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Introduction

Analysis studies properties of maps. Sometimes those maps are defined
on finite dimensional spaces. In this case, they are called functions.
Often maps are defined on infinite dimensional spaces, which are spaces
of functions. The part of analysis which concentrates on properties
of functions is called classical analysis, the part dealing with maps is
often refered to as modern analysis. There is an obvious overlap and
interdependence between these two parts.

In this course, we deal with modern analysis. Properties of functions
are studied as much as they are needed for understanding maps. More
specifically, our emphasis is on applications of modern analysis and
the material is selected accordingly. As a result, the parts of analysis
whose main role is to support the internal structure is reviewed only
briefly. Fortunately, the latter material is well covered in the literature

and there are several excellent textbooks on the subject which we often
refer to (see [F], [McO], [RS]).
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Chapter 1. Measures and
Integrals

1. Motivation

Our objective in this chapter is to generalize the notion of length and
volume to complicated subsets of a general set X. Our generalization
results in a concept of measure, denoted u. This concept is used later
in the theories of integration and probability.

Example: X = R”. We want to define a function y defined on
subsets of R” and with values in [0, co], such that

(i) if By, Es, ... is a finite or infinite collection of disjoint subsets of
R™, then u(E;U By U---) = u(By) + u(Ep) + - -,

(ii) if £ is congruent to F' (i.e. if E can be transformed into F'
by rigid motions: translations, rotations and reflections), then

p(E) = p(F),

(i) (@) = 1, where @ = {z = (z1,...,2,) € R* : 0 < z; <
1, for j =1,...,n} is the unit cube.

One can show that a function satisfying (i)-(iii) cannot be defined on
all subsets of R™! See e.g. [F].

Let n = 1. It is easy to measure intervals in R. We define pu(I) =
b — a if I is one of the following: (a,b),[a,b], (a,b], [a,b), i.e. an open,
closed or semiclosed interval. However, a union of disjoint intervals is
in general not an interval. So we define its measure by using Property
(i) above. We can now go on and form unions of unions of intervals and
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so forth. If we continue this procedure, what kind of subsets of R do we
end up with? We answer this question in the next section. Meantime,
we remark that the collection of subsets of X on which a measure y is
defined is called the domain of . Thus a measure p on X is a function
on some collection of subsets of X, called the domain of y, with values
in [0, o0].

2. o—algebras

Let X be a nonempty set and let P(X) denote its power set, i.e. the
set of all subsets of X.

Definition. An algebra A of subsets of X is a nonempty collection
of subsets of X, i.e. A C P(X), which is closed under finite unions
and under complements, i.e. if {E;}7 C A, then U'E; € A, and if
E € A, then E°:= X\E € A.

Observe that an algebra is also closed under finite intersections.
This follows from the relation NE; = (UEY). Moreover, the whole
space X and the empty set ¢ are always contained in an algebra. This
follows from F U E¢ = X and X° = ¢.

Definition. A o-algebra is an algebra which is closed under count-
able unions, i.e. if {E;};° C A, then UPE; € A.

Examples. Both P(X) and {¢, X} are o—algebras.

Often, o—algebras interesting to us are difficult to describe. Instead,
we show how to produce them, starting from easily imaginable sets such
as intervals and boxes (by a box in R", we understand a set of the form
{r e R": z; € I;, Vi = 1,... ,n} for some intervals [;, i.e. a box is a
product of n intervals: I} x --- x I,). Let A be a label set, and let A,,
a € A, be o-algebras.

Exercise. Show: if A, are o—algebras, then N,A, is a c—algebra.

Hence for any £ € P(X), there is a unique smallest o—algebra con-
taining £. We call this o-algebra M(&):

ME = [ A

A:o—algebra
ECA

We say that M(E) is generated by E.
Example. Denote by Bg. = M (&), where & is the set of all open



subsets of R™. Bg» is called the Borel-algebra of R™. Elements of Bgn
are called Borel sets. The same o—-algebra is obtained if instead of open
sets, we start with open boxes, or with closed sets or boxes, or semiopen
boxes, etc. We formulate this in the case n = 1:

Proposition. By is generated by each of the following:
(a) the open intervals: & = {(a,b) : a < b}
(b) the closed intervals: £ = {[a,b] : a < b}
(¢) the half-open intervals: €3 = {(a,b] : a < b} or &y = {[a,b) : a < b}.

Proof of (a) and (b). Since & C &, then M(&;) C M(&).

Exercise. Show this.
On the other hand, every open subset E of R is a countable union of
open intervals I;: E = Ul € M(&). Hence M(&) C M(&:), so
M(E) = M(&).

Now we show (b) by proving M(&;) = M(E;). Take any open
interval (a,b) € €. We have (a,b) = U [a + 1/n,b— 1/n] € M(&).
Therefore (a,b) € M(E:), so M(&E;) C M(E;). To prove the converse

inclusion, take any closed interval [a,b] € & = [a,b] = N2, (a —
1/n,b+1/n) € M(&) = [a,b] € M(&) = M(&) C M(&) =
M(&) = M(&,). |

3. Measures

Let X be a nonempty set, M a o-algebra of subsets from X (we say
X is equipped with M).

Definition. A measure u is a function on M with values in [0, 00|,
s.t. the following hold:

(a) u(¢) =0,
(b) if {E;}5° are disjoint subsets from M, then u(ULE;) = >0 u(E;).

Terminology. e Property (b) is called countable additivity.
e A function p: M — [0, 00] which satisfies (a) and the condition

(b°) if {E;} are disjoint subsets from M, then u(UTE;) = Y7 w(E;),



is called a finitely additive measure. Of course, any measure is finitely
additive.

e A measurable space is a pair (X, M), where X is a nonempty set and
M is a o-algebra of subsets of X (M C P(X)).

e A measure space is a triple (X, M, p), where (X, M) is a measurable
space, and y is a measure on M.

e 1 is a finite measure if p(X) < oo, p is o—finite if X = U°E;, where
E; C M, and u(E;) < oo.

e Elements of M are called measurable sets.

e F' € M such that p(E) =0 is called a null set.

e If some property holds Vx € X\ E, where p(E) = 0, then we say this
property holds almost everywhere, written a.e.

Shorthand. Whenever M is understood, we say p is defined on X,
e.g. by “u is defined on R™”, we mean p is defined on Bg.. If M and
1 are understood, we call X a measure space.

Theorem. Let (X, M, ) be a measure space. Then
(a) (monotonicity) E C F — u(E) < u(F),
(b) (subadditivity) p(U°E;) < 37 p(E;),
(c) (continuity from below) E; 1 E = limj_,o p(E;) = p(E),
(d) (continuity from above) E; | E = lim;_,o, pu(E;) = p(E).

We used the notation E; + £ < E, C Ey C ---, and UPE; = E.
Analogously E; | E < E; D E; D --+, and N°E; = E.

Proof of (a). If E C F, then the sets E and F\FE are disjoint and
EU(F\E) = F. So by Property (b) in the definition of a measure, and
since u(G) > 0 VG € M, we get u(F) = p(E) + u(F\E) > p(E). 1

Exercise. Prove (b).

4. Borel measures on R

In this section, we discuss a construction of measures on R". To fix the
ideas, we consider only the case n = 1.



Definition. A function F' : R — R is called right continuous at a
iff limg, F'(x) = F(a). If F is right continuous at every point in an
open set, then we say that F' is right continuous in that set.

Similarly, we define left continuous functions.

Consider the Borel o-algebra, Bg, on R. We showed in Section 1.2
that it is generated by either one of the three: open, closed or semiopen
intervals. Let F': R — R be an increasing right continuous function on
R. We want to define a measure y on Bg sucht that

u((a, b)) = F(b) — F(a), (4.1)
p(U(aj b)) = > (F(b) — Flay)), (4.2)

1

where a; < by < ag < by < ---. The first question we ask is whether
there is a measure p on Bg that satisfies (4.1) and (4.2). One can show
that such a measure does exist. This follows from a general result on
the completion of premeasures. We do not explain this result here, but
refer the reader to [F], Theorem 1.14 and Proposition 1.15. The next
question is uniqueness of such a measure. The answer is given in the
following

Theorem. Let F': R — R be an increasing right continuous func-
tion. Then there is a unique measure j1 = pp on By such that pup((a,b]) =
F(b) — F(a), for any a,b € R. If G is another such function, then
wr = pg iff F'— G is constant. Conversely, if 1 is a measure on Br
which s finite on all bounded Borel sets, then u = pp, where F is
the increasing right continuous function defined by F(x) = p((0,z]) if
x>0, F(0)=0, and F(z) = —u((z,0]) if x < 0.

Exercise. Check (4.1) for F'(z) defined as in the above theorem.
For a proof of the theorem, see [F], Theorem 1.16.

Lebesgue measure. Now we define the simplest and most im-
portant measure on By, the Lebesgue measure m:

m = up for F(z)=x. (4.3)



Important properties of m are collected in the following

Theorem. If E € Bg, andr,s € R, then E+s € Bg, rE € R, and
m(E + s) = m(E), m(rE) = |r/m(E).

We used the notation £+ s := {z+s:x € E} and rE = {rz :
xz € E}. The theorem says that the Lebesgue measure is translation,
dilation and reflection invariant.

Proof.  The collection £ of all open intervals is invariant under
translation, dilation and reflection. Since By is generated by &, then
Bg must also be invariant under those operations. To prove the second
part of the theorem, we define m(E) = m(E+s) and m,(E) = m(rE).

Exercise. Show that (i) ms; and m, are measures, (ii) on &, mg
coincides with m and m, with |r|m.

By the unique extension theorem (see [F|, Theorem 1.14), m; agrees
with m, and m, agrees with |r|m on the whole Bg. [

Exercise. Show that m(E) = 0 if E = {z} (singleton), and if E
is a countable set (E = {z;}7°).

There are however null sets (with respect to Lebesgue measure) hav-
ing the cardinality of the continuum! (F is said to have the cardinality
of the continuum iff there is a bijection f : E — R.) A standard exam-
ple of such a set is the Cantor set C. The Cantor set is obtained using
the following procedure. Remove from the set [0, 1] the open middle
third (1/3,2/3), then remove from each of the two remaining intervals
their open middle thirds (1/9,2/9) and (7/9,8/9), respectively, and so
forth. One can show that

(a) m(C) =

(b) C has the cardinality of the continuum,

(¢) C has no isolated points,

(d) for any z,y € C with < y thereisa z ¢ C s.t. <z <y,
thus C is totally disconnected (and nowhere dense).

In a similar way, we can construct Borel and Lebesgue measures on
Bgn for n > 1. Another way of defining the Lebesgue measure m on
Bgr is given by m znl] where m; is the Lebesgue measure on R.

We have set up the basics of measure theory, and will return to this



topic in the last chapter, when we consider probability theory. In the
next section, we use measure theory to construct a theory of integration.

5. Integration: Measurable functions

First, we introduce a set of functions which can be in principle inte-
grated with respect to measures defined on some o-algebra M.

Let X and Y be two nonempty sets. Consider a function (also
called map or mapping) f : X — Y. Such a function induces a map

f71:P(Y) = P(X), defined for E € P(Y) by
fHE)={zeX: f(z) € E}

Exercise. Show f~! commutes with unions, intersections and
complements, i.e. fTY(EUF) = fY{E)UfY(F), ff'(ENF) =
FUE) O f(F), and f(B9) = (f 1 (B))"

The properties above imply that if A is a o—algebra on Y, then
fHWN) is a o—algebra on X, with the obvious notation f~*(N) :=
{fYF): FeN}.

Definition. Given two measurable spaces (X, M) and (Y,N), we
say a map [ : X =Y is (M, N)-measurable (or simply measurable,
if M and N are understood), iff f~*(E) € M for every E € N (i.e.
Y N) T M).

Exercise. Show that the composition of measurable functions is
measurable, i.e. if f: X — YV is (M, N)-measurable, and g : Y — Z
is (N, O)-measurable, then go f : X — Z is (M, O)-measurable.

Proposition. If N is generated by &, then f is (M, N')-measurable
iff f7Y(E) e M,VE € £.

Proof. (=) If f is (M, N)-measurable, then f~'(F) € M, VE € N,
hence f~'(F) € M VE € &, since £ C M.

(<) Let Ny :={E € P(Y) : f~'(E) € M}. Then A, is a oc-algebra
of subsets in Y, and & C Ny. Now since by definition, A is the smallest
o—algebra containing &, then N' C Nj. Therefore we have VE € N:
fYE) e M, ie. fis (M, N)-measurable. |



Corollary. If X and Y are metric spaces (e.g. X = R™ and
Y = R™), then every continuous function f : X — Y is (Bx, By)-
measurable.

Proof. f is continuous iff f~'(U) is open in X for every U open
in Y. Hence the statement follows from the proposition above and the
facts that Bx and By are generated by open sets. |

If (Y,N) = (R™, Bgm), then f is called M-measurable (or again,
just measurable). If also (X, M) = (R", Bgn), then f is called Borel-
measurable.

Theorem. If f,g: X — R are M-measurable, then so are f + g,
fg, max(f,g), and min(f, g).

Proof. Define new functions F' : X — R? and ¢ : R? — R by
F(z) = (f(z),9(x)), and ¢(r,s) =r+s. Then f+ g = o F. Since
© is continuous, it is measurable. We now show that F' is measurable.
We know that the Borel o-algebra Bg: is generated by open rectan-
gles R = (a,b) x (¢,d). By the proposition above, it is enough to
show that F~!(R) € M, for any such open rectangle. Now F~}(R) =
I (a,b)) N g7*((c,d)), but since f~*((a,b)), g7 ((c,d)) € M, we
have that F~'(R) € M. Therefore, F is measurable, and hence so
is po F' = f 4+ g, since the composition of two measurable functions is
measurable.

To prove that fg is measurable, proceed in the same way, taking
now o(r, s) = rs.

To prove that h := max(f, g) is measurable, notice that h=!((a, 0c]) =
fY(a,0]) U g *((a,o0]). Since f and g are both measurable, then
((a,]), g7 ((a,0]) € M, and therefore h='((a,]) € M. But
{(a,] : @ € R} generates Bg, so we conclude that h is measurable.

To prove that min(f, g) is measurable, repeat the last argument,
replacing (a, 0o] by [—o00, a). [

Theorem. If {f;} is a sequence of R-valued measurable functions
on (X, M), then the functions sup; f;(z), inf; f;(z), limsup,_, ., f;(z)
and liminf; . f;(z) are all measurable. Moreover, if lim; ., f;j(x)
exists, then it is also measurable.



We used the following definitions:

limsup f; = inf (sup fj) <: lim (sup fj)) ,

j—00 k>1 \ j>k k—oo >k

liminf f; = sup (inf f3> <: lim (inf f])) .

j—00 >1 \i>k k—00 i>k

The proof of this theorem is given in [F], Proposition 2.7 and Corollary
2.8.

The characteristic function or indicator function xg of aset F C X
is defined by

1 ifzel
XE(‘T)_{ 0 ifze E° (5-1)

A simple function is a function which is a finite linear combination of
characteristic functions of sets in M (i.e. measurable sets). Note that
if f is a simple function, then the range of f consists of a finitely many
numbers: f =31 a;xg, = Ranf = {a;}}.

Exercise. Prove that the converse is also true: Ranf = {a;}7 = f
is simple.

In what follows, we assume that in the representation f = Y7 a; XE;
all the a;’s are distinct (otherwise we combine the corresponding terms
into one term). We call such a representation the standard representa-
tion of the simple function in question.

Clearly, if f and g are simple functions, then so are f + g, af and
fg. Tt is possible to show that any measurable function can be approx-
imated by simple functions in the following sense:

Theorem. For any measurable function f, there is a increasing se-
quence {@;} of simple functions, ¢1 < g < -+ < f, such that p; — f
pointwise, and uniformly on any bounded set.

Proof. In order to be more explicit, we assume that the range of f
lies in the interval I = [0,1]. For any n = 0,1,2,..., we partition /
into subintervals, IJ@) =27 (+1)2™"),j=0,1,...,2" — 1. Define
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On = Z?igle_"XE(n), where we defined the sets E](-") = f‘l(lj(-")).
By construction, we have On < pe1 < f for any n. Furthermore, for
any z € X,y = f(z) € [0,1]. Let y, = j, 27" be the diadic integer
with 0 < j, < 2" —1st. y € IJ(:). Then y, — y as n — oco. On

the other hand, since z € f‘l(I](:)), we have ¢, (x) = y. Therefore,
on(x) = f(x). [

Consequently, simple functions will be building blocks of the theory
of integration.

6. Integration of nonnegative functions

Consider a measure space (X, M, ) with characteristic functions xg
on it (see definition (5.1)). We define the integral first for characteristic
functions, and then we extend the notion of integral to more compli-
cated functions.

Exercise. Show that F € M & g is measurable.
The integral of yg with respect to the measure y is defined as

/xEdu 1= p(E). (6.1)

Notice that we allow u(E) = oco. If p is a probability measure, then
the integral (6.1) is the probability that the event E occurs. Definition
(6.1) is readily extended by linearity to simple functions: if ¢ is a simple
function with standard representation ¢ = > a;xg;, then we define
the integral of ¢ (over X) with respect to p as

mn

[ dui= 3" au(E). (6.2)

1

Note again that we allow [ ¢du = oco. If the measure y is understood,
then we simply write [ ¢ for the left hand side of (6.2). We want now
to extend the notion of integral to all nonnegative measurable functions
on X (i.e. measurable functions from X to [0,00)). Let us denote the
set of all nonnegative measurable functions by L*. Remember that any
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f € L* can be approximated by a monotonically increasing sequence
of simple functions (see the last theorem of Section 5). For f € LT, it
is thus natural to define

/fd,u = sup {/gpd,u 0< < f, pis simple} . (6.3)

This definition needs some justification. Namely, we have to show that
if f is simple, definition (6.3) coincides with definition (6.2). This can
be done using the following

Proposition. If ¢, f are simple functions, and o < f, then
J o < [f. (The integrals are understood in the sense of (6.2))

Proof. Represent ¢ and f in their standard form: ¢ = Zj ajXm;
and f =), byxr,. Since ¢ < f, then

Now [ = Y a;u(E;) = 32, ;aju(E; N Fy), where we used Ej; =
E;NX = E;N (UgFy) = Ug(E; N Fy), and the fact that E; N Fy is

disjoint from E; N Fy, if k # k' (that’s why we put ¢ and f in their
standard form!). We get thus from (6.4)

/go < Zbkﬂ'(EjﬂFk)
< 2bku(Uj(Ej N F))
< ZbkM(Fk)

= /f.l

Corollary. If f is simple, then (6.2) and (6.3) are equivalent.

Proof. Due to the proposition above, the supremum on the r.h.s.
of (6.3) is reached for ¢ = f. [
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The next result shows how we can approximate integrals of mea-
surable functions by integrals of simple functions. For a proof, consult
[F], Theorem 2.14.

Theorem (monotone convergence, MCT). If {f,} C L*, f, <
frt1 V0, im0 fr = f (pointwise in Ry ), then [ f =lim, e [ fa.

Remark. Since any f € L% can be approximated by a mono-
tonically nondecreasing sequence of simple functions {p,} C LT, we
get from the MCT: [ f = lim, [ ¢,. Notice also that the monotonic-
ity condition cannot be removed as shows the following example: let
Jn = X(n;n+1) (the characteristic function of the interval (n,n+1). Then
fn — 0 (pointwise), but on the other hand, [ f, =1, Vn!

Some basic properties of the integral are given by:
Theorem. Let f,g € L. Then

(a) [cf=c[f, VceR,

®) [(f+9)=[f+]g

(c) ifg< [, then [g <[],

(d) the map A— [, f is a measure on M.

Exercise. Prove (a)-(d) for simple functions, then use this to
prove (a)—(c) for functions in L™ (hint: use the MCT for the second
part).

Using these basic properites of the integral, we are now ready to
prove some more refined results.

