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A NOTE ON THE PROPER FORCING AXIOM

Stevo Todorcevic

- In this note we give several remarks on the following most familiar form

of the proper forcing axiom (PFA):

If P .is a proper poset and if F <is a family of R, dense
subsets of P, then P has an F-generic filter.

Thus PFA is obtained from MAN1 by replacing the countable chain condition with
properness, which is a much weaker rvesttiction. It has been shown that PFA is
a much stronger forcing axiom than MANI’ and that PFA decides many problems
left open by MA&I’ The consistency proof of PFA used a supercompact cardinal
([31,[61), but nothing stronger than the consistency of a weakly compact
cardinal was known to follow from PFA ([2]).

Our first result shows that under PFA, ¥, has a certain degree of super-
compactness, so that in some sense the supercompact cardinal in the consistency
proof of PFA is needed. 1In particular, our result connects this problem with
some recent results about inner models of set theory ([41). The second part
of this note discusses an approach in applying PFA. We assume the reader is
familiar with some basic facts about proper forcing, which can’be found in any

of the sources [2], [3] and [6].

THEOREM 1. Assume PFA.. Let « > w, be a regular cardinal and let
I Ck be aset of limit ordinale such that {s€k: cf §=w,} cT. ILet
<—COL: 0€T) be a sequence of subsets of « such that

Z) Cu is a closed and unbounded subset of o ,

it) if B 18 a limit point of Cy» then BET and Cg = Cy N B.
Then there is a club C in k such that if o is a limit point of C, then
a€T and C‘OL=C00L. '
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COROLLARY 2. If PFA holds then o, fails for any uncountable cardinal K.

It is interesting to note that R.Solovay ([7]) proved a similar result
where w, is replaced by a supercompact cardinal A and {6 <k: cf é§ = a)l} by
[6<xk: w < cf § < A}

PROOF OF THEOREM 1. For o and B in T we let £ <o 1iff B is a limit
point of Cy- It is clear that = is a tree ordering on I' and that if A is

a chain of (T,<=) of size k then

U C
oEA

(@]
1

o

satisfies the conclusion of the theorem. 8o, to finish the proof it suffices
to find a contradiction assuming that {(I',<) has no chains of size K.

In order to define a poset for én application of PFA we need to introduce
some definitions which are very useful in many other constructiomns.

A sequence E\I) = (NOL: o € A), where A is a subset of w,, is called an

elementary A-chain iff

1) Ya€a (G yeT) € Ny<=H, and I, =8,

2) VOI,,BEA(OL<B=NOLENB)’

3) Ya€ A (0L=supAﬁa=>N0L= v NB)'
ReANa

For countable N < H we let x, = sup(BNk). If FCT and if

K+’ N
f: F> w, then f is called a specializing map iff £(y) # £(8) for v,§ € F

with vy =< 8.

Now we are ready to define our poset P. Let p € P iff p = (fp,—ﬁp),
where: '
>
a) Np is an elementary Ap—chain for some finite Ap € w, such that
ﬁp C ~I\? for some elementary ®,-chain N.

b) fp is a partial specializing map from (T ,<) into @ such that
C RS .
dom(fp) < {KNP Ap}

o,
P is partially ordered by: q<p iff fq 2 fp and —ﬁq _D_KIP.

CLAIM. P 1is a proper poset.

PROOF. Let © be a big enough regular cardinal and let M —<He be
countable such that p,P€ M. Let § =MNw, and let

q = (£, ﬁp v {ts, MnE_D})

. Then it is easily seen that q 1is a member of P and that q<p.
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We shall prove that q dis an (M,P)-generic condition.

Let D €M be a dense open subset of P and let r<q be a given condi~
tion. By extending r we assume r € D. Let P, = r N M. Then it is easily
seen that P, € M and P, <p. Let F = dom(fr)\M and let n= IFI We may
assume that n>1. Since M is an elementary submodel of HG we can find
sequences (Fg: E<Kk ) and (rg: £<K) in M such that

c) FE C Kk and ngl =n, -

d) E<Fg<n for E<n<k,

€ = U .

e) 33 D, rg < P, and dom(frg) dom(fpo) FE

Since (TI',=) has no k-chains, a standard argument shows that there exists a

£ € MN Kk such that

Vx€F, Vye Fe (x and y are <-~incomparable)
3

Let s = <fr S ﬁr U ﬁr >. Then it is easily checked that s 1is a member
of P an& that s<r and sg)‘i’. Since rg € DNM this completes the proof of
the Claim.

