for every stationary subset S of [ω2]
ℵ0

there is α < ω2 such that S ∩ [α]ℵ0 is stationary in [α]ℵ0 then 2ℵ0 ≤ ℵ2.
The point here is that if WRP(ω2) denotes the hypothesis of this the-
orem then both RC and mm > ω1 imply it.

Finally, we could also speculate about some truly new large cardinal
axioms which on the one hand talk only about sets of very high rank and
which, on the other hand, have an effect on the Continuum Problem.
Their eventual discovery could revolutionize the whole of set theory,
not just the study of Cantor’s Continuum Problem. In the paper [2]
of Joan Bagaria the reader can find a discussion of some other natural
axioms of set theory that we do not cover here.

4.4. Structure theories for higher power-sets. Currently there is
an ongoing research program on the Baire category principle at lev-
els higher than ω1 and the theory of its consequences have yet to be
developed. For example, it remains to be seen whether they have in-
fluence on the Continuum Problem at the corresponding level. I think
that it would be important to know if the new Baire category prin-
ciples at a given level κ can give us well-orderings of P(κ) that are
described by formulas that use only parameters from P(κ) to match
the case of Baire category principle mm > ω1 at level ω1. Note also that
if we are to discover the true universe of sets that incorporates struc-
ture theories of various power-sets then we might need to constantly
move from a theory of the power-set of κ+ that forces 2κ > κ+ to a
theory of the power-set of κ++ that allows 2κ

+
= κ++. For example,

if we are to have the fine structure theory (of Section 2) at the level
of ω1, because of the well-ordering of P(ω1) of order-type ω2, at the
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level P(ω2) we are in a situation which at first sight looks analogous
to the situation of P(ω1) with CH holding. This is, however, not quite
the case since in this situation we lack the existence of �ω1-sequences
that helps us in constructing objects of cardinality ℵ2 (analogously to
the way we would use �ω-sequences to describe objects of cardinal-
ity ℵ1) and so a well-ordering of P(ω1) of order-type ω2 that gives us
♦({α < ω2 : cf(α) = ω}) could not be used for constructing pathologies
like, for example, the existence of an ω2-Souslin tree or a witness that
Kőnig’s Lemma at this level is false.

4.5. Conclusion. We have seen above that the two Baire category
theories of the power-set of ω1 behave quite differently when we perform
some maximality and permanence tests. These tests point out that
from the point of view of our current knowledge the theory of P(ω1)
that implies the negation of the Continuum Hypothesis has a clear
advantage confirming thus the intuitions of both Luzin [22] and Gödel
[16]. However, one may still ask the following questions.

4.5 Question. What other tests we should take in order to determine
the true structure theory of P(ω1)?

4.6 Question. What is the true structure theory of P(ω1)? Is CH or
its negation a part of this theory?

4.7 Question. In order to have the true structure theory of P(ω1) do
we really need to retreat to an inner model of the universe of sets?

We believe that the tests that will prove crucial are those coming
from the rest of mathematics. The combined experience coming from
different areas of mathematics might eventually give us a hint as to
which of the two theories of P(ω1) is more useful and should be kept: a
CH-theory with an immense quantity of unrelated mathematical struc-
tures, or a fine structure theory of P(ω1) that contradicts CH and that

resembles the structure theory of P(ω) under ADL(R). This need for
further tests coming from the rest of mathematics seems in agreement
with the following insight from Luzin [22] that is also implicit in the
often cited paragraph from Gödel [16]:

“Alors, la nécessité s’imposera à nous de choisir entre les diverses
hypothèses du continu, toutes exemptes de contradiction, et ce choix
devra être dicté par l’observation seule des faits.”
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