Theorem. If {f,} is a finite or infinite sequence in L™ and f =

D1 fu, then [ f =370 [ fa

Proof. By induction, the assertion holds clearly for any finite sum:
[V fo = 3oV [ fu. If the sequence is infinite, then we take the
limit N — co. Notice that f(™) := Zfl fn 1s an increasing sequence,
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hence f) — S f, (pointwise in R,). Therefore, by the MCT,
limpy o0 f f(N) = f limy 00 f(N) u

Theorem. If f € LT, then [ f=0< f =0 a.e.

Exercise. Prove this theorem for f € L™, f simple. (A full proof
is given in [F], Proposition 2.16)

Corollary. If {f,} C L, f € LT, fi < for1 VYn, lim f, = f a.e.,
then [ f =lim [ f,.

Proof. Let E be s.t. p(E°) = 0 and s.t. f, increases to f
for all x € E. So we have f = fxg ae. and f, = f.xg a.e.,
and f,xg T fxe (pointwise), hence by the MCT [f = [ fxr =
[lim foxp =lm [ foxe =lim [ f,. |

Fatou’s Lemma. If {f,} is any sequence in L™, then [ liminf f, <
liminf [ f,.

The proof is given in [F], 2.18.

Corollary. If {f,} € L*, f € L*, and f, — f a.e., then
[ f <liminf [ f,.

For a proof, see [F], 2.19.

7. Integration of complex functions

In this section, we extend the definition of the integral of nonnegative
functions to the integral of real functions and then of complex func-
tions. Let as before (X, M, ) be a fixed measure space. If f is a
real measurable function on X, then we can write f = f, — f_, where

fi(z) :== max(f(z),0), and f_(z) := max(—f(z),0). Both f, and f_
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are nonnegative and measurable, so [ fy is defined. We now define

[r=[r-[s (7.1)

If f is a complex valued measurable function on X, then Ref and Im f
are real valued measurable functions on X, and we define

/f::/Ref—Hj/Imf. (7.2)

We say that f is integrable (on E € M) iff [ |f] < oo ([, |f] < o0).

Theorem. The set of real (complex) integrable functions on X
forms a real (complex) vector space.

Proof. To show that this set is a vector space, we have to show that
if f and g are integrable, then so are ¢f (¢ € R or C) and f + g. But
this is clear from the inequalities |cf| < |c||f] and |f + g| < |f] + |g]-
Remember that if g < f, then [¢ < [ f. [

We denote the space mentioned in the theorem by either of the fol-
lowing symbols: L'(X, u), L*(X), L'(u) or simply L', depending on
what we want to emphasize.

Exercise. Prove that if f € L', then | [ f| < [|f].

Now we formulate a basic convergence theorem:

Theorem (dominated convergence, DCT). Let {f,} C L' be
a sequence of functions s.t. f, — f a.e., and s.t. |fa| < g Vn, for some
nonnegative g € L'. Then f € L' and [ f, — [ f.

Proof. Since | f,(z)| < g(x) a.e., then |f(z)| < g(z) a.e., but g € L',
so f e L.

Let us assume f,, (and hence f) are real. In the complex case, just
do the argument that follows for the real and imaginary part sepa-
rately. We have g = f, > 0 and apply Fatou’s lemma: liminf [(g £
fn) > [liminf(g £+ f,) = [(¢9 = f). Therefore liminf [ £f, > [£f.
The plus sign yields liminf [ f, > [ f, and the minus sign yields
liminf [(—f,) = —limsup [ f, > — [ f. The combination of these
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two estimates gives [ f < liminf [ f, < limsup [ f, < [ f, but this

means liminf [ f, =limsup [ f, =lm [ f, = [ f. [
Using the DCT, one can show (see e.g. [F], 2.25-2.27):

(a) If {fu} C L' and >_7° [ |fu] < oo, then >_7° f,, converges a.e. to
an L' function, and Y 7° [ fr = [ D7 fa-

(b) If f € L', then there is a sequence of simple functions {¢,} C L'
st. [on— [ [

(c) Suppose f(z,t) is in L'(du(z)), Vt € [, 8], | f(z,t)| < g(z), uni-
formly in ¢, and g € L1 If also limy_yy, f(z,t) = f(=,t) Vz, then

hmt_,toff:vtdu = [ f(=z, to)dp(z).

(d) If f(x,t) is in L' (dp()), ¥t € [o, B, |57 (. 1)]

g(x), unlformly
in ¢ for some g € L', thenatffxtdu oL (

<
[ Sz, t)dp(x)

The integral with respect to the Lebesgue measure is called the
Lebesgue integral. One can show that if f is Riemann integrable on a
finite interval [a,b], then f is Lebesgue integrable on [a,b], and both
integrals coincide. The Lebesgue integral is denoted by either [ f(z)dx
J fdz or [ f, depending on what we want to display.

8. The Lebesgue integral on R"

Two key properties of the Lebesgue integral are
(a) translation invariance: [ f(z+ h)dz = [ f(z)dz, Vh € R",
(b) rotation invariance: [ f(Rz)dz = [ f(z)dz, VR € O(n).

Here, O(n) denotes the group of rotations of vectors in R". E.g. for
n = 2, O(2) consists of rotations Ry by an angle 0:

x1 \ _ [ cosf —sind T
R9<$2)_(Sin0 cos 0 ) <x2> (8.1)
Rotations are real n x n matrices R which satisfy RTR = RRT = I,
where R” is the transpose of R, and I is the n x n unity matrix. Since
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det R = det R”, we have det R = +1. We identify matrices with maps
in the usual way as (Rx)r = Y, Rui-

Exercise. Show R"R = RR" = I for R given in (8.1).
Sketch of proof of (a). We prove it first for characteristic functions xz.
From xg(z + h) = xg_n(z) (where E —h={z—h:z € E}), we get

[ xeta+ 0o = [ xe-a@)ds =m(E = b) = m(E) = [ xelo)ds,

thus (a) holds for characteristic functions, and hence for simple func-

tions ¢
/ oz + h)dz = / o) da.

Approximating any nonnegative measurable function by simple func-
tions and using the DCT, we prove (a) for nonnegative measurable
functions, then for real and complex valued functions.

Exercise. Fill in the details of this proof.
The proof of (b) follows from the formula:

/f dm—\detT|/f (Tz)d

where T is an n X n matrix with det 7" # 0. This formula as well as its
generalization given below are known from multivariable calculus. W
The formula above is a special case of the following result:

/ fx dx—/f )| det D,G|dz, (8.2)

where G : Q — R” is a C''—diffeomorphism and D,G is the linear map
of R™ given by the matrix

0G,
DwG =\ >3 |-
( a.Tl )
where G(z) = (Gi(z),...,Gp(z)). For a proof of (8.2), consult e.g.
[F], Theorem 2.43 and 2.47. Let us finally recall the definition of a C''—

diffeomorphism. A function G : Q — R" is called a C'-diffeomorphism
iff
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(i) G is injective (meaning G(z1) = G(x2) = =1 = x2),

(ii) D,G is invertible for all z € Q.

9. LP—spaces

A great part of this course is devoted to the study of properties of
maps of functions. Such maps are defined on spaces of functions. In
this section, we introduce the simplest and most commonly used spaces
of functions. Consider a fixed measure space (X, M, ). We define the
LP—space for 1 < p < oo:

LP(X,u) :={f: X — C|f is measurable, and/ |f|Pdu < oo}. (9.1)

In other words, f € LP(X, u) < |f|P € L' (X, u). We also define the
L*°— space:

L*(X,pn) :={f : X — C|f is measurable, and esssup|f| < oo}.
(9.2)

Here, recall that esssup|f|:= inf{sup|g|: g = f a.e.}. We often use
the following abbreviations for LP(X, pu): LP(X), LP(u), or simply LP,
depending on which part of the measure space (X, M, u) we care to
display. I?, 1 < p < oo is a vector space. For p = oo, this is obvious,
and for 1 < p < o0, it easily follows from the inequality

If+glP <27 (If P+ 1gl") - (9.3)
The latter inequality is obtained as follows: |f+g[P < (2 max(|f], |g]))? <
w (7P + [gl?).
We define for every f € LP:

= { U 1< <o 0.

esssup|f| if p = 0.

Clearly, [, = 0 ¢ f = 0 ae, and [leflly = |e]||fl}p Ve € C. We
have also the triangle inequality ||f + gll, < ||flp + ||g]|p, which we
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prove later.

From these properties, it follows that the map f — || f||, is a norm.
A vector space equipped with a norm is called a normed vector space.
Hence L? is a normed vector space, for every 1 < p < oco. Having
defined a norm, we can define the notion of (norm-)convergence as fol-
lows. Let {f,} C L? be a sequence. We say that f, converges to f
(e L?), iff || fn — fll, = 0. We write f, — f.

A normed vector space B is called complete iff every Cauchy se-
quence converges, i.e. if {f,} C B is a Cauchy sequence (meaning
||fo — fm|l — 0, as m,n — oo, where || - || denotes the norm of B)
then {f,} converges (i.e. there is a f € B such that ||f, — f|| — 0,
as n — 00). Remark that the converse is always true: any conver-
gent sequence is necessarily a Cauchy sequence. Completeness is a very
important property of a normed vector space, e.g. when one solves
equations. Indeed, often one solves equations by successive approxima-
tions, and one wants to know that such approximate solutions converge
(to the actual solution). A complete normed vector space is called a
Banach space.

Theorem. For 1 < p < oo, L? is a Banach space. Furthermore,
simple functions are dense in LP (i.e. for every f € LP, there is a se-
quence {@n} of simple functions such that ||f — pnll, = 0, as n — 00).

The proof is given in [F], Theorem 6.6, Proposition 6.7 and Theorem
6.8. The second statement of the theorem can be derived from the
construction in Section 5. We give it here as an

Exercise. Let ¢, be the simple function constructed in the proof
at the end of Section 5, so that ¢, T f p.w. Show that ¢, — f in
L,, provided f € LP. Hint: consider first the case f > 0 and use that
If = eal” = 0w, [f —@ulP < 22(|f| + lealP) < 2°7!|f[P and the
Dominated Convergence Theorem.

There are two basic inequalities:

1. Holder’s inequality: let 1 < p < oo, pl4+¢7 ' =7r7! <1, and
felP, gelLithen fge L™ and |[fgll, < [[fllpllglla,

2. Minkowski’s inequality: let 1 < p < oo and f,g € LP, then
L+ gllp < [1f[lp + llgllp-
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We prove Hélder’s inequality. A proof of Minkowski’s inequality can
be found in [F], 6.5. Observe first that it suffices to prove the Hélder in-
equality for the case r = 1 (this follows easily from || fg||, = ([ |fg|")'/" =
(f1fI"lgI")"/r, and e.g. calling f" = f, and g" = g1). Next notice that
the result is trivial if ||f||, = 0 or ||g||, = O (for then f = 0 a.e. or
g =0a.e.),orif||f||, = oo or ||g||, = co. If neither of these cases hold,
then we can define

p q
1
a:‘f(x) , b:‘g(x) and A= —.
[ flp gllq p
Below, we will show that for any a,b > 0, and 0 < A < 1:
a*b'™ < Aa+ (1 - \)b. (9.5)

Applying this to our case, we get

F@e@)| _ [f@P 9@
ellole = 2  1FP 2l

Integrating this inequality, and using p~! + ¢~! = 1, we arrive at
Holder’s inequality. We finish the proof by showing (9.5). We can
assume b # 0, so we can divide (9.5) by b on both sides. (9.5) is then
equivalent to the inequality (where t = a/b)

= X—1-X<0.

Since 0 < A < 1, the maximum of the function on the l.h.s. is reached
at t = 1, and is equal to 0. [ |

Remark. Inequality (9.5) is a special case of the very useful
Jensen’s inequality: let ¢ be a convex function on [a, b], and py positive
numbers satisfying > 7 pr, = 1. We can think about py as probabilities.
Then o(> ") pite) < Y7 prp(ty), for all ¢y, € [a,b]. This inequality in-
deed implies (9.5) for p(t) = €.

Exercise. Let g € L*°. Show that the operator T : LP — LP de-
fined by f — Tf = g¢f (multiplication operator) satisfies ||Tf||, <
119]]0o| | f|p- In other words, T : L? — L” is bounded.

Exercise. Prove Jensen’s inequality.
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The L? space is special: it has an additional structure - the inner
product

(f.9)= / fa
which allows, in addition to sizes and distances, to measure angles, e.g.

fLge(fg9=0.
Recall that the map (f, g) — (f, g) € C is called an inner product iff

e (f,g)islinear in the second argument, i.e. {f, ag + Bh) = a(f, g)+
B{f, h), for any «, 8 € C,

e (f,g) = (g, f) (this together with the above implies that (f, g)
is anti-linear in the first argument: (af + Bh,g) = @(f,g) +

B (h,g)),
e (f,f) > 0 with equality iff f = 0.

We remark that sometimes, the scalar product is taken to be linear in
the first argument and anti-linear in the second one.
An inner product defines a norm according to

11l = v/ {f, £)- (9.6)

Exercise. Check that (9.6) defines a norm. (Hint: to prove the tri-
angle inequality, use the Schwartz inequality | (f, g) | < ||f]| ||g]| which,
in turn, follows from the obvious relation

0 < Jlu—vlf* = (uEv,utv) = [lul* +|v]* £ (u,v) £ (v,u)

applied to u = =f/[|f] and v = g/[lg]l and to u = +if/||f] and
v = g/||lg|]|- Observe that for L? the Schwartz inequality is a special
case of the Holder inequality: take p=¢ =2 and r = 1.)

Thus a space with an inner product, or an inner product space, is
also a normed space. A complete inner product space is called a Hilbert
space. By definition, a Hilbert space is also a Banach space.



Chapter II. Transforms and
Distributions

10. Convolution

We consider L? spaces for the Lebesgue measure m (dm = dx): LP(R")
LP(R™ dx). We use the following notaion: for a multi-index a@ =
(a1, ..., ), where the entries oy, . . . , o, are nonnegative integers. Let
us define

n
la| = g aj, ol = Ha]‘, 0% = H@"‘J ¢ = Hx;xj
1 1

For two (Lebesgue—)measurable functions f and g, we define their con-
volution f x g as the measurable function given by:

(F+9)@) = [ 7= gty

By Hoélder’s inequality, if f € L? and g € L? with 1/p+ 1/q = 1, then
the integral on the r.h.s. is well defined.

Proposition. The convolution has the following properites:
(a) fxg=g=xf,
(b) (fxg)xh=[x*(gxh),

(c) if f and g are |a|-times differentiable, then 0*(fxg) = (0“f)*g =
[+ (0%).

21
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Exercise. Prove this proposition.
The basic inequality for the convolution is

Young’s inequality. Let 1 < p,q,r < occ andp ' +q ' =1+7r"1.

If feLP and g € LY, then fxg e L™, and ||f = g||r < ||fl|pl|9llq-

Proof. For r = oo, the proof follows from Hoélder’s inequality. For
r =1, it follows from a change of variables (notice r =1 = p=¢ = 1):

1f el = H [ 5= vatias|
< [176= oy

- / 1£111l9(w)|dy
= 1flllglh

We used the fact that the Lebesgue measure is translation invariant.
The proof for 1 < r < oo follows by the Riesz—Thorin interpolation
theorem [F], §6.27. [

11. Approximation of identity
Let ¢ € L'(R") such that [ ¢ = 1. Define

pi(z) =1"p(x/1). (11.1)
Then we have [, = [¢ =1 VL.

Theorem. Let ¢ as in (11.1), and f € LP. Then ¢y f — [ as
t — 0. The convergence is in LP if 1 < p < oo, and uniformly on
compact sets if p = oo.

A proof is given in [F|, Theorem 8.14.
To demonstrate the ideas involved in proving this theorem, we prove
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that for any function f € C! which, together with its first derivatives,
is bounded, we have

orx f— f, ast— 0,

where the convergence is in the supremum (i.e. L*) norm. Indeed,
since [ ¢y =1, we obtain

(00x £) (@)~ 10) = [ e =) (1)~ F@) .
Splitting the integral on the r.h.s. into integrals over the domains
{yeR": [z —y[<Vt} and {yeR": [z —y| > Vi},
and estimating the integrand in the first integral by

sup | f(y) = f(2)lee(y) < sup [VF()[VEge(y),

lz—y|<Vi

and in the second integral by

| _su|1<>\/£ f(') = f(@)]pe(y) < s1y1,p 1F W) ee(y),

we arrive at

(e x f)(z) = fl2)] < s;llp|Vf(y')|\/IE Y |<ﬁ90t($ —y)d"y

+2sup [ f(y)] oi(x —y)d"y.
v ly—z| >Vt

Now changing the variables of integration as z = x — y, we find for the
integrals on the r.h.s.

/ pr(z)d"z < /(Pt: 1
|2|<vE

/ oi(2)d"z = / i (2d"2,
|z|>v/¢ |2"|>t—1/2
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where in the second integral, we have changed the variables a second
time as 2’ = z/t, and have used that ¢;(z) =t "p(z/t). This gives

(oo * f) (@) = f2)] < Sup V)IvVE+ 281;1) £ (y)] p(2)d"z,

2|>t=1/2

and the r.h.s. converges to zero as t — 0. |

Observe that if ¢ is smooth, then so is ¢; * f, whatever rough f is
(this follows from c¢) of the last proposition). Thus in this case, ¢; * f
gives a smooth approximation of f. The operator f — ; * f is called
an approrimation of identity.

12. Fourier transform

In this section, we describe one of the most powerful tools in analysis
— the Fourier transform. This transform allows us to analyze a fine
structure of functions and to solve differential equations. The Fourier
transform takes functions of time to functions of frequencies, functions
of coordinates to functions of momenta, and vice versa.

Initially, we define the Fourier transform on the Schwartz space
S(R") = S:

S ={f € C®R") :<x>" |0*f(z)| is bounded VN and Va}, (12.1)

where <z>= (1 + [z[)"/2. On S, we define the Fourier transform
F:f— fby

F(k) = (2m) 2 / f@)e ™ dz. (12.2)

The next theorem gives the important example of the Fourier transform
- the Fourier transform of a Gaussian:

Theorem. Let A be a n X n matriz s.t. ReA = (A + A*)/2 is
positive definite (i.e. x-ReAz >0 if x #0). Then we have

F e ¥4 oy (2r) M2 (det A) M2 b ATk (12.3)
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Proof. We prove the theorem only for positive definite matrices.
If A is positive definite (i.e. if x - Az > 0 for z # 0), then there is
an orthogonal matrix U (i.e. U is real and UUT = UTU = id) s.t.
A :=UTAU is diagonal, say A = diag(\,, ... ,A,). Letting 2 = Uy and
noticing that z - Az = y - UT AUy, and that det U = 1, we get

n
. _y Ay ik N2 ik
/e vATe Zk‘”d:U:/e vAY ik ydi‘/:H/e Y95 ¥ dy
1

where k' = Uk, and we have used k- Uy = U"k - .
Exercise. Show that for n =1, F : e i (21)~1/2e7+*/A,
The last two relations imply the desired statement. |
The function e ®4% is called a Gaussian. It is one of the most
common functions in applications. There is another important function
whose Fourier transform can be explicitely computed:

Crolk|™" ifa#n,
Conlnlk]  ifa=n.

F:lz|™ { (12.4)

The coeflicients are given for o = 2 by

_ [ ((2=n)ou_1)™" forn#2,
Cnz = { Opn_1=(2m)"t  forn=2, (12.5)

where o, is the volume of the n—dimensional unit spere S™ = {z €
R™*! : |z| = 1}. One can easily deduce formula (12.4) modulo the con-
stants (12.5). Indeed, since |z|~* is rotationally invariant, then so is
its Fourier transform. Also, since |z|~® is homogeneous of degree —a,
then its Fourier transform is homogeneous of degree —n + «. Hence
(12.4) follows. Though it is easy to compute the Fourier transform of
|z|~, it is not easy to justify it. Indeed, the function |z|~® is rather
singular and definitely does not belong to S(R™).

Exercise. For n = 1, compute the Fourier transform of the char-
acteristic function x(_q,q) (), using definition (12.2).