Let

P = {pe P dom(fp) = {KNP: = Ap} nr} .
o

Then P is a dense subset of P and we shall apply-PFA on 7_7 rather than P.
So let G be a filter on P with the property that

- U -

Y = peC "
is an elementary w,~chain. Such a filter exists since it is possible to define
a family F of ¥, dense open subsets of P with the property that _ﬁG is an
elementary w,~chain for any F-generic filter G on P. For o < w, we let
K = sup(Ng N K)

o

%

Let vy =supik,: a < w,}. Then y €T since cfy=w. Let

f= U f and A =T 0k

o<} .

Then by the definition of P, f: A+ w is a specializing map. Since CY and
{Koc: o < wl} are clubs in vy we can find a club D C w, such that Ky 1s a
limit point of CY for all o € D. By the property (ii) of (Ca: o €Y it
follows that Kk, < Kg for a<B in D, i.e., that {KOL: €D} 1is an w,~chain
of (A,<). But this is a contradiction since (A,=) is a special tree.

This completes the proof of Theorem 1.




212 S. TODORCEVIC

The construction from the previous proof is only one instance of a quite
general approach in comstructing proper partial orderings which we now intend
to discuss in more detail. In general terms this approach can be described as
follows. Suppose we want to force an uncountable subset A of a given structure
E with A having some specific properties. The natural thing would be to force
with the poset P of all finite approximations to A. We would like to prove
that P, or a certain subposet ofrit, is proper. So let N << H6 be countable
such that p,P € N. Let gq<p be a condition for which we would like to prove
that it is (N,P)-generic. So let D € N be dense open and let r<q. In
most of the cases we shall not be able to show that there is an s € D N N
such that r~s, since r\N will be in certain "bad" places with respect to N.
To avoid this we shall simply "add" N to be a 'side condition'", saying explic-
itly that r\N dis not in a bad place with respect to N. 1In order to clarify
this, we now present a typical case of such a construction which has its own
independent interest.

Let E be a partially ordered set and let D C E. We say that D is a
directed subset of E iff VYa,b€ D, 3 ¢c € D, a,b < c. Recently E.Milner and
K.Prikry ([5]) proved that every poset with no uncountable antichains is the
union of < ZNO directed subsets, thus answering a question of F.Galvin
concerning the well-known Dilworth decomposition theorem. Actually, Milner
and Prikry proved a much more general result but this special case can be
proved more directly using (2N°)+ > (Nl); . Namely, one first shows that
if E is moreover well-founded, then everyofamily of pairwise C-incomparable
initial parts of E have size <2 °. Now the result follows easily.

Let o, be the minimal cardinal with the propeity that every poset with
no uncountable antichains is the union of <o, directed subsets. It is an

open problem whether o, < ¥, can be proved without additional set-theoretic

=
assumptions. Our next result, asked by A.Hajnal and E.Milner, shows that g,
can have the minimal possible value R8,. Its proof will be a very good

illustration of our approach in constructing proper posets.

THEOREM 3. Assume PFA. Then every partially ordered set with no

uncountable antichains is the union of countably many directed subsets.

* PROOF. Let E be a poset with no uncountable antichains and let
K= |E|. We shall prove the result by induction on the cardinal x. Clearly,
we may assume cf Kk > w. Assume by way of contradiction that E is not the
union of < 8, directed sets. We shall find a proper poset P which forces an
uncountable antichain to E which will be a contradiction since PFA holds.

By going to a cofinal subset of E, we may assume that:
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1) E-= (k, <%,
(2) a<Eb = a<hb,

(3) Ya€k, [{b€E:a < b}| =x.

We say that a subset B of E is finitely bounded in E iff B is either
a directed subset of E, or else there exist a positive integer n, a statiomary
S
subset S of [k] °, and a sequence (FS: s€8) of subsets of Kk of size n

such that

'

(4) VYs€S8, VYa€Bns, HfEFS,a<Ef.

CLAIM 1. E is not the union of countably many finitely bounded subsets.

PROOF. Otherwise, let E = U By where each Bi is a finitely bounded
1<

subset of E. Clearly we may assume that Bi's are disjoint and that for each i
there exists a stationary set 5; € [K]NO and a sequence (Fi‘: sESi) of
subsets of Kk of size n; which together with B; satisfy the condition (4).