Define also

F(@) = (2m) "2 / F(R)ei=* k. (12.6)
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Some key properties of the Fourier transform are collected in the fol-
lowing

Theorem. Assume f,g € S(R"). Then we have:
(a) (=i0)*f — k°f, and z°f > (=i0)*f,
() [ fa= ] fa,
(c) f=TF,
(d) [ fa=[ fa,
(¢) fg— (2m) "2f % g, and f x g — (2m)"/?fg,
() (f)y=rf=()

Properties (a) - (e) hold (with signs changed in (a)) also when" is re-
placed by .

Proof. We give a formal proof. Integrating by parts, we compute

—i(0g, f)"(k) = (2m) /2 /(—i)amjf(ac)eik"”dac

= (2n)"? / F(x)idy, e~ **dx
= kif(k)-

Exercise. Prove the remaining relations in (a), and prove prop-
erties (b) and (c) (formally, without justification of the interchange of
the order of integration etc.).

Statement (d) is called the Plancherel Theorem. The adjoint F* of
the Fourier transform is defined by (F*u,v) = (u, Fv) for all u,v €
S(R™), where (-,-) is the standard inner product in L?(R™). Then (b)
and the relation f = f show that (f, Fg) = [fa=[Ffg=[Ffg so
f = F*f. This together with (f) implies that FF* = id = F*F on S,
which is a restatement of the Plancherel theorem.
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Now we derive property (e) from properties (b) and (f). Indeed, set
ex(7) := e . Using that (exg) (k') = §(k — k'), we obtain

oy = Cr)" [eg () = 0" [ (@)
= n) 2 [ g K)FWY = )2+ (),
where we used (f) in the first equality and (b) (with “replaced by ") in

the second one.
The proof of (f) is more subtle. We use an approximation of unity

A

() = t7"p(z/t) and compute ¢ * (f)" Let us define ¢*(y) := p(z —
y). Using property (b), we find

our(fy= [ Grav= [eprfay= [y san
Exercise. Show that

(7))

Il
—~
AS
~—
N—

B
Il
3
3
—
S
~
N
8
|
Ny
N~

Thus we have

A

prx (f)= (@) ) * f (12.7)
We can choose ¢ such that (¢) € L', and [(¢)(z)dz = 1. Indeed, take
e.g. o(z) = (4r) "2 =” and use the fact that ((e /*”)")" = e l#’,
With this in mind, we take the limit ¢ — 0 in (12.7) and use the
properties of the approximation of identity to get

A

orx (f) = (/) and ((@))exf—f ast—0
to obtain (f)V: f. Similaly one shows that (f)A: f. [ |

Corollary. F extends to a unitary operator on L?, i.e. to a bounded
operator satisfying F* = F~ L.

The Hausdorff-Young inequality. Let 1 < p < 2 and pltqgt=
1. Then ||fllg < |Ifllp- Consequently F extends to a bounded operator
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from LP to L9.

Proof.  Clearly, ||f|lse < ||f|l1. Moreover, we have shown that

|f]l2 = ||f]|2- For 1 < p < 2, the result follows from the Riesz-Thorin
theorem, [F], section 8.4. We omit the proof of the second statement. W

Theorem (Riemann-Lebesgue Lemma). Suppose that g is s.1.
g € L. Then

i) g is bounded and continuous,

i) g decays at infinity: limjg—0g(x) = 0.

Proof. i) The boundedness is easily seen: Vz,

[ =] < [ law) =gl

Next, we show continuity. Since § € L', then

lim (g(x + h) — g(z)) = }1113(1)/@“” (e™" —1) g(k)dk = 0,

h—0

l9(z)| =

by the dominated convergence theorem (|e?*"—1||g| < 2|g|). This shows
that g is continuous. Next, let us show 4i). Since the Schwartz space S
is dense in L', there is a sequence ¢; € S such that |[¢; — §[|1 — 0 as
j — 0. Thus

165 = glloo S/\%(/ﬂ) —g(k)[ = llp; = gl = 0,

which shows that ¢; — ¢ uniformly on R". But ¢; € S, so ¢; — 0 as
|z| — oo, and therefore g — 0 as |z| — oc. [

13. Application of the Fourier transform
to partial differential equations

Our goal in this section is to apply the Fourier transform in order to
solve elementary but very basic partial differential equations (PDE’s).
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The Poisson equation on R":
—Au = f, (13.1)

where u : R" — R is an unknown function, f : R® — R is a given
function, and A is the Laplace operator (the Laplacian):

n
0%u

Ay = —.
Y ax§

j=1

The Poisson equation first appeared in the problem of determining the
electric potential u(z), created by a given charge distribution p(z) =
f(z)/(4m). Since then, it came up in various fields of mathematics,
physics, engineering, chemistry, biology and economics.

In order to solve the Poisson equation, we apply the Fourier trans-
form to both sides of (13.1) to obtain:

[k[*a(k) = f (k).

This equation can be easily solved: @ = f /1k|2. We can now apply the
inverse Fourier transform to the last equality to get

u=gx*f, where g(k)= k|2 (13.2)
But the inverse Fourier transform of g(k) = |k| 2 is known:

v @2 =n)op] T e TM 2 i #£ 2
g($) = { [271_]—1 In |$| ifn =2,

where o, is the volume of the unit-sphere S, = {z € R*™ : |z| = 1}
in dimension n.
Explicitely, (13.2) can be written as

o) = e =non [ LY,

for n # 2, and similarly for n = 2. In particular, for n = 3, we have
the celebrated Newton formula

1 [ f)
u(r) = _E/ |x—y\dy'
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Of course, the functions appearing in the above derivation are not nec-
essarily from the Schwartz space & and therefore these manipulations
must be justified. We leave this as an exercise, while proceeding in a
similar fashion with other equations.

The heat equation on R":

ou
ot
where u : R? x R/ — R is an unknown function, and uy : R* — R
is a given initial condition. Problem (13.3) is called an initial value
problem. It first appeared in the theory of heat diffusion. In that
case, ug(x) is a given distribution of temperature in a body at time
t =0, and u(z,t) is the unknown temperature—distribution at time ¢.
Presently, this equation appears in various fields of science, including
mathematical modeling of stock markets.
As before, we apply the Fourier transform to (13.3) and solve the
resulting equation

=Au and uli—¢ = uy, (13.3)

ot

ot
to get 4 = e kg, Applying the inverse Fourier transform, and using
that (e F**)" = (4t)~"/2e~1="/(4) e obtain

= —|k|21l and 11|t:0 = 7:1,0

u = (dmt) e [P/ 4oy, (13.4)
Remark. Define ¢(z) = (2r)™"/?¢~'**/2 and ¢,(z) = s "¢(z/s). Then

U:@m*’U,O.

In particular, u — ug as t — 0, as it should be (c.f. the theorem after

(11.1)).

Formula (13.4) shows that the heat diffuses over the smaple with
velocity ~ /.

The Schrodinger equation on R":

0
Za—’f = —Aw and w‘t:O = wo. (135)
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This is also an initial value problem for the unknown function ¢ : R7? x
R,/ — C. Equation (13.5) describes the motion of a free quantum
particle. Proceeding as with the heat equation, we obtain

P = (dmit) "2l A0 g (13.6)

Observe that this formula can be obtained from (13.4) by performing
the substitution ¢t — ¢/i.
Exercise. Derive equation (13.6) using the Fourier transform.

The wave equation on R":

0%u

52 = Au and wulimg =uy and Ouuli—o = u;. (13.7)
This is a second order equation in time and consequently, it has two
initial conditions uy and u;. The wave equation (13.7) describes various
wave phenomena: propagation of light and sound, oscillations of strings,
etc. Proceeding as with the heat equation, we find

u = 6tWt * Uy + Wt * Uy, (138)

where W;(z) is the inverse Fourier transform of the function sin(|&|t)/|k|.
The latter can be computed explicitely for n = 1,2, 3:

; 220 fOI" n = 1,
Wiz) =4 (2 )_1 Xp2>0 forn =2,
R ey

where p* =t — |z|?, and x,2>0 stands for the characteristic function of
the set {(z,t) € R¥*!: p? > 0}, i.e.

1 iftpr>0,
Xp?20 = otherwise,

and ¢(x) is the —function, a generalized function, or distribution, which
we study in the next section.

Thus the dependence of W on z and ¢ comes through the combi-
nation p? = ¢? — |z|?, which is the Minkowski-distance in space-time,
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playing a crucial role in relativity. Observe that x,>0 = X|z<; and
0(p?) = (2t)716(t — |z)).

Exercise. Prove (13.8), and find W;(x) for n = 1.
We examine closer the special case when n = 3 and ug = 0. Then we
get

1
1
- d
At s uy (y)dS(y)
t
= e s

where S(z,t) = {y € R?®: |y—z| =t} is a sphere of radius ¢ centered at
x. We see that only the initial condition evaluated on the sphere S(z, )
matters in order to determine the solution at time ¢ and at position z.
This is called the Huygens’ principle.

14. Dirac’s é—function

In the 1920’s, in connection with his work on quantum mechanics, the
British physicist P.A.M. Dirac introduced the following peculiar “func-
tion”:

. o
J:R— R, (5(30):{ o0 1fx:Q , and / d(z) =1.
0 otherwise oo
Though this function has no mathematical meaning, one can imagine
how it has to look like: think about an infinitely high spike concentrated
at z = 0. About 25 years after its introduction, the French mathemati-
cian L. Schwartz gave a rigorous definition of Dirac’s d—function as a
linear functional:

6: f— [f(0),

defined on some appropriate space of functions, say on C§°(R), the
space of infinitely differentiable functions on R that have compact sup-
port. Though this definition makes perfect mathematical sense, it is
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not, very intuitive.

We consider now a picture which is a compromise between Dirac’s
and Schwartz’s views. Let ¢ € C§{°(R), suppp C [-1,1], ¢ > 0,
¢(0) > 0 and [ ¢(z)dz = 1. Define the approximation of iden-
tity oe(z) := e tp(z/€). We claim that in some appropriate sense we
have

e — 0 ase— 0.

Intuitively, it is clear that as € — 0, p(z) “resembles” Dirac’s original
0—function closer and closer.

Now let us connect ¢, to Schwartz’s definition: for any f € C§°
we have

[ e@t@az = [ pda)f(a)dz ~ £0) [ ou(ado = F(0)

since suppy, C [—¢,€]. In fact, we have for C§°-functions, see section
11, that ¢, x f — f pointwise, as ¢ — 0, i.e.

| ete-wieay - s
This shows that for any z, the functional 6, .(f) := [ ¢c(z — y)f(y)dy
converges to the functional 0,(f) := f(z) in the sense that 0, .(f) —
0:(f), as € L 0, Vf € C§°. This is the Schwartzian viewpoint. On the
other hand, formally “p.(z) — d(z)”, or “p(z —y) = d(z —y)”. The
last two relations suggest that we can write, formally again:

o= [ " 5(@) f(2)d,

oo



34

where the left hand side is Schwartz’s functional, and the integral in
the right hand side is thought of as a convenient heuristic expression.
Similarly, we can define the 0—function at a point z:

()= [ " 5@ — z0) f(2)dz = f(o).

o0

In the n—dimensional case, we define for x = (z1,... ,z,):

n

6(z) =] [ 6(xy),

1

Using the definition of the d—function, we obtain F : §(z — x¢) —
(2m)~"/2e="® hence F~! : (2m) /2~ — §(x— 1), and, by taking

the complex conjugate (remember that F(f) = F*(f) = F-1(f)), we
arrive at

F: (2m) e 0 oy 5(k — ko). (14.1)

)= f=(f),

>

Exercise. Assuming (14.1) is true, prove formally that (
and (fg)"= f*g.

15. Distributions

In this section, we briefly discuss the theory fo distributions (also called
generalized functions), generalizing the theory of Dirac’s é—function.

Distributions are defined as continuous linear functionals over cer-
tain spaces of “nice” functions. A functional F' is a map of some space
of functions into R, e.g.

1. F(p) = [ Fedz for some fixed F € L'([0,1]), and where ¢ €
C([0,1]),
(

2. F(p) = ¢'(x0) for any ¢ € C*([0,1]),

3. F(p) =3 [, IVeg|?, for a fixed bounded domain Q C R", and for

2
any ¢ € C(9),
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4. F(¢) = [, ¢, for a fixed domain Q C R", and for any ¢ €
LP(Q).

A functional F' is called linear iff F(ap + b)) = aF(p) + bF (), for
any a,b € R (or C if we are dealing with complex spaces), and any
@, from the space on which F' is defined. The functionals in examples
1. and 2. are linear, and the functionals in examples 3. and 4. are
not. A functional F' is called continuous iff F(p,) — F(p) whenever
©n — . Of course, we assume that the space on which F'is defined has
a notion of convergence. Remember that in a normed space, ¢, — ¢
iff ||¢n — ¢|| — 0. We give now two examples of very important spaces
which do have a notion of convergence, but which cannot be equipped
with a norm:

a) C§°(€2), the space of C* (i.e. smooth) functions with bounded
support. We say f, — f iff ||f, — f||x» — 0 for any compact set
K C €2 and any nonnegative integer r, where

[1£]

Ky 1= sup sup [0°f(z)].
|a|<rzeK

If Q is bounded, then it suffices to take K = Q.
b) The Schwartz space S(R™), defined as

S(R™) ={f e C®R"):
sup(1 + |z|)|0%f ()| < oo for any N and a}.

We say f, — f iff ||fn — fl|r,m — O for all 7,m, and where

[ llrm = sup sup (1 + |2[)™[0%f(2)|.

|a|<r zER™

Continuous linear functionals on S(R") are called tempered distribu-

tions and the space of tempered distributions is denoted by &'(R").
Continuous linear functionals over C§°(2) are simply called distri-

butions, their space is denoted by D’(Q2). Clearly, S'(2) C D'(Q).
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Distributions are modeled on example 1. above, and we write symbol-
ically

Flg) = / Fa)p(z)ds. (15.1)

We say that a family F; of distributions converges to a distribtuion F',
as € = 0, iff F.(¢) = F(p), Yo.

Exercise. Show that 6, € §'(R), and that 6, — 0, as € | 0, Vz.
For distributions, we can define many of the notions we have for usual
functions if we let us be guided by (15.1). We call suppF" (the support of
F') the smallest closed set K C R™s.t. F'(¢) = 0 for all ¢ whose support
is disjoint from K. We also define partial derivatives of distributions as
follows:

asz(QD) = _F(al'j(p)'

Note that if F(¢) = [ Fy, where F € C', then 0,,F(p) = [ 05, F¢.
Similarly, we define for any multi-index «

0°f(p) = (1) IF(8%¢).

Example. On R, ¢’ is defined by §'(¢) = —0(¢') = —¢'(0).
We see that any distribution is infinitely many times differentiable!
We define the convolution of a distribution F' with ¢ € C§° by:

Fx ¢ :=F(p°),

where ¢”(y) = ¢(x — y). We also define the Fourier transform of a
distribution by:

(FF) () = F(Fo).

This definition needs some justification. One can show that if ¢ € S,
then ¢ € S, so that F'(¢) is well defined for a tempered distribution F.
If F' is a distribution with compact support, then F can be defined
as the function F'(k) = F(ez), where e;(z) = (2r)"/2e~ =
Exercises. 1) Show that d(x) = %szo, where x;>¢ is the Heavi-
side function: xz>o0 = 1ifz > 0, and x>0 = 0 for z < 0. 2) Show that
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the distribution §(z — ct) solves the equation ¢ 207 f = 95f. 3) Find
0(k) and (07*6)" (k). 4) Let f be a continuous function on R™\{0},
and define the distribution PV (f) by

PV(f)(p) =lim f(@)e(z).

40 Jig|>e

This distribution is called the principal value of the integral of f. Show
that PV (f) is a distribution, and find F' for F = PV ((rz)~') in dimen-
sionn =1. 5)Let n > 3and F.(z) := [(2—n)0,_1] 7 (|z|>+€2)~("=2/2,
where o, is the volume of the n—sphere S™ = {z € R"*! : |z| = 1}.
Show that AF,(z) — 0(z) as € — 0. Show that u = Fy x f satisfies the
differential equation Au = f. 6) Let n > 3 and let F(z) be as in 5).
Show that AF,(x) — 0(z), as ¢ — 0. Here again, o, is the volume of
the n—sphere S™ = {z € R*"! : |z| = 1}.

16. Sobolev spaces

In many respects, the LP—spaces are easier to work with than the CP-
spaces. Ome reason is that the LP—spaces are defined in terms of in-
tegrals which are easy to estimate. For instance, we know that the
Fourier transform of an LP—function with 1 < p < 2 is an L?—function,
with ¢! = 1 —p~!. On the other hand, we cannot say much about the
Fourier transform of a continuous or bounded continuous function on
R™.

Now we want to introduce an additional structure on LP—spaces
which measures smoothness, similarly to the smoothness properties of
functions in C*. We do so only for p = 2, i.e. for the space L?>(R"). This
is the simplest space among the LP-spaces. It has an inner product:

(f.9) = /?g

and therefore it is a Hilbert space (i.e. an inner product space which
is complete with respect to the norm ||f|| := 1/(f, f) induced by the
inner product). Another advantage of the L?-space is that the Fourier
transform leaves it invariant (ie. f € L? = f e L?).
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We now define for s integer, s > 0, the new spaces
H,(R") = {f € L*(R") : 0°f € L*(R") Va s.t. |a| <s}.  (16.1)
This definition is very similar to the definition of the C*(R")-spaces: in
fact, by replacing L?(R"™) in (16.1) by C'(R™), one obtains the definition
of C*(R™). But there is one crucial difference: in the C*(R™)—case, the
functions f are assumed to be s times continuously differentiable, but

in the H,;—case, they are not. Namely, the derivatives 0% f in the above
definition are understood in the distributional sense:

0" f(p) = (-1)f (0"¢),
where f(¢) = [ fo, and ¢ € S(R").
There is another way of defining the spaces H(R"):
H,(R") = {f € L*(R") : <k>* f(k) € L*(R")}, (16.2)

where <k>= (1 + |k|?)'/2. Definition (16.2) has the advantage that it
makes sense for an arbitrary s € R. Besides, it does not require extra
explanations. Of course we have to show that definitions (16.1) and
(16.2) are equivalent for positive integers s.

Let first f belong to the r.h.s. of (16.2). Then, since |(0*f)"(k)| =
k> f(k)| < <k>lol|f(k)|, we have that (8*f)" € L2, and therefore by
the Plancherel theorem, 0*f € L?, as long as |o| < s.

Now let f belong to the r.h.s. of (16.1). So we have in particular
that f € L?, 8;, f € L? V¥j, and therefore by the Plancherel theorem
fer? kjf € L?, Vj. The latter implies that (14 Y7 |k,|%)f € L2
Since for some 0 < C; < Cy < o0:

C1 <k>" <14 |ky|* < Cp <k>°, (16.3)
1

we then get <k>* f € L2, i.e. f belongs to the r.h.s. of (16.2). [ |
Exercise. Show formula (16.3).

The space Hs(R™) (defined in (16.2)) is called Sobolev space of order s.

It is a Hilbert space with the inner product and norm

_ X 1/2
o= [Tg<to? and | = (/ |f|2<k>25> .

The spaces H;, s € R, have the following properties:
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(i) Hy = L2
(ii) Hs C Hyif s > ¢,
(iii) 0% is a bounded map from H, into H,_|q/.

Property (i) is just Plancherel’s theorem. Property (ii) follows from

<k>* > <k>"if s > t. To prove (iii), notice that (iii) < [|0% f||(s—|a)) <

C||fll(s) and that the latter estimate is true because ||8af||?sf|a|)

[1@2f)? <k>2-leD= [ |gef> <k>26-lel and the last integral is

bounded from above by [ |f|? <k>%= ||f <k>* ||} = ||fH?S) |
The next theorem connects Sobolev spaces and C*—spaces.

The Sobolev embedding theorem. If s > r+n/2, then H,(R") C
C1(R™), where C5(R™) denotes the elements in C™(R™) that decay at in-
finity (i.e. functions f € C"(R™) s.t. im0 f(z) = 0). Moreover,
this inclusion is continuous in the sense that there is a constant C' (de-
pending only on s,k,n) such that |[0°f||l < C||f||(s), uniformly in
f € Hy(R™) and every a, |a| < k.

Proof. Suppose that s > n/2 + r and || = r. Then using that
(k)" = (k)*(k)=**%,

1@ )1l < N <k>" fll < || <k>* fllz [ <k>7**" ]2 < Ol fll -

In the last step, we used that s > n/2+r, and therefore C = ||(k)~**"|| <
oo. We have thus shown that (0%f)" € L'. But this implies 0*f € C,
since L; C Cy by the Riemann-Lebesgue lemma, see Section 12. |

Exercise. Define the operator A, : f — (<k>%f)7 ie. (Ayf) =<
k>*f. Show that A, : H, — H,_, is an isometry (i.e. Aeflls—t) =
£ 1ls))-

17. Linear operators

Linear operators or simply operators are linear maps from one vector
space X into another vector space Y. We denote linear operators usu-
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ally by capital roman letters, A, B,.... For instance
A: X =Y or A:uw— Au.

To define an operator A, we have to give two things: the domain of
definition, D(A) (a subset of X), and a rule that prescribes to each
element of u € D(A) an element of Y (the image of u). We require this
rule to be linear, i.e. Yu,v € D(A), and «, § € C:

A(au + Bv) = cAu + (Av. (17.1)

To fix ideas here and in what follows, we consider vector spaces over the
complex numbers C, i.e. complex vector spaces. All the material of this
section, except for spectral theory, remains unchanged if we substitute
R for C.

The linearity property (17.1) implies that the domain of A can al-
ways be taken to be a vector subspace of X. Indeed, if we take u,v €
D(A), then Au and Av are well defined, and we can add au+Sv (for any
a, 3 € C) to the domain D(A) by defining A(au + fv) := aAu + SAv.
We therefore will always assume that D(A) is a vector space. This also
implies that the range (or image) of A,

Ran(A) := {Au:u € D(A)} = AD(4),

is a vector space as well. We may assume that D(A) is dense in X, i.e.
for any u € X, there is a sequence {u,} C D(A) s.t. u,, = u as n — oo.
Indeed, if D(A) is not dense to begin with, we consider instead of the
space X simply the space X' := D(A), the closure of D(A).

Examples. 1) The identity operator 1 : L? — LP has domain
D(1) = L~

2) The multiplication operator M : LP — LP, u +— fu for a fixed
f € L* has domain D(M;) = LP.

3) The differentiation operator % : L*(R™) — L?(R") has domain
D(a%) ={uel?: %u € L%}

4) The Laplacian A := ?% : L?(Q) — L?(Q) has the domain

J

D(A) = Hy(9).

5) The Fourier transform F : L*(R™) — L?*(R") has the domain
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L?(R").
6) Integral operators are operators of the form

(Ku)(x) = / K (. y)u(y)dy,

for some function K (z,y) (called the kernel or integral kernel). The
domain and range of the integral operator K depend on the properties
of the kernel K(z,y).

In all the previous examples, the operators can be represented as
integral operators, but with distributional kernels, e.g. K(z,y) =
fa(x)é(a: —y) for My, and K(z,y) = =6 (z; — ;) Hi# §(z; — y;) for
ox;*

’ We say the operator A : X — Y is bounded iff there is a constant
C (independent of u) such that

|| Aul] < Cllul], (17.2)

for all u € D(A). The smallest constant C' satisfying (17.2) is called
the norm of A, and it is denoted by ||A||. We have

Au
4] = sup A4 _ g (14wl (17.3)
u#0 ||U|| w: ||ul|=1

and so ||Au|| < [|A]]||u]|. If A : X — Y is bounded and defined on a
dense subset of X and Y is complete, then one can extend A by conti-
nuity to the whole space X.

In the examples above, we see that the multiplication operator My
is bounded with || M| = || f|]co-

Exercise. Show that the differentiation operator in example 2) is
not bounded by finding a sequence f, of functions from D(a%j) such
that || f.|| <1, Vn, and ||%fn\|2 — 00, as N — 0.

The identity operator in example 3) is clearly bounded, and ||1]| =
1. The integral operator K in 4) with a kernel satisfying K(z,y) €
L?(R™ x R™) is bounded as an operator from L?(R") to L?(R").

We say A is invertible iff A has a bounded inverse, i.e. iff there is a
bounded operator A7! : Y — X such that A™'A = Iy and AA™! = 1y,
where 1x and 1y are the identity operators in X and Y respectively.
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Exercises. Show that: 1) A is invertible iff for every f € Y, the
equation Ay = f has a unique solution u(= A 'f) € X, i.e. iff A is
one-to—one (Au = 0 = u = 0) and onto (Rand = Y). 2)if A is
just one-to-one (i.e. not necessarily onto), then A is invertible as an
operator from X to Ran A C Y, i.e. the equation Au = f has a unique
solution u = A~!f for any f € Ran A.

Example: invertibility of the Laplacian on a bounded do-
main in R”. Let @ C R" be a bounded domain. Consider first
A Hi(2) = Hi_2(92). Recall that A is a bounded operator between
these spaces. However, on Hi(€2), A has an eigenvalue 0 with a con-
stant eigenfunction uy. Hence A is not invertible on H ().

If we restrict ourselves to a smaller space than Hy (), in particular
a space that does not contain constant functions, then A has a chance
to be invertible on that smaller space. We therefore introduce

H(Q) := {u € Hy() : uloq = 0}. (17.4)

Notice that if £ > n/2, then by Sobolev’s embedding theorem, functions
in H®(Q) are continuous, so the condition u|sqn = 0 makes sense.
Otherwise, we define H,EO) (2) by completing the space Cék)(Q) of k-
times differentiable functions on €2, vanishing on 0 in the norm || -
k) == ||| e (0)» i-e. adding to C’ék) (€2) “limits” of all Cauchy sequences.
In order not to worry about that, we assume here k > n/2.

Showing that A : H,EO) (Q) — Hyp_»(Q) is invertible is equivalent to
showing that the Dirichlet problem

Au=f in Q,
u=0 on{2 (17.5)
has a unique solution in H,EO)(Q), for any f € Hy_o(9).
If Q = Bg(0) is a ball of radius R, then for any f € Hy_5(2), there
is a solution u € Hy(f2) given by the Poisson integral (n > 3):

u(z) = / Gz, y)fy) d,
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where the Green’s function G is given by

2—n)
and where 0,,_; is the volume of the (n — 1)-sphere.

Exercise. Verify the statement above.
For a general bounded domain 2 C R", we prove the existence of solu-
tions to problem (17.5) later, using variational methods.

Here we show only uniqueness of solutions of (17.5) for any bounded
Q, i.e. that the operator A : H(O)(Q) — Hjy_5(Q) is one-to-one. Ac-
cording to the last exercise above, this implies that the boundary value
problem (17.5) has a unique solution for any f € A(H )(Q)). The
result of uniqueness is based on the

Ity
y[2

Poincaré inequality. Let ) have a diameter d < oo in some di-
rection (i.e. it is possible to place Q between two parallel hyperplanes

at a distance d from each other). Then for any u € Hfo) (Q), we have

/QW < (2d)2/Q\Vu|2. (17.6)

Proof. We can assume that this hyperplanes are {z; = 0} and
{x1 = d}. Assume u is real and estimate

= [ 1 jup == [ = =2Re [ <2 [ |5
Q 19)

Applying now the Schwarz inequality to the integral on the r.h.s., we
obtain

5331 ’

ou

[lull5 < 2d]|ul]5

< 2d||ull2 [|Vul[2,
2

where ||Vull2 = [ [Vul? = [, 372 5o-|°. The latter inequality implies
[lullz < 2d[[Vulls. u
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Ifue HQ(O)(Q), then

/Q|Vu\2:/ﬂﬂ(—Au):/Q‘MU

where we have used in the last step that —A is positive and self-adjoint
and defined v —A by —A = +v/—Av/—A (or by Fourier transform). We

can now rewrite the Poincaré inequality as

lullz < 2d[[V=Aull,,

2

Y

which implies for u € HQ(O)(Q):
|1Aullz = [[V=AV=Aull; > (2d) | [ul|>-

Exercise. Show that for all u € H\”(€2), Q bounded: [|Aull, >
(2d) 2| |u||z implies

Au[|gry > Cllull ), (17.7)

for some C > 0, independent of u, and any k.
Formula (17.7) shows that Au = 0 = u = 0 for u € H,EO)(Q).

Therefore we can define the inverse A~! on the range A(H,EO) (Q)): if
v E A(H,go)(Q)), then v = Aw for some unique u € H,EO)(Q) and we
define A='v = u. Now from (17.7):

]|y > ClIA™ ]| k)

Hence A1 : A(H”(Q)) — H”(Q) is bounded. Remark that we have
not shown that A= : Hy_»(Q) — H}go) (R2) is bounded (or equivalently

that A(H 20) (Q)) = Hy_2(2), or equivalently that the Dirichlet problem
(17.5) has a unique solution for any f € Hy 5(Q2)). We will show this
in a later section, using variational methods. This finishes our example.

The spectrum of A acting on a space X (i.e. Y = X), 0(A), is the
set in C defined by

0(A):={2€C:A—z1 isnot invertible }.
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For notational convenience, the operator “multiplication by z € C” will
be simply written as z instead of z1. The spectrum of an operator is
always a closed set in C. Clearly, eigenvalues of A belong to o(A) (in
fact, if A is an eigenvalue, then Auy) = Au) for some nonzero uy € X, so
(A= Auy =0, and A — X is not invertible). In general, the spectrum
can also contain continuous pieces and it can take very peculiar forms.
The complement of the spectrum is called the resolvent set p(A):

p(A) :== C\o(A4).

For z € p(A), A — z has a bounded inverse (A — z)~!, called the resol-
vent. The resolvent is analytic in z € p(A).

Exercise. The spectrum of the multiplication operator introduced
in example 1) above is o(M;) = Ranf, the differentiation operator 2)
has spectrum a(%) = R, and the identity operator 3) has purely dis-
crete spectrum o (1) = {1}.

The study of the spectra of operators is called spectral analysis. 1t
is considerably simplified if X is a Hilbert space. From now on in the
remainder of this chapter we will consider only operators A : X — X,
where X is a Hilbert space.

With an operator A we can associate its adjoint A* defined (roughly)
by the relation (A*u,v) = (u, Av), for all v € D(A), and for all u’s for
which this relation makes sense (those u’s form the domain of the op-
erator A*, D(A%)).

Exercises. Show that 1) [Jw|| = supy,_; | {w,v)|, and therefore
| Al = supyy o1 | (Au, v) |; 2) if A is bounded, then so is ||A*||, and
|A]| = ||A*|| (Hint: use part 1)).

_ One can show that ((A—z)"")* = (A4*—%) ', and therefore o(A*) =
o(A).

Exercise. Prove the latter statement for A bounded.

An important class of operators on a Hilbert space is the class
of self-adjoint operators. By definition, an operator A is called self-
adjoint iff A* = A. In particular, every self-adjoint operator is sym-
metric, i.e. (Au,v) = (u, Av), for all u,v € D(A) = D(A*). Notice that
the converse is not true. However, every symmetric bounded operator
is self-adjoint. L

From the property o(A*) = 0(A), we see immediately that if A is
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self-adjoint, then o(A) C R.
If we consider the examples of the operators 1)—4) above, we have

the following: M/ is symmetric iff f is a real function; (%)* = —%, SO
the differentiation operator is not symmetric, but —i% is symmetric;
J

the identity operator is obviously symmetric; the integral operator is
symmetric if K(z,y) = K(y, z).

We will use the following basic facts from the geometry of Hilbert
spaces. Let V and W be subspaces of the Hilbert space X. We say V
and W are orthogonal to each other (written V L W) iff

(v,w) =0, Yv € V,Yw € W.

If V and W are orthogonal, we define the orthogonal sum (or direct
sum) by

VeW:={v+w:veVandwe W}

If V C X is a subspace, then its orthogonal complement in X is defined
by

Vi={zeX:(v,z)=0, Vve V}

Exercise. Show that V= is a closed subspace of X, even if V is
not closed. Recall that a subspace V' C X is called closed iff the limit
of any convergent sequence in V lies in V. More precisely, V' C X is
closed iff {v,} C V and v, — v € X impliesv € V.

One of the key properties of Hilbert spaces is given in the following

Theorem. If V C X is a closed subspace, then X =V @ V.

Proof. We give a complete proof in the case when dimV =n < oo.
Pick an orthonormal basis {es, ... ,e,} for V. For an arbitrary f € X,
define f; := )" (f,e;)e;, and define fo := f — fi. We clearly have
fi € V, moreover, f, € V*: Indeed, for any v € V, we have v =
> i—1(v, €;)e;, hence

<U7f2> = <U’f> - <U7f1>

n

= Z(’U, €j><f, ej) - Z(f? €i><’U, 6,’)

i=1

= 0.
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We have thus decomposed an arbitrary f € X as f = fi + fo, with
fi € V and fo € V. We finish the proof by showing that this de-
composition is unique. To do so, assume that there are f{ € V and
fy € VL such that f = f{ + fi. We show f| = fa, f5 = fo. Indeed,
O=f—f=f—fi+fa—fs,s0 fi—fi = —(f2— f4). But on the other
hand, V > fi — fl L fo— fy € V+ thus fi — fl = 0= fo — fi. The
proof is complete if dim V' < co. In the general case (dimV = 00), the
same proof is valid, but now define f; as being the element in V' that
minimizes the distance to f (it has to be shown that such an element
exists and is unique). |

Closed subspaces of a Hilbert space can be identified with (i.e. are
in one—to—one correspondence to) projection operators. A bounded op-
erator P on X is called a projection operator (or simply a projection)
iff it satisfies

P?=P.
This relation implies ||P|| < || P||?, i.e. ||P]| > 1. We have
v € RanP = Pv=v, and v € (RanP)" = P*v=0. (17.8)

Indeed, if v € RanP, then there is a u € X s.t. v = Pu, so Pv =
P2y = Pu = v; the second statement is left as an

Exercise. Prove that P*v = 0 if v L RanP.

The above mentioned correspondence between projection operators
and closed subspaces is given by the following fact. Let V = RanP.
Then V is a closed subspace of X. To show that V is closed, let
{vp} C V, and v, - v € X, and show that v € V. Since P is a
projection, we have v, = Puy,, so ||[v — Pv|| = ||v — v, — P(v —v,)|| <
l|lv = vp|| + ||P|] ||lv—v,|| = 0, as n — oo. Therefore v = Pv,sov € V,
and V is closed.

A projection P is called an orthogonal projection iff it is selfadjoint,
i.e. iff P = P*. Let P be an orthogonal projection, then

v L RanP = Pv = 0. (17.9)

Exercise. Let P be an orthogonal projection. Using (17.8) show
that ||P|| < 1, and therefore ||P|| = 1.
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Conversely, given a closed subspace V', define a projection operator
P by

Pu=v, where u=v+ov-eVaoVt (17.10)

Exercise. Show that P defined in (17.10) is a projection with
RanP =V.

Finally, we observe that for any operator A on a Hilbert space X,
we can write

X = Null4A @ RanA* (17.11)

Here, the null space is defined as Null A = {u € X : Au = 0}.
Exercise. Show that for a bounded operator A, NullA is a closed
set, and show (17.11).

The space of bounded linear operators £(X,Y). We assume
that X and Y are normed vector spaces over C, and consider the set
of all bounded linear operators from X into Y, i.e. each such operator
is defined on the entire space X, and its range lies in Y. This set of
operators is denoted by L£(X,Y).

For A,B € L(X,Y), we define a new operator, called A + B, by
setting (A + B)u := Au + Bu, for all u € X. Also, for A € C and
A € L(X,Y), we define a new operator AA as (AA)u = AAu, for all
u € X. If in addition to these two operations on operators, we equip
the set £(X,Y) with the norm introduced in (17.3), then £(X,Y) is a
normed vector space.

Exercise. Show that £(X,Y") is a vector space.

An important question is: when is £(X,Y) a Banach space? The an-
swer is given in the following theorem, which is not difficult to prove
(see e.g. [F], Proposition 5.3):

Theorem. IfY is a Banach space, then L(X,Y) is a Banach space.

The dual space. In the special case when Y = C, the space
L(X,Y) is called the dual space of X (or simply the dual, or adjoint
space or conjugate space of X), and it is denoted as X'. Hence the
elements of X' := L(X,C) are linear maps from X to C, and they are
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called linear functionals. Remark also that since C is complete, then
the last theorem shows that X' is always a Banach space, whether X
is complete or not.

The operator norm induces a norm on X': if [ € X', then

]l = sup [I(z)].

ll]l=1

If X is a space of functions, then X’ can be identified with either a
space of functions or a space of distributions or a space of measures.
Here are some examples of dual spaces:

1) (L?) = L9, where 1/p+1/q¢ =1,if 1 < p < oo (space of func-
tions),

2) (L*)"is a space of measures which is much larger than L,
3) (Hy)' = H 4 (space of distributions if s > 0).

Note that (LP)" D L9, for 1 < p < oo follows from the Hoélder
inequality. In fact, given f € LY, define I;(u) := [ fu. Since |I;(u)| <
|| fllql|u||p, we see that lf is a bounded linear functional on LP. It
can be shown that in fact any bounded linear functional on L? can be
represented by /¢ for some f € L.
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Chapter III. Equations

Our goal in this chapter is to learn basic tools in solving various equa-
tions. Mostly we are interested in differential and integral equations,
but the methods developed apply to other types of equations as well.

18. Calculus of maps

We will study equations of the form
F(u) =0, (18.1)

where v is an unknown function, and F'is a map which takes a function
u into another function.
For instance, look at the nonlinear Poisson equation:

where f is a given function, then the map F' is defined by
F(u) = —Au+ g(u) — f.

To solve equation (18.1), we have to choose a space to which the func-
tion u belongs; say we assume that u beongs to some Banach space X,
and that F' maps X into another Banach space Y.

Our goal is to develop a calculus of maps which will allow us to
solve equations of the form (18.1).

Let us consider first several examples of maps F': X — Y

1) F(u) = Au,

51
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2) F(u) = fou for a given function f,

3) F(u) = div( 7).

Depending on the problem at hand, we choose different spaces for the
examples above. For instance we can choose

1) X = Hy(Q) and Y = L*(Q),
2) X =C*(Q) and Y = Ck(Q), if the function f is C*(Q),
3) X = CK(Q) and Y = C¥-2(Q).

Note that the map in 1) is linear, while the map in 2) is linear if f is
linear, and nonlinear otherwise.
If X =Y, equation (18.1) appears often in the form

F(u) = u. (18.2)

A solution to (18.2) is called a fized point of the map F.

19. The contraction mapping principle

Let X be a Banach space. Denote by d(u,v) = ||u — v|| the distance
between the vectors v and v. Remark that actually all we need for the
next theorem is that X is a complete metric space (i.e. it does not have
to have a norm). A map F : X — X is called a strict contraction iff
there is a number « € (0, 1) s.t.

d(F(u), F(v)) < ad(u,v), Yu,v e X.

Theorem (the contraction mapping principle). If F is a strict
contraction, then F' has a unique fized point.

Proof. The proof uses the method of successive approximations.
We want to solve the equation u = F'(u). Pick some uy € X and define
ur = F(ug), ... ,un = F(tup_1).

We claim that {u,} is a Cauchy sequence in X. In fact, let n > m,
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then d(un, um) < &™d(Un_m,ug). Next, by the triangle inequality (i.e.
d(v,u) < d(v,w) + d(w,u), Vw € X), we get

d(ug,uo) < d(ug, ug—1) + d(ug_1, ug—2) + - - - + d(u1, uo)
< (P24 1) dur, )
1
S md(’dl, UO).

The last two inequalities imply

m

d(tp, ) < 1—d(u1, ug) = 0 as m,n — oc.