We may also assume that

Vi<w, Vi€ {l,...,ni}, Tk(i,3) < 0, {fs(j). ses;} C Bk(i’j) ,
where {f;‘(j): 1< gni} is the increasing enumeration of Fé . For each i<uw,
we fix an ultrafilter Ui on Si which extends the club filter on Sy Then for
each a &€ Bi there exists ja € {l,...,ni} such that

i,.
{ses;: a<g e G e; .
For i<w and j € {l,...,ni} we define
i o_- P
Bi = {aEBi. Ja-j}

L S

Then B, = U BJ. Since U, is an ultrafilter on S,, for each jEIl,...,n'}
' iy 1 i i 1 i

we can find Q(i,3) € ‘{l,_.. such that

‘5“k<i,j>}

i, 2(i,3)
S : S S .
{s Si' fs(j) Bk(i,j)} Ui
- Finally, for i<w and j € {l,...,ni} we define

l

i .3 %(1,9) R0k (i,9) 5 £,9))
Di = B YB3 Y Bkr@,i) . 2(L9))

It is not hard to show that each D;.). is a directed subset of E. Since

E = U{Di:_ i<w, j€1{1,... ,ni}} , we get a contradiction which finishes the

probf ‘of Claim 1.
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Throughout the rest of the proof, we assume that any submodel of HK+
in our consideration contains E as an element. Let A CK and let N be an
€-chain of countable elementary submodels of HK+. Then we say that N
separates A 1ff ‘

i) Va,B €A (@<B = INEN(eEN and B ¢ N)),

1) YaEA VYNEN (0 ¢ N = YBEN (B finitely bounded in E = o & B)).

Now we are ready to define our poset P. Let p&€ P 1ff p = (A.p,Np), where

a) Np is a finite €-chain of countable elementary submodels of HK+ ,
b) AP is a finite antichain of E separated by N,
c) {b(—:E: AU {b} 4is an antichain in E} is not the union of <8,

finitely bounded sets.

. . . . SN
P is partially ordered by: q<p iff Aq 2 A, and Nq 2 Np

CLAIM 2. P is a proper poset.

PROOF. Let © be a big enough regular cardinal and let M =< He be

countable such that p,P € M. Let

- q = (A No U {MnE L}

Clearly q € P and q<p. We shall prove that g is an (M,P)~-generic condition.
So let D € M be a dense open subset of P and let r<q be arbitrary. We may
assume that r € D. Let p, = rNM. Then p, EPNY and 1 < p, < P- We

may also assume that A\M # . Let {al,. ..,a,} be the increasing enumeration
of Ar\M.
By induction on i<n we define formulas ¢ . (b.,...,b_ .), where
- n-i "1 n-1

b, < ... <b ., <K, as follows.
1 n-i

© (bysesb) iff 3Is<p, (s€D and A\A, = by ) s

® (b ,.e.sb ) iff {b<k: @ (b, ub) holds}

is not finitely bounded in E ,

for 0 < i ¢ n. We would like to show that & holds and a natural way to show
this would be to prove that @n_i(al, . "an—i) holds for each i<n. Exactly
for this reason the properties (b) and (c¢) of our poset P have been introduced.
The only difficulty is that models from N, cannot talk about @n_i's. So we

do the following construction.

Let H € M be an elementary substructure of (HK+,:-:,P,D) such that
K U {po} CH and |H|=k. Let ¥ =(H,e, PNH,DNH). Then X € MN H .+ and
so € N for all N € Nr with M NH 4+ CN. For each i€ {i,...,n}, let Ni
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be the €-maximal N € N, with the property a; € N, and let Hy = N; N H. Then

Hi <K and so H; can talk about formulas @n_j's. Since {al,...,an} is separated
by {Hl,...,Hn} it follows easily that @n_i(al,...,an_i) holds for each i<n.
Thus in particular <I>0 holds. -
Let
B, = {b<K: (Dl(b) holds}

Then B, € M and B, is not finitely bounded since & 6 holds. We claim that
ibeB nM, Vie{l,...,n}, b stE a; -

Otherwise let

a3
S={SE[K]°:E!FSE[K]n VbEBlﬂs HfEFs b<E f}_

Then SE€M and MNKES xsince we could put FMm< = {al,...,an}. Thus S 1is
a stationary subset of [x] °. But this contradicts the fact that B1 is not a
finitely bounded set.

So, let b, € By N M be such that ¥ i€{l,...,n}, b, £ a

E "1i°
Since @l(bl) holds, the set

B, = {b<k: &,(b,,b) holds}

is not finitely bounded in E, and so working as above we can<pick b,€ B, N M
such that V i€ {1,...,n}, b, ﬂ,’ a;. Proceeding in this way we define ‘
b, < ...< bn in MNgK such that @n(bl,...,ft?n) holds, and such that

{a . ,an} u{b

PN ...,by} is an antichain of E. Pick an s € DN M such that

1’
SSPO and Ag =

Ay U {bl""’bn}' To show that r and s are compatible

0

conditions it suffices to show that (ArUAs, NrUNs> satisfies the condition
(c) from the definition of P. Suppose not, and let i€{l,...,n} be minimal
with the property that A = (ASU Ar)ﬁai satisfies (c) but A U {al,.. .,ai}
does not satisfy (c). For X CE let I(X) be the set of all elements of E

which are incomparable with every member of X. Let
B = {bE I(A): E(AU{B}) is the union of <N, finitely bounded sets} .