Thus indeed, {u,} is a Cauchy sequence in X. Now since X is complete,
there isa u € X s.t. u, — u so d(F(uy,), F(u)) < ad(u,,u) — 0. Then
the diagram

Unr1 = Fl(uy)
\: 1

shows that u = F'(u). This demonstrates existence of a fixed point, and
we finish the proof by showing its uniqueness. Suppose that F'(u) = u,
and F(v) = v. Then we have d(F(v), F(u)) = d(v,u) < ad(v,u), hence
d(v,u) =0 since o € (0,1), and so v = u. [

Application. Let Y be a Banach space, and ® : Y xI — Y, where
I =10,T] C Ris an interval. We consider the differential equation (on
the Banach space Y')

5tut = (D(Ut,t), (191)

with the initial condition wu|;—¢ = uo.

Theorem. Let ® be continuous in t € I, and Lipshitz continuous
iny €Y (ie [|®(u,t) — D(v,t)|ly < Cllu—vl|ly for some C < oo,
and 0 <t <T). Then for T sufficiently small, the differential equation
(19.1) has a unique solution which is C* in t.
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Proof. We rewrite (19.1) as an integral equation
t
Up = Up + / O (us, s)ds. (19.2)
0
Define the map F': X =C([,Y) - C(1,Y) by

t
F(u.)s =up+ / O (us, s)ds,
0

where u. denotes the map ¢ — u;, and uq is the initial condition consid-
ered as a constant map t — uy. Now equation (19.2) can be rewritten
as u. = F(u.), which is a fixed point equation for F. Note that the
norm in the Banach space X is given by ||u.||x = supu; ||ully. We
now show that for 7" sufficiently small, F' is a strict contraction.

1F(u.) = Fv)llx = St1€1?||F(U-)t—F(U-)tHY

t

= sup|| (P(us, s) — P(vs, ) ds||y
el Jo

< TCsup ||lus — vslly
seT

= TCllu. —vl|x.

Thus, for T < 1/C, F is a strict contraction, and hence the equation
u. = F(u.) has a unique solution in C(I,X). The r.h.s. of (19.2) is
differentiable in ¢, so u, is differentiable in ¢, and it satisfies (19.1). W

20. The Gateaux and Fréchet derivatives

The goal of this section is to develop a differential calculus of maps
F: X — Y where X and Y are Banach spaces.

The map F' is called Gateauz differentiable at v € X iff there exists
a bounded linear map DF(u) € L(X,Y) s.t. for any £ € X:

0
33|, F(u+ AE) = DF(u)E. (20.1)
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The Gateaux derivative is sometimes called the gradient map or the
variational derivative.

The map F' is called continuously differentiable at u € X iff it is
Gateaux differentiable for v in a neighbourhood of @, and moreover,
u +— DF(u) is a continuous map from X to £(X,Y’) at the point T; i.e.
if u, — @ in X, then DF(u,) — DF(u) in L(X,Y). This continuity
condition is expressed equivalently by

sup ||DF(u) — DF(u)|| — 0, ase—0. (20.2)

[lu—u||<e

The map F is called continuously differentiable, or C' (written
F € C1) iff it is continuously differentiable for all u € X.

Examples.

1) If F(u) = Lu, where L is a linear map, then DF(u) = L (inde-
pendently of u). Indeed, DF(u) = ZL(u+ A¢)|x=0 = & (Lu+
ALE)|a=¢ = LE. Thus if L is bounded, then F is C'.

2) If F(u) = f o wu (composition map), for a fixed C'—function
f:R - R, and u : R® — R, then DF(u) is the multiplica-
tion operator by f'(u). Indeed, DF(u)§ = ZF(u+ Af)|r=0 =
2 f(u(z) + A(z))[az0 = f'(w)€. So if f'(u) is a bounded func-
tion, say for some u € LP(R™), then F : LP(R") — LP(R") is
differentiable at u.

Exercises. 1) Compute DF(u) for ' : R* — R™, and for
F(u) = div(—=—). 2) Let K be a convex subset of a Banach

\/ 14| Vu|?

space X (i.e. if u,v € K, then su+ (1 — s)v € K, for all s € [0,1]).
Show that if F': K — K satisfies || DF(¢¥)|| < a, Vb € K, then F is
Lipshitz: [|F(1) — F(¢)|| < al [t — ol|, Vo), 0 € K.

In applications, one often considers composition operators F(u) =
f owu, where f is a fixed function and u belongs to the space of differ-
entiable functions. The statements below are useful in this context.

Exercise. Let F(u) = f owu, and let Q be a bounded domain
in R® with a smooth boundary. Show that if f € C*"(R), then
F: CkQ) — C¥(Q), and F is C* with DF(u)é = f'(u)é.
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An important result in this direction is the following

Theorem. Let F(u) = fowu and let 2 C R be a bounded do-
main with smooth boundary. If f € CFL(R) with k > n/2, then
F : Hy(Q) — Hi(Q2), and F is C.

For a proof, see [McO], page 221.

Discussion, the Fréchet derivative. @ Though the Gateaux
derivative is straightforward to compute, for theoretical considerations,
one needs often a stronger notion of derivative: the Fréchet derivative.
Before we define the Fréchet derivative, let us remark that equation
(20.1) is equivalent to

Fu+ X)) — F(u) = ADF(u)€ + o()), (20.3)

were o(A) is a vector in Y satisfying limy_, ||o(A)||/A = 0. Notice that
in general, o(\) depends on .

The map F is called Fréchet differentiable at uw € X iff there exists
a bounded linear map DF(u) € L(X,Y) s.t.

F(u+§) = F(u) = DF(u)¢ + o(ll])) (20.4)
as ||€]| = 0. The symbol o(||€||) stands for a map R: X — Y s.t.

IE] — 0, as ||| —O0.

€]l
The operator DF (u) satisfying (20.4) is called the Fréchet derivative of
F' at the point u.

From definition (20.4) and equation (20.3), it is clear that if F' is
Fréchet differentiable at u, with Fréchet derivative DF(u), then F is
Gateaux differentiable at u with Gateaux derivative given by the same
operator DF(u). The converse is also true if F' € C':

Theorem. If F' is continuously differentiable at u € X, with Gateaux
derivative DF (u), then F is Fréchet differentiable at u, and the Fréchet
derivative is given by the same operator DF(u).
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Proof. Define the function ¢ : [0,1] — Y by
g9(t) = F(u+t),

for u, & € X fixed. According to the definition of the Gateaux derivative
(20.1), we have

§(#) = lim Fu+ (t+7)8) — Fu+1t£)

T7—0 T

= DF(u + t&)E.

Now using the Mean Value Theorem for g, we obtain

IF(u+€) = F(w) = DF(ue]
la(1) - 9(0) - g O)]
sup [lg(1) = g/(0)]

<
< sup ||DF(u+ 1) — DF(u)| [€]]
0<t<1
= o([€]])-
In the last step, we used the continuity (20.2). [

For a detailed discussion of Fréchet and Gateaux derivatives, we
refer to [Zeil].

In everything that follows, by the derivative DF (u) we understand
the Gateaux derivative. We point out that in most of our applications,
we deal with C! maps, in which case the Fréchet and Gateaux deriva-
tives coincide, according to the last theorem.

21. The inverse function theorem

Let X and Y be two Banach spaces. Recall that a map G : Y — X is
called the inverseof themap F': X — Y iff GoF = 1x and FoG = 1y.
Here, 1; dentotes the identity on the space Z. We write G = F~!. Re-
call that a linear map A is called invertible iff it has a bounded inverse.
The following theorem is a generalization of the corresponding theorem
in multivariable calculus:
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The inverse function theorem. Let U be an open neighbourhood
of 0 € X, and let F : U =Y be a C' map s.t. DF(0): X — Y has
a bounded inverse (i.e. DF(0) : X — Y is bijective). Then there is
a neighbourhood V' of F(0) in Y and a unique map G : V — X s.t.
F(G(y)) =y, forally € V.

Proof.  Finding the inverse function G is equivalent to solving the
equation

Fu)=v (21.1)
for u, given v € V. By the definition of the Fréchet derivative, we have
F(u) = F(0) + DF(0)u + R(u), (21.2)

where the remainder satisfies R(u) = o(||u||). Due to equation (21.2),
(21.1) is equivalent to

u="DF(0) " [v—F(0)— R(u)]. (21.3)
For any y € Y, define the map
H,(u) := DF(0) v — F(0) — R(u)).

Then solving (21.3) is equivalent to solving H,(u) = u for u, i.e. we
need to find a fixed point of H,. Denote by Bx(u,r) the open ball of
radius r centered at u in X.

Claim. de > 0 and 6 > 0, s.t. (i) H, : Bx(0,¢) — Bx(0,¢),
provided v € By (F(0),6), (it) ||DH,(u)|| <1/2.
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Given (i) and (ii), we see that H, for v € By (F(0),6) is a con-
traction, therefore for all v € By (F(0), ), H, has a unique fixed point
in Bx(0,¢). Call this fixed point u = u(v). It solves u = H,(u), so
F(u) =wv.

It remains to prove the claim. For some ¢,0, let ||u|| < € and
lv = F(0)[] < 6. Then

1Ho(w)ll < [[DF(0) 'R(u)||+ |[DF(0) *(v - F(0))]]
< |IDF(0)7"[|(o(€) + 9)-

Now find € s.t. o(e) < ser@-T for all € < e;. Then ||Hy(u)|| < € for
all € < €, provided v € By (F(0),0), § = BFE=T- Lhus (i) follows.

Using that R(u) + F(0) = F(u) — DF(0)u, we find DH,(u) =
DF(0) }DF(0)—DF(u)]. Then by continuity of DF(u) in u, we obtain
that there is an €3 s.t. ||DH,(u)|| < |[DF(0)7!|| ||DF(0) — DF(u)|| <
1/2, if ||u|| < €.

Now take € < min(ey, €3), and 6 = - Then also (ii) holds.H

EOR

Application of the inverse function theorem: existence of
surfaces with prescribed mean curvature. Assume S is a hyper-
surface in R"™! given as a graph of a function ¢ : Q C R* — R,
S = graphy. We assume (2 is bounded.

Lnt1

/ k\a/%

The mean curvature of S is given by

Vi
v (W) , (21.4)

for  in the interior of €.
Our question is: given a function A(z), is there a surface S = graphy
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which has mean curvature h(z), i.e. is there a solution ¢ to the equation
h =(21.4)7?
In order to find an answer, we define a map

= div —V¢

and we want to solve F(¢)) = h. To do so, we want to use the inverse
function theorem, and we need to define spaces X and Y s.t.

1) F:U — Y, where U is a neighbourhood of 0 € X,
2) FisCH,
3) DF(0) has a bounded inverse.

In a first step, let X, Y be the Sobolev spaces X = Hi(R2), ¥ =
Hy_5(Q). In order to show 1), we define for p € R" the smooth function:

PRI
() i
then F'(¢) = divG o V. We know that V : Hi(Q) — Hi_1(2).

In the theorem of section 20, we saw that if ¥ — 1 > n/2, then
since G is smooth, the composition with G leaves Hy_1(f2) invariant:
Go: Hk_l(Q) — Hk_l(Q)

Finally, div : Hy_1(Q2) — Hp_2(f2), and therefore the composition
of these three maps satisfies:

F=divoGoV : Hg(Q) — Hy 2(Q),

which shows 1).
In order to check 2), i.e. F € C', we remember from a previous

exercise that DF ()€ = div(ﬁ).
Exercise. Show DF(¢) : Hi(Q2) — Hjy_2(f2) is bounded, and it is

continuous in ¢ (i.e. ||DF(¢y,) — DF(¢)|| — 0, as ||¢, — ¢|| — 0).
Finally, we have to verify that 3) is satisfied, i.e. that DF'(0) has a

bounded inverse. Now DF(0) = A, and we have discussed the existence

of A~! in Section 17, where we saw that for the inverse Laplacian to
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exitst, we must exclude the possibility of constant eigenfunctions of A,
hence we need to take X = H,go)(Q).

Again, we have not shown yet boundedness of A™' : Hy_ () —
H ,EO) (€2), this we will do in a later section, using variational calculus.
Modulo the proof of this fact, we have thus shown that the conditions
of the inverse function theorem are satisfied, and therefore, for any
sufficiently small h € Hy (), the equation F(¢)) = h has a unique
solution ¢ € H Igo) (). In other words, there exists a surface S = graph
with prescribed small mean curvature h.

22. The implicit function theorem

Consider three Banach spaces X,Y and Z, and amap F': X xY — Z.
We wish to solve F(z,y) = 0 for y, i.e. we want to define y as a func-
tion of z by the equation F'(x,y) = 0. We introduce the partial Fréchet
derivatives, denoted by D, F(z,y), etc.

The implicit function theorem. Let U and V' be neighbourhoods
of 0 € X and 0 € Y respectively. Let F : U xV — Z be a C'-map
s.t. F(0,0) = 0, and suppose DyF(0,0) has a bounded inverse. Then
there is a neighbourhood W of 0 € X and a map G : W — Y such that
F(z,G(z))=0,Vz e W.

Proof. 'The proof is similar to that of the inverse function the-
orem, so we omit some details. We want to solve F(z,y) = 0 for y
near (z,y) = (0,0). Expand F in y around 0: F(z,y) = F(z,0) +
D,F(z,0)y + R(z,y), with R(z,y) = o(||y||). So our task is to solve
the following equation for y:

F(z,0)+ DyF(z,0)y + R(z,y) =0,
y=—D,F(x,0)”" (F(z,0) + R(z,y)) - (22.1)

If we neglect the remainder term R(z,y), then equation (22.1) yields
for each given z the corresponding y = G(x). In reality, the remainder
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is not zero, but small in y, and we can use once again the fixed point
argument to show existence of a solution to (22.1). To do so, introduce
the map

H,(y) :== =Dy F(z,0)" (F(z,0) + R(x,v)), (22.2)

then equation (22.1) is equivalent to the fixed point equation H,(y) = y.
We now show that the map H, has a fixed point y = y(z). We have

D,H,(y) = —-D,F(x,0) 'D,R(z,y)
= —D,F(z,0)""[D,F(z,y) — D,F(z,0)].

Now since F' is a C'-map, we have that for all (fixed) z, D, F(z,y) —
D,F(z,0) — 0 as y — 0, and hence we get ||D,H,(y)|| < 1/2 if
||| < e(z) (notice that ||D,F(x,0)~!|| < C, for some constant C' > 0,
provided z is in some bounded domain W). Thus H, is a contraction,
and Vo € W Jy = y(z) € B, solving (22.2). [

23. Theory of bifurcation

Consider a C'-map F : R xY — Z,s.t. F(0,0) =0. Here, Y and Z
are Banach spaces.

Our problem is to find a function u = u(u), implicitely defined by
the equation

F(p,u) = 0. (23.1)

By the implicit function theorem, we know that if D,F(0,0) has a
bounded inverse, then equation (23.1) has a unique solution in a neigh-
bourhood of (0,0). Here, we look at the situation when D, F'(0,0) does
not have a bounded inverse (e.g. if D,F(0,0) has a zero eigenvalue).
In this situation, the implicit function theorem is not applicable.
More specifically, we look at the following problem. Assume F' sat-
isfies F'(u,0) = 0 for all p, i.e. (u,0) satisfies (23.1) for all u. The
branch of solutions {(4,0) : p € R} is called the trivial branch. The
corresponding solutions are called trivial solutions. Our task is to find
nontrivial sulutions to (23.1) in a vicinity of the trivial branch.
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The “curve” (u,u(p)), u € [—€, €| is called a branch of solutions if
F(p,u(p)) = 0. A point (uo,0) at which a branch of nontrivial solu-
tions appears is called a bifurcation point.

u ..
nontrivial branch

i

bifurcation poirk trivial branch
From what has been said above, it is clear that we have the following

Proposition. If (1,0) is a bifurcation point, then D, F (o, 0) does
not have a bounded inverse.

An important example is given by the case when F': RxY — Y is
linear in u:

F(u,u) = pLlu — u,

where L is a linear operator on Y. Then (u,0) is the trivial branch
of solutions. Let us find the bifurcation points. The candidates for
bifurcation points are the points where D, F(u, 0) is not invertible. We
have DF(u1,0) = pL — 1. Assume here for simplicity that L has purely
point spectrum (i.e. only eigenvalues, no continuous spectrum), then
puL — 1 is not invertible iff 0 is an eigenvalue of pL — 1 (indeed, recall
0 ¢ o(A) iff A is invertible). Now (uL — M)ug = 0 < Lug = %uo, ie.
1/p is an eigenvalue of L. If 1/u is an eigenvalue of L, then we call u
a characteristic value of L. So if o(L) = {A\,}$°, with corresponding
eigenfunctions u,, then (\',0) are candidates for bifurcation points.

To show that the points (A;!,0) are indeed bifurcation points, no-
tice that F(A\,;!,u) = 0 has nontrivial solutions in a neighbourhood of
u = 0: indeed, F(\;',u) = A\, ' Lu — u = 0 is the eigenequation for u,,
and it has solutions v = 0 and u = au,, where a € R (or a € C).
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Example. Let Y = Z = L?*([0,27]), L = —A with Dirichlet
boundary conditions: u(0) = u(27) = 0. Recall that the domain of
L satisfies D(L) = H,([0,27]) C C([0,2x]) by the Sobolev embedding
theorem, and therefore the boundary conditions u(0) = u(27) = 0 make
sense.

To find the eigenvalues of L, we need to solve the characteristic

equation —Au = Au, i.e. u” = —Au. The solutions satisfying the
Dirichlet boundary conditions are u, = asin(jz), where a € R, and
the eigenvalues are given by A, = (3)?, n = 1,2,3,.... Thus besides

the trivial branch (u,0), p € R, the equation u(—Au) —u = 0 has the
branches of solutions ((2)?,Ru,), for n =1,2,3,....

Remember that in the the above examples, F' is linear in u, and as
a result, the bifurcating branches are straight lines. In general, if F
is nonlinear, we expect the bifurcating branches to be bent, as in the

following example.

Example. LetY =7 =R, and F(u,u) = pu — u®. Clearly we
have F(u,0) = 0 Vu € R, so (u,0) is the trivial branch. We calculate
the derivative Dy F(u,u) = p— 3u?, s0 Dy F'(11,0) = u = 0 has the solu-
tion po = 0, hence (0,0) is a candidate for a bifurcation point. On the
other hand, we can solve the equation F'(u,u) = 0 explicitely, obtaining
the solutions (x,0) and u = %,/i. This shows that (0,0) is indeed a
bifurcation point (the bifurcation here is called a pitchfork bifurcation
because of the shape of its bifurcating branch).

In later sections, we will learn how to find out the qualitative be-
haviour of the bifurcating branch without actually solving for it. But
before, let us find a sufficient condition for a bifurcation to happen at
a point (i, 0) (notice that the last proposition only gave a necessary
condition).
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24. Sufficient condition for bifurcations:
the Krasnoselski theorem

In the last section, we have seen that (pg,0) is a possible bifurcation
point only if D, F'(u, 0) is not invertible. This is however not a sufficient
condition, as is demonstrated in the following example.

Example. For F : R x R? — R? given by F(u, u1, us) = (u1, ug) —
p(ur — u3, ug + u}), we find

Dy F(p,u)(&, &) = (&1,&) — p(é& — 3U§§2, &+ 3uf§1)a

and therefore D, F(u,0) = (1 — p)1. Thus D,F(1,0) is not invertible.
However, (1,0) is not a bifurcation point! Indeed, look at the two
components of the equation F'(u,u) = 0. Multiplying the first one by
—1u9, the second one by uq, we obtain

—(1 — pugug — puy = 0
(1 — wuug — pui = 0.

Adding the above two equations yields —pu(u]+u3) = 0,80 u; = uy = 0
(for u # 0), which shows that F'(u,u1,us) = 0 has only the trivial solu-
tion (u1,us) = (0,0), Vu € R (if g = 0, then this follows directly from
the definition of F'). (1,0) is therefore not a bifurcation point.

We now want to give a sufficient condition for a bifurcation to take
place in a slightly specialized case. Namely, let F: RxY — Z (Y, Z
Banach spaces), and let (g, 0) be a candidate for a bifurcation point,
i.e. we assume D, F(u,u) is not invertible at (ug,0). Our simplifying
assumptions are

i) Y = Z is a Hilbert space (so in particular, F: R x Y — Y),
ii) the spectrum of D, F (i, 0) is discrete in the vicinity of z = 0 € C.

Remark that if D, F (1o, 0) is not invertible, then we must have 0 €
0(DyF (110, 0)). Condition ii) tells us something about “how D, F (1, 0)
is not invertible”.

In what follows, we use the notation F,, = 9,D,F’, and the follow-
ing definitions:
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(a) the multiplicity of an eigenvalue X of L is dim Null(L—)), i.e. the
number of linearly independent eigenvectors with eigenvalue A,

(b) the algebraic multiplicity of A is dimspan{lJ,, Null(L—A)"}, i.e.
the number of linearly independent eigenvectors and root vectors
with the eigenvalue \.

If L is self-adjoint, then the multiplicity and the algebraic multiplicity
coincide.

Theorem (Krasnoselski). Assume that
(i) 0 is an eigenvalue of Dy F (uo,0) of odd algebraic multiplicity, and
(ZZ) dug € NuHDuF(,LL(), 0) s.1. <U(), Fuu(/,t(), 0)’00> 7é 0.
Then (o, 0) is a bifurcation point.

Examples. 1) As in the last example of the previous section, let
F(u,u) = pu—u3. We have D, F (u,u) = p— 3u?, so 0 is an eigenvalue
of D, F(0,0) of multiplicity 1. Next, 0,D,F(0,0) = 1, so the condition
(ii) is satisfied as well. Therefore (0, 0) is a bifurcation point.

2) Let D,F(u,0) = puL — 1, where L a linear operator. Then
Fuu(ﬂa 0) = L’ and <’LL0, Fuu(:u’ 0)u0> = <u0’ Lu0> = M51||U0||2 7é 0
Vug € Null (uoL — 1). This yields the following

Corollary. Let D, F(p,0) = pL — 1, where L is a linear operator.
If po is a characteristic value of L of odd algebraic multiplicity, then
(10, 0) is a bifurcation point.

To illustrate the corollary, let us consider the nonlinear eigenvalue
problem

Lu+ f(u) = A, with f(u) = o(]|ul]]). (24.1)
Then the corollary implies that if \g is an eigenvalue of L of odd al-
gebraic multiplicity, then equation (24.1) has a nontrivial branch of

solutions near the bifurcation point (A", 0).

Before giving the actual proof of the Krasnoselski theorem, let us
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discuss its idea. Our goal is to solve the equation
F(p,u) =0, (24.2)

for (u, u) near the point (yg,0), i.e. for u and p — o small. We expand
F(p,u) in u around the point u = 0, using that F'(u,0) = 0Vpu:

F(p, u) = DuF (1, 0)u + R(p, u), (24.3)
where R(u,u) = o(||ul|). Substitute this into equation (24.2) to obtain

Now we want to solve this equation for u. If D, F'(u,0) were invertible
in a neighbourhood of y = pg, then we would get

U= —DuF(,LL, O)_IR(M’ u)’
which implies that
[Jul| < |[DuF (12,0) 7| - o ([[ull),

so u = 0 is the only solution to (24.2). Notice that this is of course
exactly the idea of the proof of the implicit function theorem.

Here however, the key point is that D, F(u9,0) is not invertible,
more precisely, it has a zero eigenvalue. This implies that for p close
to o, DuF (1, 0)~! has also a zero eigenvalue or at least an eigenvalue
close to zero, so that even if D, F (1, 0)~! for u # pg exists as a bounded
operator, it blows up (becomes unbounded) as . — . This fact allows
for a nontrivial solution to (24.2) to pop up for u # .

To solve equation (24.2), we observe that though D,F(u,0) is
not invertible on the entire space, it is invertible as an operator from
(Null D, F(10,0))" to (Null D, F(pp,0)*)*, the latter space being the
orhtogonal complement of the zero eigenvectors of the adjoint oper-
ator D, F(p,0)*. So we can solve equation (24.4) on the subspace
(Null D, F (119,0))*, and afterwards deal with the remaining part of the
whole space, namely

Null D, F(j10, 0),
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which is finite dimensional. This procedure reduces the infinite dimen-
sional problem to a finite dimensional one. The sort of behaviour of an
equation we describe here, namely when an equation can be solved on
the whole space except on a finite dimensional subspace, where all the
action takes place (the solution outside is the trivial one!), and where
the solution has to be examined separately on the finite dimensional
subspace, is quite reoccurring in applications, and the ideas explained
below lie in the foundations of many mathematical methods.

Proof of the Krasnoselski theorem. Let L(u) := D, F(u,0), and de-
note by P the projection onto the subspace Null L(u), and let P :=
1 — P. Then P* is the projection onto the space Null L(u)*. We
project the equation F'(u,u) = 0 onto the subspaces Null L(x)* and
(Null Z()*)*:

P*F(p,u) = 0, (24.5)
P F(u,u) = 0, (24.6)

and we decompose u € X along the two subspaces Null L(x) and
(Null L(p))*: w = v + w, where v € RanP and w € RanP. We have
thus two equations, (24.5) and (24.6), for two variables v and w. Ob-
serve that since dim RanP < oo, v is a finite-dimensional variable.

To solve equations (24.5) and (24.6), we proceed as follows. First,
we solve (24.6) for w = w(u, v), and substitute this solution into (24.5)
to obtain the equation

PF(pu,v+w(p,v)) = 0. (24.7)

In a second step, we solve equation (24.7). This equation is called the
bifurcation equation or branching equation. It describes the bifurcating
branches, and usually, it is a system of n = dim Null L(u) algebraic
equations for n+1 variables p and v. We consider (24.7) as an equation
for v as a function of u. However, in general, this equation has several
solutions v for one given p. To parametrize these solutions, we proceed
as follows. Let v = (vq,...,v,), and pick one of these variables as a
parameter, say vy, then solve (24.7) for (u,v1,... ,v,_1) as a function

of vy, say (u,v1, ... ,0n_1) = y(vn).
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We now carry out the above mentioned first step: we solve equation
(24.6), i.e. we show equation (24.6) has a unique solution w. Define

Fi(p,v,w) :==P F(u,v+w) : R x PY xPY —P"Y.

In order to identify this situation with a standard implicit function
theorem, we denote X := R x PY. Now observe that

() Fyis CH,
(8) Fi(p,0,0) =0 for any p,
(7) DuwFi(10,0,0) is invertible.

Indeed, () follows from the condition that F' is C!, (3) results from
the relation Fy(u,0,0) =P F(u,0) = 0, and (7) is due to the relation
Dy Fi(11,0,0) = P D, F(po, 0)P plus the fact that the r.h.s. is invert-
ible as an operator from PY to PY.

The implicit function theorem shows thus that for any (u,v) suffi-
ciently close to (i, 0), equation (24.6) has a unique solution, which we
denote w = w(u,v). This completes the first step of the proof.

Before proceeding to the second step, we prove the following impor-

tant property of the solution w(u,v):
w = o([[v]])- (24.8)
In order to show this, we expand the map F(u,u) around u = 0:
F(p,u) = L(p)u + R(p, u), (24.9)

with R(u,u) = o(||u]|), and where we used the fact that F(u,0) =0
for any p. This expansion together with equation (24.6) and the fact
that L(u)P = 0 implies

P L()Pw +P R(p,u) = 0,

and since the operator L(p) :== P"L(u)P : PY — P"Y is invertible, we
derive

w = —L()"'P" R(p, u) = o(|[u] ),
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which shows (24.8), since u = v + w.

We now show the second step, i.e. we solve equation (24.7). For
this, we use conditions (i) and (ii) of the theorem. Assume for simplicity
that dimNull L = 1, i.e. that the eigenvalue 0 of L is simple, and we
show that equation (24.7) has a unique solution for p as a function
of v € R. Let vy and vj be the normalized zero eigenvectors of the
operator L and L* respectively. Then Pu = (v§,u)vy. Since v = sug
for some s € R, equation (24.7) is equivalent to

1
f(s,u) =0 where f(s,u)= g@a‘,F(u, svg + w(u, svg))). (24.10)
Using expansion (24.9), we rewrite f(s, u) as
(s, 1) = (vg, DuF (1, 0)(vo + w1)) + (vg, s R, su1)),  (24.11)

where u; := s 'uand wy := s 'w. Since ||wq|| and s~ (|0, R(u, su1)|| =
0 as s — 0, we have that

of )

a(oa ,U/()) = <U07 Fuu(/'[’()a O)U()) 7é 07 (2412)
by condition (ii) of the Krasnoselski theorem. Therefore equation (24.10)
has a unique solution p = u(s), for u as a function of s, if s is in a
neighbourhood of s = 0. This completes the second step.

We have shown that in the case when 0 is a simple eigenvalue of L,

the solution of the original problem has the form

u =v+wp,v),
{ = o) (24.13)

The second equation defines v as a function of p and it has several
solutions. |

25. Type of bifurcations and stability

Type of bifurcations. We want to investigate the shape of a bifur-
cating branch of nontrivial solutions. We will deal with the special case
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when 0 is a simple eigenvalue of L := D, F(10,0). We solve equation
(24.10) in the leading order in s (for small s). The equivalence rela-
tion A = B will stand for an equality in the leading order in s. Let
b= %(O,,uo) # 0 (see equation (24.12)). Then the Taylor expansion
theorem yields

. f(87/’[/0)
H—=H = "3, ~

(s ) = —b ' f(s, o). (25.1)

Since v§ is the eigenfunction of L* with eigenvalue 0, equation (24.11)
implies

f(saﬂo) = <U8’ SilR(:u’ SU1)>,

hence f(0, o) = 0. Therefore, there is a k > 1 s.t. f(s, o) = fis”,
for some f;, provided f(s, ) is C*¥*! in s (this means in particular
that we have to assume that F is in C**?). Then we can rewrite (25.1)

as | — g = —%sk, and consequently, we get the following qualitative
pictures:
k even k odd
S S
>0 /

b
L <0

\ 0 I
/
N

Stability. One of the important consequences of bifurcations is the
change of stability at the bifurcation point. We return to this question
later, here let us just illustrate this with a picture and an example.

In the picture below, the crossed branches are stable and those
which are not crossed are unstable.
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k even, and fi/b < 0 k odd, and fi/b> 0
S S
b>0 / /
{" © j" N
s s
b<0 | / . {/

— AR

Example. Let L be a very large fixed number, and take the family
of spaces [—a/2, /2] x [-L/2, L/2], where a € R is a parameter. On
these spaces, consider the equation

—Au+G'(u) =0, (25.2)

with the potential G' of the form

G
[’3}
'_.' / N
Ug

and with periodic boundary conditions:

’I,L(—O,//Q,y) = u(a/2,y) vya
u(z,—L/2) = wu(x,L/2) V. (25.3)

The equation (25.2) with boundary conditions (25.3) has the following
branches of solutions: («,ug), Vo, and (o, u1), Vo, where uy and u; are
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solutions to the equation

O | () = L/2,L
ot (u) =0 on [-L/2,L/2],
with periodic boundary conditions. The last equation is just Newton’s
equation if we interpret y as being the time-variable, and —G as a
potential (whose derivative is a force). wuy is a minimizer, and u; is a
saddle point of the functional

L2 11 fou)?
E(u) = / = (—) +G(u
w= [2 o) +Gw)
Exercises. 1) Check whether any solutions bifurcate from (a, uy),
2) find the bifurcation points from the branch (o, u1), 3) find the bifur-

cation points for —Au+Au+u? = 0 on [—L, L]* with Dirichlet boundary
conditions (i.e. u =0 on the boundary), and where v € Ho([—L, L]").

dy.
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Chapter IV. Variational
Calculus

The variational calculus deals with finding extrema or more generally,
critical points, of real functions of an infinite number of variables —
the functionals. It is one of the key tools in analysis. The Variational
Calculus originates in the problem of minimization of energy function-
als and finding stationary (i.e. critical) points of action functionals in
physics. Presently, it is used in practically every field on science, and
in particular to solve nonlinear and linear differential equations.

26. Functionals

Functionals are maps which have R as the target space. More precisely,
let X be a Banach space, and M C X a not necessarily open subset of
X. Then a functional is a map F' : M — R. Usually, X is a functional
space. If X has a basis, then functionals on X can be represented as
functions of an infinite number of coordinates along the basis. If X is a
finite-dimensional space (which we are not concerned with here), then
a functional on X is just a usual function of several variables. In the
following list of examples of functionals, {2 is a domain in R":

1) E(u) = [, G(u(x))d"™, where G : R = R, and u : Q — R;
2) E(u) =1 [,|Vu|?d"z, where u : Q — R;
3) E(u) = [,(3|Vul* + G(u))d™z, where G and u as above;
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) = foT[%|%_f|2 — V(p)]dt, where ¢ : [0,T] — R™, and V :
R™ — R;

= [ Jol3|2212=L|Vy|>~G(p)]d"zdt, where ¢ : Qx[0, T] —
R and G as above

6) £(u) = 3(u, Au), where u € V, an inner product space, and
A:V — V is a linear operator;

7) = zfo Jo (=Im( W/J + |VY> + G(|[¢|?))d"xdt, where 1 :
Q X [0 T] — C, and G as above;

8) S(f) = [ flog fd"p, where f: R" — R*.

In these examples, we have used different letters for various functionals
to indicate their physical origin: the functionals in examples 1)-3) and
6) originate in expressions for energy, the functionals in examples 4),
5) and 7) come from expressions for an action, and 8) is an expression
for entropy.

We also have to specify the spaces on which the functionals are
defined. Unlike for linear operators, we do not distinguish between
the spaces on which the functionals are defined and their domains of
definition. The (not necessarily linear or vector) spaces are chosen
according to the specific functional and the problem at hand. Of course,
we always try to choose the simplest possible space for a given problem.

For instance consider example 1). Assume that the domain (2 is
bounded, and that the function G satisfies the estimate

|G (u)] < ClulP +C, (26.1)

for some constant C' > 0. It is then natural to define £ on the space
LP(92).

In example 2), we define £ on the Sobolev-space H;(£2).

In example 3), if Q is bounded, and G satisfies (26.1), then we define
€ on H () N LP(Q).

For the other examples, the spaces are chosen similarly.

Let us now return to the important example 2). There is another,
even more popular space on which we can define this functional. As-
sume we want to vary u among functions in H;(2) with fixed values on
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the boundary 0¢2. So let g : 02 — R be smooth and put

HO9Q) ={uc H(Q):u=g on 00}
Since the boundary 02 has n—dimensional Lebesgue-measure zero, we
have to be careful about the meaning of “u = g on 0€2”. There is an
equivalent way of defining H. 9 Let g € Hy(£2) be a smooth real-valued
function s.t. § = g on 0€2. Then we can define
H9Y(Q) :={u e Hy(Q) :u— g€ HY(Q)}.

Clearly, this definition is independent of the choice of the extension g.
This space can also be written as

HY(Q) = g+ HP ().
If g # 0, then Hs(g) is not a vector space, but it is an “affine” space,

and for most purposes it is as convenient to study as the vector space
H, itself.

The Gateaux derivative for functionals. Let us now examine
in more detail the notion of Gateaux derivative in the case of func-
tionals. Recall that the Gateaux derivative of a map F : X — Y
(where X, Y are Banach spaces) at a point u € X is the linear op-
erator DF(u) : X — Y defined by DF(u) = ZF(u))|xz0, Where
uy :=u+ A, for £ € X.

Consider now a functional F' : M — R. If M is an open subset of a
Banach space X, then the Gateaux derivative DF(u), u € M, is a lin-
ear functional on X. Recall that F is C* iff DF(u) is a bounded linear
functional, i.e. DF(u) € X' and that if X is a Hilbert space, then X'
can be identified with X and therefore we can consider DF(u) € X.
This identification is displayed as

DF(u)§ = (DF(u),£),

on the Lh.s. of which DF(u) appears as an element in X', while on the
r.h.s. it appears as an element of X. At first sight, this might seem
confusing, but after getting used to it one appreciates the convenience
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of this ambiguous notation.

Let us now consider a simple example displaying the ambiguity men-
tioned above (more examples are to follow). Let G be a real differen-
tiable function on R satisfying the estimate

G(u)| +|G'(u)| < Clul?,

where C' is independent of u € R. Then the functional
u / G(u(z))d™
Q

is defined on L?(f2), where Q C R". Its Gateaux derivative is

(D /Q Gou d"x).g: /Q & (u(x)é(x)d".

Therefore we can either identify the Gateaux derivative in this case with
either the linear functional standing on the Lh.s., or with the L?(Q)-
function G'(u(x)).

Exercise. Let (2 be a bounded domain in R”. Show that 5 [, |¢[?
is C* on L2(2) and on H"”(Q).

Now, if M is not an open subset of a Banach space X, then the
situation is more subtle. We cannot in general take a piece of a straight
line u) = u + A in the definition of DF'(u), but rather we have to take
“curves” \ — uy, s.t. up = u and ‘Z‘—N,\:O = ¢ for a given £&. Then we
define

DF N F
(u) == P\ (ux) [r=0-
The “initial velocities” ¢ might not span the entire space X, but only
a subspace of X. In general, we define the tangent space to M at u,
T.M, to be the set of all the £ € X s.t. there is an € > 0, and a path
[—€,€] 2 A+ uy € M for which uy = u, %b\zo = £. Then we have by
definition DF (u) : T,M — R, i.e. DF(u) € (T,M)' =:T;M.

Exercise. Show that T,X = X, T,H¥(Q) = H”(Q), and if

M ={u € X : J(u) = 0}, where J is C' and X is a Hilbert space, then
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forue M, T,M =DJ(u)*.

We go now back to the Gateaux derivative of a map F': M — R,
where M C X, and X is a Banach space. If F is C', then Yu €
M, DF(u) € X'. Let us now consider the map

u — DF(u). (26.2)

If this map (from M to X') is C', then we say that F is C*®. The
Gateaux derivative of the map (26.2) at u is the second derivative of F’
at u, denoted by D?F(u). Continuing in this way, we define the notion
of a C* functional.

The operator D?F(u) : X — X' is called the Hessian of F at u. If
X is a Hilbert space, then D?F(u) is symmetric:

(&, D*F(u)n) = (D*F(u)g,n), V& neX.

In fact, it is self-adjoint in practically all cases of interest. We give
some examples of Hessians:

1) the finite-dimensional case: f : RY — R. Then Df(u) = Vu

(the gradient), and D2f(u) = Hess f(u) = (524-(u)).

2) IfE(u) = § [ |Vul? on H{"(Q), then DE(u)€ := FE (u+E) 1= =
fQ Vu-VE=— fQ Aug. Clearly, the linear functional DE(u)é =
— fQ Aué can be identified with the “function” DE(u) = —Au €
L?(2). Similarly, we can compute D?E(u) = —A.

Combining examples 1) and 2), we compute the first and second Gateaux
derivatives to get

3) DE(u) = —Au+ G'(u) = D*E(u) = —A + G"(u);

4) DS(p) = —m%%’ — VV(p) = D?S(p) = —mZ; — HessV ().

Here, HessV (¢) = (g;‘:a(g;) is the standard Hessian of V' : R™ — R.
In both examples 3) and 4), the second Gateaux derivatives (or Hes-
sians) are Schrédinger operators. In the second case, the Schrodinger

operator is an operator valued m X m matrix acting on m-vector valued
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functions.

Exercise. Compute the first and second Gateaux derivatives in
examples 5)-8) at the beginning of this section. (Hint: in example 7),
first write the functional S(¢) in terms of the real vector—functions

Y(z,t) = (Y1(x,t),9s(x,t)) instead of the complex form (z,t) =
Y1 (z,t) + ipo(z,t))

Critical points. Given a C'functional F': M — R, we say that
uo € M is a critical point (CP) of F iff DF(ug) = 0 (on T,,,M).

Exercise. Find the equations for the critical points in examples
1)-7) given at the beginning of this section.

The equation DF (ug) = 0 for critical points of F' is sometimes called
the FEuler or Fuler-Lagrange equation.