Then B € Ni and by our assumption on i, aiE B, It follows that B itself
is not the union of <N, finitely bounded sets. A simple argument shows that
there exists a bEB such that I'(.{b}) N B 1is also not the union of <R
finitely bounded sets. Since I(AU{b}) O 1({b}) N B this contradicts

the fact that b€B. This completes the proof that P is a proper poset, and

also the proof of Theorem 3.

The proof of Theorem 3 also gives the following decdmposition theorem for

partially ordered sets.
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THEOREM 4. Assume PFA. Then every partially ordered set E with no
wncountable antichains is the wunion of countably many sets E, such that each

countable subset of E, has an upper bound in E.

PROOF. By Theérem 3 we may assume that E is a directed poset. Let B
Be a subset of E such that for some stationary § g.[E]N° and a sequence
(Fg: s€8) of finite subsets of E we have that ¥s€Ss VaeBns 3Ife€F,
a <y f. Since E 1is directed, we may assume that ‘Fs’=‘l for each s€8.
Since S 1is statiomary in [E]NO it follows that each countable subset of B

has an upper bound in E. Now we follow the proof of Theorem 3.

Let us also mention the following weak form of Theorem 4, which shows that
MA&1 also has some effect on posets with no uncountable antichains. This result

is also connected with some problems of F.Galvin; its proof will appear elsewhere.

THEOREM 5. Assume MAy . Then every uncountable poset E with no uncount-
1
able antichainsg contains an uncountable set, each countable subset of which has

an upper bound in E.

The approach which has been illustrated in the proof of Theorem 3 is quite

general in the sense that it covers most of the known constructions of proper
partial orderings. It also has some advantages over the old constructions.
For example, it does not need any preliminary forcing extensions. As an example,
let us show this by considering the well-known problem of specializing arbitrary
trees which are not necessarily without uncountable chains. We refer the reader
to [2] for the original comstruction due to J.Baumgartner.

We say that a tree T 1is essentially special iff there is a mapping
f: T+ @ such that if s < t,u and if. £(s) = £(t) = £(u), then t and u are
comparable in T. Let K be a regular cardinal such that T € HK. The poset P
which wili introduce an essentially specializing map £: T » @ is defined as

follows: p€P iff p = (fp,Np), where:

(1) fp is a finite partial essentially specializing map from T into .

(2) Np ig a finite €-chain of countable elementary submodels of HK

which contain T.

(3

is not in any maximal chain

Vs € dom(fp)‘ﬂ N

(s <

t = fp(s) # fp(t))-

T

We order P by: q<p iff £, D f_ and Nq > Np. Again we claim that P is made

q P
in such a way to be proper from simple reasons, and that if M «:He is countable

such that p,PE€ M, then q = (fp, NpLJ{MrWHK}) is an (M,P)-generic condition.
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The proof of this fact is left to the interested reader.

The same method can be used in essentially specializing 8 -trees without
adding reals. In this case as side conditions we use elementary (a+l)-chains
for o< ®;, while the first part of a condition is now an essentially specializ-
ing map with countable domain.

Clearly, the side conditions which have been used in the above construc—
tions collapse cardinals. This is necessary in some but not in all cases that
we would like to use this method. In many cases this is repaired easily by
letting A%V now be {N;,...,Ng}, where each Ng is a figite set o? isomorphic
countable elementary submodels of H. such that VYN€ N; iMe N%, NeEM
for 1 <1< j < k. The posets obtained in such a way satisfy one of the strong
B,~chain conditions of S.Shelah ([6: Ch.VIII]) which are preserved under count—
able support iteration of length <a,.

We finish this note with.a remark which shows that the forcing only with

side conditions from the above approach is still a nontrivial forcing.

THEOREM 6. If k>w, and if [K]&° has a stationary subset of
size K, then there is a poset P of size x which preserves w, such that
Ibp Jk] =8,

PROOF. ZLet S _Q,[K]NO be stationary such that [S|==K. Fix a one-~to-one
map 1i: § = K, Let P be the set of all finite p C S such that
Yx,y € p(x#y = (xCy and i(x) € y)v(yCx and i(y) € x)). The ordering
on P is D. Then P is as required since if M < H, is countable such that

6
P,PEM and MN Kk € S, then p U {M Nk} is an (M,P)-generic condition.

The problems of this type were first considered by U.Abraham ([1]) using a
different approach; we refer the reader to that work for further information.
It is well-known that for each positive integer n there exists a stationary
subset of [oun]&0 of size &n. Some information concerning the size of

stationary subsets of [K]Ho for k>¥, can be found in [6; Ch.XIII].
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