Theorem. If uy is a minimizer of F' and ug ¢ OM, then ug is a
critical point of F.

Proof. Let ug be a minimizer of F', and let £ be an arbitrary vec-
tor from T, M, and X sufficiently close to 0 so that there is uy s.t.
Uy—o = Uy and ‘Z"—AA a=0 = &. Then the function f(A) := F(u,) has
a minimum at A = 0, and therefore A = 0 is a critical point of this
function, f’(0) = 0. This is equivalent to 2 F(uy)|x=0 = 0, which by
the definition of the Gateaux derivative implies that DF(ug)€ = 0 (or
(DF(ug),€) = 0). This holds for every ¢ € T,,M, and we conclude

What about the converse statement: is every critical point of F' a
minimizer (or a maximizer)? As in the calculus of functions of several
variables, the answer is negative. Some of the critical points are nei-
ther minimizers nor maximizers. They are called saddle points. The
question then is, how can we classify critical points of F' depending on
whether they are extrema (minimizers or maximizers) or saddle points?
In principle, this can be done as in the case of calculus of functions of
several variables: we use the second derivative criterion. A partial re-
sult in this direction is given in the following
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Theorem. Let uy be a critical point of a functional F'. Then
(i) if ug is a minimizer, then D*F(uy) > 0,
(i) ug is a minimizer if D*F (ug) > 0.

Soap films. Let S be a hypersurface in R"! (i.e. a n-dimensional
surface). Assume S is the graph of a function f:
Tni1 = f(2'), where z' = (z1,...,x,),
defined on a domain 2 C R™. Consider the area functional A(f) that

measures the area of S.

Lemma. A(f) can be written as

A(f) =/Q\/1+ VIE .

Proof. The following picture shows that AA = £ where « is the

cosa’
angle between the z,,,-axis (the unit vector e, ;) and the normal v to

S at a given point.

€n41

Vo(z)
v(x) = ,
©) = @)
and therefore
Vo(z) - entr 1

CoOSx = =

Ve@  Ir N
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We define A on C?(2). Critical points of the functional A(f) are called
menimal surfaces.
Exercise. Show that the Euler-Lagrange equation for A(f) is

vf B
v (W) = 0. (26.3)

Thus (26.3) yields an equation for a minimal surface. One can show
(see below) that

= div 7Vf
) =d (m)

is the mean curvature of S at x, hence we obtained the following

Theorem. Let S be a smooth hypersurface in R™ with mean curva-
ture h(z). Then h =0 < S is a minimal surface (in a neighbourhood
of every x € S; we have S = graphf, where f is a critical point of A).

We give now the definition of different notions of curvatures at a
point zo € S. Pick coordinate systems s.t. Vf(z}) = 0, where zy =

(zh, z51). Then we define

e the principal curvatures at xy as the eigenvalues of Hess f(zy),
o the Gaussian curvature at xy as det Hessf(xy),

e the mean curvature at xo as h(zg) = div(——=).

V1HVEP?
Lemma. Let S = graphf for some f s.t. f(z') # 0. Then the mean
. . _ . Vf
curvature at x is given by h(z) = dlv(i\/m).
This lemma and (26.3) imply the theorem.
Proof. Consider first an arbitrary coordinate system and a function
f:Q — R, st. S = graphf. We denote as before z = (2, z,41) €

R 2 = (z1,... ,7,) € 2 CR™ As we have shown, the unit normal
vector to S at x, v(z), can be expressed as
(=V/f('),1)

v(x) =

(26.4)

VI+IVI@)?
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Now for a given point 7y € S, let z = (T',Z,11) € R*™! be a special
coordinate system s.t. there is a domain  C R™ and a function f :
Q) — Rst. S=graphf and Vf(Z,) = 0. Then we can express the
normal vector v(z) in terms of this function as

(-VF@),1)
L+ Vi)

v(z) =

Now compute

M@ ., IVI@)P
@+ IVF@)P) 7 (L4 VT @)

divy(z) = —

and therefore we get divv(zy) = —Af(Z)). By the definition of the

mean curvature at the point xg, Af(Zh) = —h(m), and therefore
divv(zg) = —h(xy), which together with (26.4) implies the lemma.
|

Instead of defining the surface S as a graph of a function f : Q@ — R,
we can define it as the image of the function u : O — R"*! given by
u(z") = (', f(2')), i.e. u is a parametrization of Q. Then we have
Vu| = /1 +|Vf[? and so A(S) = [, |Vul.

Now, instead of minimizing the area integral [, [Vu|, we would like
to minimize the energy integral

E(S) = £(u) = %/Q\vu\% (26.5)

How are the minimizers of A(u) and £(u) related? It turns out that
they describe the same surface S.
One can further generalize functional (26.5) as

1 . _
ew = [ Yastwva - v,
i,J

where u = (u',...,u™) : @ — R™, and the matrix g(u) = (g;;(u)) is
positive definite for all u. Moreover, we assume g(u) satisfies g(u) > 01,
with § > 0. The matrix g(u) yields a Riemannian metric on the target
space R™ and ), ; g;j(u) Vu'Vu/ is the square of the length of u in this
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metric. The Euclidean metric used above is given by g;;(u) = 18;; if
(Za.]) 7& (n + 1,7’L + 1)’ and In+in+1 = 1.

Let © C R™. Then u : Q — R™ represents a parametrization
of the surface S = rangeu C R™. The boundary of this surface is
g(02) = range g on 09). Here, £(u) defines the “energy” of the surface.
The area of the surface is given by

A(S) = A(u) = /Q \/Z 915 (W) Vi - V.

27. Constraints and Lagrange multipliers

Consider a functional £ on a Banach space X. We want to minimize £
not on the entire space X, but rather on a subset M of X defined as

M={ueX:J(u)=0}

where J is another functional on X. The key result here goes back to
Lagrange and it is called the method of Lagrange multipliers:

Theorem. Let the functionals € and J be C*t, and let ug be a crit-
ical point of € on M. Then there is a A € R (the Lagrange multiplier)
s.t. DE(ug) — ADJ(ug) = 0.

Proof. 'The fact that ug is a critical point of £ in M means that
V¢ € T, M. Recall the definition of the tangent space

du,
T, M = {€ € X : 3 path u, C M s.t. us_o = ug, di\szo = ¢}
S

Taking u; as in this definition and differentiating the constraint J(us) =
0 at s = 0, we obtain

0 ="DJ(up)iy (= (DJ(ug), o)),
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where g = %|,_,. Hence we have T,,, M C DJ(ug)*. In fact, one can
ds 0

show that T,,,M = D.J(ug)*, and therefore we can write (27.1) as
(DE (o), €) = 0, V& € DJ(ug) ™,
which is equivalent to saying that there is a A € R s.t.
DE (ug) — ADJ(ug) = 0.

(i.e. DE(ug) L (DJ(ug))* implies DE (ug)||DJ (uo))- |

Examples. 1) Consider the Ginzburg—Landau functional

5(u):/<%\Vu|2+G(u)) iz,

with an even double-well potential G of the following form:

N2

on spherically symmetric functions u(z) = v(|z|). Then we have &(u) =
on_1€(v), where o, is the volume of the unit n—sphere and

e(v) = /O h (%W +G(v)) r=ldp.

Since G has zeroes at +1, for e(v) to be finite, we must require that
v — +1 or —1 as r — o0o. Consider e on functions of the form
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i.e. v(0) =1, v(c0) = —1 and v(R) = 0. We set X = H9(RT, r"1dr),
where g is a fixed smooth function of r satisfying ¢(0) = 0 and g(o0) =
—1, and consider e(v) on X with the constraints

v(R) =0 or equivalently /U(SR =0, (27.2)

where 0g is the Dirac distribution concentrated at R. Then a minimizer
of this problem satisfies the equation

—v" + G'(v) = Mg,

for some A determined by condition (27.2).
Consider the minimization problem above in a very large ball By, :=
{z € R": |z| < L}, L >> 1. Then there is a minimizer v%). One can

show that vg) — VYR, Where vg is a minimizer in R".
2) Let Q be a domain in R™. Consider the Dirichlet functional

1
D(u) = §/§2\Vu|2d"x

on the set H9(Q) (or on the set M = {u € HO(Q) : J(u) = 1},

where J(u) = 1 [ |ulPd"z). Though the set M is not a vector space, it

)
is obtained from the vector space H fo)(Q) through a shift. The equation

for the critical point on Hl(g)(Q) is

Ay = 0 in €,
u = g on 0.

To find the equation of the critical points on the space M, we use the
theorem above to obtain

DE(u) — XDJ(u) = 0,

for some A determined by the side condition J(u) = 1. Since DE(u) =
—Au, and DJ(u) = |u|P~%u, we obtain

Au+ AulP2u =0,
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. . 1 _
with the constraint > fo [ulP = 1.

Exercise. Find the equation for critical points of the functional
5 Jo, [Vul? on the space M = {u € Hl(o) t [ [ul? =1}

28. Theory of interfaces

The difference in free energy of two phases is given by the functional:

Pl = [ (51Ve 4210 i (28.1)

where (2 is a large domain, say a ball of radius L filled with two liquids,
e.g. oil and water. Here, A € R is a parameter. The function ¢ : Q@ = R
is the difference of the local densities of oil and water:

90(33) = TLO(IE),OO - nw(x)pw;

where p, and p, are the densities of oil and water, and n,(z) and
ny(z) are concentrations of oil and water at the point z, respectively
(i.e. ny(x) + ny(x) = 1Vz). We take a potential f of the form

/

/|\/

f

where ¢,, = p,, (i.e. n, = 0, homogeneous water phase), and ¢, = p,
(i.e. my, = 0, homogeneous oil phase). Hence F'(¢) > 0, and F has two
absolute minimizers, ¢,, and ¢,, so that F(p,) = F(p,) = 0.

The question is: does F'(¢) have local minimizers (or saddle points)
describing two coexisting phases separated by an interphase? If yes,
what does this interface look like?

An important tool in our study is the equation for critical points of



F(p):
—Ap + Af'(p) = 0. (28.2)

In the search of solutions to (28.2), we investigate several possibilities:
planar interface, lamellar phase, spherical drops and cylinder solutions.

Planar interface. Let Q = R%. Assume ¢ depends only on one coor-
dinate, say z = x4. then equation (28.2) becomes simply ¢" = Af'(¢).
If we think about z as a time variable, then this is just Newton’s equa-
tion with the potential —Af(y). Apart from the constant solutions ¢,
and ¢, there are two other solutions for —oo < z < oo with smallest
F(yp), called the kink ¢, and antikink ¢_,. They are depicted in the
following pictures:

_)\f

o [ u

T

5

antikink ¢_

the kink ¢y, the antikink ¢_p
Po(2) Po(2)
\ Po Po /
on(2) Ok

z z

Yy N / o

. : w

Z L pu(?) Pw(2) Z

O(A~1/2) | O(A‘I/Q)l
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Note that for large “times” z, any function ¢ of finite energy F'(¢) <
oo, must tend to a zero of the potential f, otherwise the energy (28.1)
becomes infinite.

One can show that the solutions ¢,, ¢, Yr and ¢_; minimize the
energy F'(¢) under the boundary conditions ¢(z) — ¢, as z — Fo0,
©(2) = u as z = 00, Y(z) = @y as z = —oo and p(z) — @, as
z = 400, or p(z) = @y, as z — —oo and p(z) = @, as z — +00.

The solution ¢y/_; describes a separation of oil and water with the
interface z = 0. The centre of the kink is arbitrary, since F(¢) is trans-
lational invariant. Therefore, ¢x(a — 2) and ¢_i(z — a), for arbitrary
a, are also kink and antikink solutions.

Specific ezamples. a) Let f(p) = 3(¢® — 1)%, then one can ex-
plicitely calculate the kink: (z) = tanh(Az). b) Let

2

2
— >
flp) = { Wolp = @0)" ¢ 20, and wogog = wwgpfu. (28.3)

ww(p — ow)?, @ <0,

Then equation (28.2) is piecewise linear, and we get

pr(l —e wwz), z < Oa

o) ={ Pl eml ) 25h (28.4)

Lamellar phase. Let again Q = R%. In this situation, layers of oil
and water coexist in a periodic array. To get a solution to (27.2), glue
together a kink at z; and an antikink at z. There is no exact solution
of this form: the kink and the antikink interact at any distance. They
repel each other and as a result, they move away from each other. This
means that F(¢) is monotonically decreasing as R — oco. Here, ¢ is a
function consisting of a kink and an antikink glued together at a dis-
tance R. However, one can construct a periodic solution corresponding
to an array of kinks and antikinks.

Spherical drops and cylinder solutions. In both cases, we look for
minimizers of F'(p) of the form

p(z) = ¢r(lz)), (28.5)

subject to the boundary condition

©r(0) = @o, Yr(00) = Py (28.6)
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and the side condition
vr(R) = 0. (28.7)

For the spherical drop, we have z € R3, and for the cylinder we have
r € R2

One can show that such minimizers exist, for every R. Moreover,
the theory of Lagrange multipliers implies that they satisfy the equation

—Avor + Af'(9r) = Vog, (28.8)

where v = v(R) is the Lagrange multiplier, 0 is the Dirac distribution
concentrated at R, 0r(z) = d(|z| — R), and

ST
- or? r o or
is the radial part of the Laplacian. Here, d = 2 for the cylindrical case,

and d = 3 for the drop. We plug this minimizer into F'(¢) to define the
potential V(R) := F(¢r).

A,

Theorem. If Ry is a critical point of V(R), then @g, is a critical
point of F(p): DF(pgr,) = 0. For such an Ry, @r, satisfies the original
equation (28.2), i.e.

d—1
©r, + T(PIRO = A f'(¢ro)- (28.9)

We have the following possibilities:

Vv stable drop v unstable drop
| RO R | Ro R

If we think about r as a time variable, then equation (28.9) describes
a mechanical particle in the potential —\f (), subject to friction.
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The equilibrium radius can be found also through the equation
v(Ry) = 0, where v = v(R) is given in (28.8). If we take again for
f(p) the quadratic potential (28.3), then ¢x can be found explicitely:

inh(/wor)
(po(l_sin Rw > r )’ OSTSR
pr(r) = VR v (28.10)
ng(l — =VewE 7 )a r> R.

This ¢p satisfies equation (28.8) with A = 1/2 and

v =v(R) = ¢o (Vw,coth Jw,R— R) — ¢, (vJw, + R7").

The condition on the continuity of ¢3(r) at r = R is vg(R) = 0, and
the solution of this equation gives the equilibrium radius of the drop
(or cylinder).

Exercises. 1) Show (28.10). Hint: for 0 < r < R, assume ¢ > 0,
and solve —A,p + f'(¢) = 0 with boundary conditions ¢(0) = ¢,
and ¢(R) = 0. Then for R < r < oo, assume @(R) < 0 and solve
—Ay o+ f'(p) = 0 with boundary conditions ¢(R) = 0 and ¢(00) = @,.
2) Compute the left and right derivatives of ¢r at R. Notice that
in general the first derivative has a jump at R, so taking the second
derivative gives a Dirac distribution, hence ¢pg satisfies

—Avpr + f'(or) = w(R)dER,

where w(R) = ¢R(R-) — ¢R(Rs). Then w(Ry) = 0 & ¢ (Ro-) =
@ro(Rot ), and i, solves —Ap + f/(p) =0 on 0 < 7 < 0.

Interaction between spherical drops or cylinders. We glue
two drops at a large distance D together to get the function g p:

----------------------------------------------------------

Here, R is the stable equilibrium radius. The interaction between drops
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is given by
Varop,r(D) = F(¢r,0) — 2F(¢r),

i.e. by the energy of the solution close to the two-drop solution for fixed
drops minus the energy of two noninteracting drops.

A more systematic way of defining Vy,op r(D) is by setting it equal
to inf{ F'(¢) : ¢ describes two R—drops fixed at a distance D from each
other} — 2F (¢r).

More refined models. In order to capture better effects of cur-
vature, or to accomodate several homogeneous phases, or both, one
makes the following refinements of (28.1):

(i) [Vo|? = clAp? + g(p)|Ve|?, where g(p) is allowed to assume
negative values on some bounded interval,

(ii) f(¢p) is assumed to have several minima:
;l\
\\ //
Po | Pw
Pm

Here, the third minimizer in the middle corresponds to the mi-
croemulsion state of the oil and water mixture.

(iii) A combination of (i) and (ii) is the Gompper and Schick model.
In this model, the function g is taken of the form
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An example of values of the parameters are ¢c =1, ¢, = g, = 4.6,
and g,, = —4.5.

For the planar interface, the Gompper—Schick model has the “conser-
vation law” (in x):

% [w" - 1@")2] 9@)@) M) =0,

\)

Here, i is a minimizer of the Gompper-Schick model representing a
planar interface (i.e. depending only on one variable).

To compute V(R) := F(pg) in the spherical and cylindrical case,
Gompper et al. do an expansion in 1/R:

1 1
orlr) = BB 1)+ 1r(r = B) + mgioalr — B) -
A computation of V(R) to the order O(1/R) yields

‘/;phere(R) = O'R2 + AR+ M,

where, for py(2) = 29(@)(?')? + 4c(9")?, we have

o = [ n

—0oQ

A= 2/ ps(2)zdz,

o0
o

po= 2/ ps(2)22dz.

o0



94

The equilibrium radius (given by V/

sphere

(Requil,sphere) = O) is thus

A

Re uil,sphere — — 5 -
quil,Sp 20_

Exercise. Compute Vinere(R) for the the piecewise parabolic
model (28.3).

Energy of fluctuations. Our goal is to compute the energy of
fluctuations near a planar interface. We go back to the free energy
functional

F(¢)=/B|V90I2+Af(<ﬂ)]-

The planar interface is described by the kink solutions © = . For
fp) = 3(¢* — 1)2, pi(z) = tanh(Az) as already discussed.

Consider now a fluctuation of the interface around its equilibrium
position at z = 0. In other words, we look for functions ¢ whose energy
is very close to inf F'(¢) and whose zero level set S := {z : () = 0} is
close to the equilibrium interface {z = 0}. One expects that up to very
tiny perturbations, such functions are of the form ¢(z) = @r(u(x)),
where u(z) = 0 on S. For S very close to the plane {z = 0}, we can
write it as a graph of some function A : R! — R, S = graphh =
{(2',h(z")) : 2’ € R4"1}. In this case, the simplest u(z) we can take
is u(z) = z — h(z'). To take into account the second order term, we
choose

u(w) = — 2=y - %(z (@) [ VA2 -

V14 |Vh(z')|?

Plug ¢(z) = ¢x(u(z)) into the expression for F'(¢), and compute
F(p) = 0A(h) (1+ O(V?h)),

where

A(h) = / 1+ VhPd
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is the area of the surface graph h, and

o= [leiPdz = [ Var(e)ds.

Thus the energy of the fluctuation (g, is proportional to the surface
area of the interface S.

29. Minimization: direct methods

The problem we address is the following: given a functional £ on a
space M, find a function uy € M (if such exists) that minimizes &:
£ = inf &(u).
(uo) = inf £(u)
Such a function ug is called a minimizer for £. Thus to begin with, we
want to assume that £ is bounded below, i.e.
Ey := inf £(u) > —o0.
0= j2f £0) > —o0
Let us first analyze a simple but typical finite dimensional situation:
M = RY. How would we minimize a functional on M? We do this
in three steps (that will be suitable to be generalized to the infinite
dimensional case):
e Step 1. Since £ is bounded on M from below by say Ey > —o0,
we can pick a sequence {u,} C M s.t. £(u,) — Epy, as n — oo. Such a
sequence is called a minimizing sequence.
e Step 2. We hope that either such a sequence converges or at least
contains a convergent subsequence, which for notational convenience
we denote again by {u,}. The limit of such a subsequence clearly is

a candidate for a minimizer if the latter exists. How do we show that
{u,} has a convergent subsequence? Assume that

E(u) > o0 as ||u|]| — oc. (29.1)

Clearly we can take the sequence {u,} s.t. every element u,, satisfies
E(un) < Ey+1 (just throw out those u,, for which € (u,) > Ey+1). Due
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to (29.1), we have that ||u,|| < C, Vn and for some C' > 0. Hence by
the Bolzano—Weierstrass theorem, {u,} has a convergent subsequence.
e Step 3. Let ug := lim,_, u,. If € is continuous, then

lim &(uy,) = € (up).

n—oo
Since on the other hand we have lim,,_,, €(u,) = Ey, we conclude that
E(ug) = Ey, i.e. ug is a minimizer of &.

Let us look closer at the last two steps. We assume M C X, where X
is a Hilbert space. A functional £ on M is called coercive iff £(u) — oo
whenever ||u||y; — 0o. A set K s.t. every infinite sequence of elements
of K contains a convergent subsequence is called compact.

The Bolzano—Weierstrass theorem states that a closed ball in RY is
compact. This property does not hold in general in the infinite dimen-
sional case. For instance, closed balls in L?({2) are not compact. As
a concrete example, take for instance Q = R", and L*(Q) 3 u,(z) :=
u(z — n), for some u € L?(Q), ||u|ls = 1. Clearly, this sequence does
not have a convergent subsequence.

We have however the following weaker result (which follows from
Alaoglu’s theorem): If X is a (reflexive) Banach space, then every uni-
formly bounded sequence {u,} in X (i.e. ||u,|| < C) has a weakly
convergent subsequence {u,, }, i.e. Jug s.t. unklmo in X (weak con-
vergence is denoted by —). Notice that the finite dimensional spaces,
weak convergence is equivalent to strong convergence, and the above
statement reduces to the Bolzano-Weierstrass theorem.

Next, the continuity is a property hard to come by for function-
als on infinite dimensional spaces. But there is a weaker property
which often holds: & is called weakly lower semicontinuous (w.l.s.c.)
iff u,——uo in M implies liminf, o &(un) > E(ug). We now check
that in fact w.l.s.c. suffices to carry out step 3 above. If u,—uq,
then liminf, ,o £(u,) > E(up). On the other hand, by the definition
of {u,}, we have liminf, ,,, E(u,) = Ey = inf,cpr E(u). Therefore
E(ug) = FEy, and hence g is a minimizer of £.

As an example, take £ = [, (5| Vul? + G(z,u)).

Proposition. Let G(z,u) > c|ul?, for some ¢ > 0. (a) If c > 0,
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then & is coercive on H1(Q); if c = 0 and Q is bounded in one direction,
then & is coercive on H{O)(Q). (b) If ¢ =0, i.e. G(z,u) >0, then &
s w.l.s.c..

Proof. (a) By the assumption on G, we have £(u) > [, (5|Vul* +
clu?). If ¢ > 0, then &(u) > (5Hu|\(1 where § = m1n(1/2 c) > 0, and
therefore £ is coercive on H:(2), i.e. £(u) — oo whenever ||u|| @) —
00.

If ¢ =0, and Q as specified, then by the Poincaré inequality (c.f.
(17.6)), we have [, [u|* < D? [, |[Vul?, for any u € HO(Q), where D is
the smallest diameter of 2. So we get £(u) > ; min(1, D‘2)||u||?1) for

every u € Hfo)(Q). Therefore £ is coercive on Hfo)(Q).
(b) We have

1 1
E/Q\VUH\Z = —/\V(u-l—un—u)|2
= /\Vu\2+Re/Vu V (U, — u) /\V —u)

> —/\Vu|2+Re/Vu-V(un—u).
2 Ja Q

If u,—u in Hy(Q), then [, Vu-V(u, —u) — 0, and therefore

lim inf — /\Vun|2 /\Vu|2.
n—oo 2 Q

Now we need to show that the potential energy part in £ is also w.l.s.c.
Using properties of Sobolev spaces, one can show that (up to a subse-
quence), if u,—u in H;(f2), then u, — u a.e.. Therefore, by Fatou’s
lemma, we get liminf, ., [, G(z,u,) > [, G(x,u), and € is w.Ll.s.c. on
Hi(9Q). [

Exercises. 1) Let V(z) > 0. Show that if u,—u in L?(12), then
liminf, o [ V(2)|up* > [V (z)]ul?

2) Let © be a bounded domain in R”, and let f € L?(Q). Show
that the functional % [, |Vu|?d"z — [, fu is coercive and w.ls.c. on
HY(Q).

3) Let Q be a bounded domain in R”, and let g(u) = (g;;(u)) be a
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family of m xm positive definite matrices satisfying g(u) > 01, for some
§ > 0. Show that the functional &£(u) = 5 [, >, ; gi;(w)Vu' - Vuld z

is coercive and w.l.s.c. on Hfg)(Q,Rm). Here, u = (u1,... ,upm) : Q@ —
R™.

30. A key result about existence of mini-
mizers

In this section, we prove a key result about the existence of minimiz-
ers. Let X be a reflexive Banach space (for simplicity, think of X as a
Hilbert space), and let M be a subset of X. We say that M is weakly
closed in X iff u,—ug in X and u, € M, imply uy € M. We consider
a functional £ : M — R. We have the following

Key Theorem. Assume M is weakly closed in X and £ is a coer-
cive and w.l.s.c. functional on X. Then & is bounded below and attains
its minimum in M (i.e. there is a minimizer of € on M ).

Proof. Let Ey := inf ) €(u), and let u,, be a minimizing sequence
for £, i.e.

nhj& E(up) = Ey. (30.1)
Clearly, we can assume that £(u,) < Eo+ 1 (we get rid of those u,’s
in the minimizing sequence for which &(u,) > Eg + 1). Then by the
coercivity of &, there is a constant K s.t. ||u,|| < K, Vn. Hence,
by Alaoglu’s theorem, {u,} contains a weakly convergent subsequence,
which we denote again by {u,}, up—ug € X. The element ug is a
candidate for a minimizer. Since M is weakly closed, uy € M. Fi-
nally, w.ls.c. of £ gives liminf, ., E(u,) > E(up). This together
with equation (30.1) implies that Ey > £(up). On the other hand,
Ey = infyep E(u) < E(uyp), and therefore £(ug) = Ep. This shows that
uo is a minimizer and that inf,cp E(u) > —o0. [
This is a simple but powerful result. It says that in order to show
that £ has a minimizer, we have to check three conditions:



()
(8)
(7)

99

M is weakly closed,
£ is w.lLs.c.,

£ is coercive.

We analyzed already conditions (f) and () in the previous section.
Now we give examples of weakly closed sets, besides of the obvious

ones,

(a)

M =X or M =g+ X (for a fixed g).

Let I = [-1,1], and let M C H;(I) be given by M = {u €
Hi(I) : u(0) = 0}.

Proposition. it M is weakly closed in H;([).

Proof. By the Rellich—-Kondrashov theorem, for {2 bounded, if
Un——sug in Hi(Q), then there is a subsequence {uy} s.t. Uy — ug
in C(Q). If u, € M, then u,(0) = 0, and therefore uy(0) =
lim,,s o = 0. |

Let €2 be a bounded, smooth domain in R™. Consider M C
H(Q) given by M = {u € HO(Q) : [, luPdz = 1}.

n

Proposition. If n > 3 and p < %, then M is weakly closed in
0
HY(Q).

Proof. By the Rellich-Kondrashov theorem, H\”(Q) is com-
pactly embedded into L?(Q2), for p < %, and € bounded. This

means that any weakly convergent sequence u,——uo in H\” ()
contains a subsequence {u,} s.t. wu, — wuy in LP(2). Hence
|uo||p = limy o0 ||n||p = 1, and therefore uy € M. |

The key theorem implies that the following functionals have minimizers
on the specified sets:

1.

5 Jo |Vul? on HY(Q), provided  is bounded in one direction,
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2. 5 [, > i 9i(w)Vul - Va/ on Hl(g) (2, R™), provided £ is bounded
in one direction, and g(u) = (g;j(u)) > 61, for some § > 0,

3. [o(3|Vul*+G(z,u)) on HY(Q), if G(z,u) > 0 and Q is bounded
in one direction.

We have the following special cases for example 3.:

i) G(z,u) = g(u) > 0. If G has a minimum at ug, then uy(z) = ug
is a minimizer: &€ (ug) = 0,

ii) G(z,u) = V(x)|u|? for some V(z) > 0, i.e. G is quadratic (re-
member that in this case the equation for the critical points of £
is linear!). We can write £(u) on HZ(O) () as E(u) = [,u(—3A+
V(z))u, i.e. & is the quadratic form of the Schrédinger operator
—sA+V(z).

We consider now some specific functionals of interest.

«) The Ginzburg-Landau energy functional

5(u):/ﬂ<%\w2+m(u)) iz,

where u : 2 — R, A > 0, and G is of the form of a double-well
potential:

G

JN /.

-1 | 1

We formalize this picture by requiring that G(u) > 0, and G
has strict (in the transverse direction) minima at |u| = 1, and
G(u) — oo as |u| — oo. The typical and most important exam-
ple is G = 1(|ul* — 1)
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We want to consider the case 2 = R", but first we assume
that Q = [—L, L]"™ with L very large (i.e. we take Q to be a very
large box, almost R™), and we want to find minimizers and sad-
dle points of £ whose properties are independent of the boundary
effects, i.e. independent of L. This is a typical physicist’s ap-
proach. Dealing with a very large box () instead of R™ saves us
many technical complications.

To begin with, we require that v — NullG, as |z| — oo, other-
wise, £(u) would grow proportionally to Vol2, which we want to
avoid.

Since G > 0, € is w.ls.c. and coercive on H\” (1), where
g : 022 — NullG. The function g is our boundary condition.
If n = 1, or u(z) depends on one coordinate only, say z1, then
we have four distinct boundary conditions (BC): u(x;) — £1 as
1 — L and u(z;) — £1, as z; — —L. Consequently, we are led
to consider £ on the following four spaces:

M, + ={u € Hi () : one of the above BC holds}.

Clearly, £ attains its strict minimum on M, ; and M__ at
uy(z1) =1 and u_(z,) = —1, respectively. In the phase separa-
tion model described by the Ginzburg-Landau functional, these
minimizers describe homogeneous phases. Next, a minimizer on
M _ is obtained from a minimizer on M_ by reflection u(z;) —
u(—x1). Thus it suffices to consider only minimizers on M_ ..
Observe that by the reflection symmetry of £, we look for odd
minimizers, i.e. we pass from M_ | to

Mﬁ‘fji ={ue M_, :u(—z)=—u(z)}

As shown above, £ is w.ls.c. and coercive on M°! C Hi(Q).
Moreover, one can show that M is weakly closed in Hy(€2).

(Recall that we think about M_ , as M_ , = g+ Hl(o)(Q), where
g is a smooth (and odd) extension of the function g from the

boundary 0f) to the interior of Q2. Then since Hl(o) () is weakly
closed, then so is M_ ,.)

Now by the key theorem above, £ has a minimizer ugL) on M°%.
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This is the kink discussed in the previous section. One can show
that as L — oo, u,(CL) — uy, where uy, is a minimizer of £ on M°%¢
for L = o0, i.e. if Q = R.

Of course, by shifting ux(z) to ug(x — h), in the case L = oo, we
obtain a one—parameter family of minimizers, the kinks centered
at different points of R.

As was discussed in the previous section, the kink solutions
describe planar interfaces. To find solutions corresponding to
spherical drops and cylinders, we take for €2 a ball B of radius L
centered at the origin. We minimize the energy functional £, as
was described above, on the set of spherically symmetric functions
of the form

M= {u(z) = p(|z|) : 2] < L, € My = Mp—o},
where
Mg :={p € H9(B) : p(R) = 0},

where ¢g(0) = 1 and g(L) = —1. On this set, the functional £
takes the form

g(u) = O'n_le(QO),

where o, is the volume of the n—dimensional unit sphere, and

e(p) = /OL (%(90')2 + G(w)) .

The functional e defined on My is w.l.s.c. and coercive. More-
over, as before, My is weakly closed. Hence e has a minimizer ¢g
on Mp. This minimizer describes a spherical drop, if n = 3, or a
cylinder if n = 2, of fixed radiusR. Recall that in order to find
a true (stable or metastable) sphere or cylinder, we have to find
critical points of the energy V(R) := e(¢r).

Ground state of the nonlinear Schrodinger equation. Now
we show how to use the Key Theorem in order to prove existence of
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solutions of differential equations.
Let 2 be a smooth bounded domain in R®. For A € R and p > 2,
we consider the problem

—Au— [uP?y = —Xu in ),

u = 0 on 0N. (30.2)

We want to prove existence of solutions of this boundary value prob-
lem. Denote by A; the lowest eigenvalue of —A on €2 with Dirichlet
boundary conditions. We have the following

Theorem. Letn > 3 and p < % Then for any A > —\{, there

is a solution to the problem (30.2).

Discussion.  Differential equation (30.2) is the Euler-Lagrange
equation for the functional

1 1 A
F(u =/(—Vu2——u”+—u2)d”x.
) = [ (59 = jup+ 5l

However, for p > 2, this functional is not bounded from below. Indeed,
take u, = pu with a fixed function u, and some p > 0. Then

1 P
F(u,) = M2§ /Q (IVul® + Aul?) d"z — % /Q lulP — —o0, as pu — oo.

Consequently, this functional does not have a minimizer. Taking u(* :=
p®u(px) with a fixed function u and some p, we find

1 1 1
F) = gers [ v = s [ jup e [,
Q Q Q

Take now « so that 24+ 2o —n > 0, and 2+ 2o —n > ap —n, ie.
z% >a>4—1. Sinceﬁ > 222 (because & < -2 +1 = ") this is
possible. Then we get F'(u®) — oo as ju — oo, which shows that F is
not bounded from above, and consequently, it has no maximizer either.
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To get out of this dilemma, we consider the constraint problem:
minimize the functional

£(u) = %/Q(NWHW) iz, (30.3)

subject to the constraint J(u) = 1, where

T(u) = % /Q s (30.4)

If such a problem has a minimizer vy, then by the Lagrange multiplier
theorem, v, satisfies the equations

— Ay + Mg — p|vg|P 2w = 0, (30.5)

1
—/ lvo|Pd"x =1,
PJa

for some p € R. But now we have the undesirable coefficient y. To get
rid of this coefficient, we first show that p > 0. Indeed, multiplying
(30.5) by 7o, integrating the result over €2, and then integrating by
parts, we obtain

u/|v0|pd"x:/ (|Vvol® + Awo|?) d™,
Q Q

so indeed p > 0. Now we rescale vy as

and

uo(z) = pﬁvo(x),

then clearly u, satisfies (30.2).
Proof of the theorem. We show that the functional £ defined in
(30.3) has a minimizer in the set

M={ue HOQ): J(u) =1}.

To this end, we have to show that
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(o) M is weakly closed,
(B) € is wls.c,

(7) € is coercive.

Properties («)—(y) were proved before as a part of our exercises. So by
the key theorem, £ has a minimizer vy in M, which by the argument
given in the discussion above leads to a (weak) solution of problem
(30.3). For a definition of the weak solution, see below. A weak solu-
tion can be upgraded to a classical solution by the elliptic regularity
argument also described below. |

Discussion. There is one subtle issue here which we brushed under
the rug: the argument above shows that uy € Hfo)(Q) N L?(Q). Hence
all we know is that Aug € H_1(Q) and therefore, we have to specify
what we mean by saying that ug satisfies (30.2).

Note that if ug is a smooth function satisfying (30.2), then multi-
plying (30.2) by v € C§°(2) and integrating by parts, we obtain

—/Quo Av—/ﬂf(uo)vzo, (30.6)

where f(u) = |u[P72u — Au. A function ug € H§0)(Q) is called a weak
solution to (30.2) if it satisfies (30.6) for any v € C§°(9).

Exercises. Prove existence of (weak) solutions of the following
boundary value problems (below, Q2 is a bounded domain in R"):

(a) the Dirichlet problem:

Ay = f in
u = g on 0f),

for every f € L?(Q2) and any smooth g : 02 — R;
(b) the nonlinear eigenvalue problem:

Au+a(x)|uf~'u = pu in Q,
u = 0 on 01,
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where a(z) is a smooth and positive function on Q, n > 3, 2 <
p < % and p > 0;

(c) the nonlinear Dirichlet problem:

V ([Vul’Vu) f in Q,
v = 0 on 09,

for any f € L*3(). (Hint: reduce this to a minimization prob-
lem on the Sobolev space

Hio)(Q) ={ue L) : / |Vul* < 0o and ulsq = 0}).
Q

How to gain smoothness: elliptic regularity. Assume we
show that the following equation has a (weak) solution in H;(f2):

Au = a(z)u' in Q,
and v = 0 on 09 (Dirichlet boundary conditions). Here, a is smooth
and © C R? is bounded. This is not so good since Au € H_;(Q2). But
it turns out that in fact v is smooth!

We can show this heuristically in the following way. By the Sobolev
embedding theorem (i.e. Hi(Q) C L*(Q) with o < 2% = 6), we have
that v € L%(Q) with a < 6. Hence u* € LP(Q) with 8 < 3/2, so
Au € LP(Q) since a is smooth.

Now assume u has a singularity (at 0, say), i.e. u ~ |z| 7 around 0,
for some o > 0. Then Au ~ |z|7?2 around 0, and Au € L?(2) implies
that |z|#(*+?) is locally integrable (in R?) at 0, so —2 + B(c +2) < 1
or 0 < 3/ — 2. This holds for all 3 =3/2 — ¢, Ve > 0 small. We thus
get 0 < 3/ — 2 < 4e. This shows that the singularity is very weak:
for any v < oo, we can choose € s.t. |z|~77 is locally integrable (take
e.g. €< %) This means that u € L7(Q), for any v < oo and therefore
we have Au € L7(Q) Vy < oo, so u € C?*¢(Q) Ve > 0 (this is again a
Sobolev embedding theorem). We can repeat this process to show that
actually u is smooth.
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31. Saddle points and the Mountain Pass
Lemma

Often, we are interested in saddle points of functionals, rather than
their extrema. This happens especially when the functionals of interest
are not bounded below or above, and therefore have no minima or
maxima. Such functionals appear in various applications and a typical
example is

)= [ (51ve = Aul) @

where (2 is a domain in R", n > 3 and 2 < p < % We have already
shown that such a functional is bounded neither from below nor from
above.

Such functionals may appear directly in a problem, or they may
occur through equations: for instance assume we want to solve the
equation

Au = —a(z)ufP?u in Q, (31.1)
v = 0 on OS2

Here again, €2 is a domain in R", n > 3 and p > 2. It turns out that
this equation is the Euler-Lagrange equation for the functional

£(u) :/Q (%\vuﬁ - %a(x)|u\p) i, (31.2)

which is a generalization of the one considered above.

Exercise. Show that (31.1) is the Euler-Lagrange equation of
(31.2).

One can try to solve the boundary value problem above either di-
rectly, or using the variational calculus. The latter is often easier. In
this section, we sketch a key technique for finding critical points of
functionals. This technique is in particular applicable to functionals of
the form (31.2).

The main result is called the Mountain Pass Lemma (MPL). It is
due to Ambrosetti and Rabinowitz. Its main idea is the same as that
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for finding a pass across a mountain ridge as shown in this figure:

mountain ridge

Now we cast this picture into mathematical terms. Consider a func-
tional £ on a (reflexive) Banach space X. Denote by B(ug, py) the ball
of radius p centered at ug: B(ug,po) = {v € X : ||u — up|| < p}. We
assume that Jug, u;, @ and p > 0, s.t.

(i) E(uo) < a, and E|sBug,p) > @,
(ii) uy € X\B(ug, p), and E(uy) < E(uyp).

An important feature of these conditions is that the set {u € X :
E(u) < E(up)} is disconnected:

ridge

U1

To find a pass in a mountain ridge, we proceed as follows. Consider all
paths from ug to uq:

F={y:I=10,1] —» X| 7v(0) = ug,v(1) = uy, continuous}
Denote the height of the ridge at v by
F(y) :=sup £(7(t))-

tel
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To find the lowest point in the ridge, we minimize the hight of the ridge
at v over all paths in I':

h = inf sup E(y(t)). (31.3)

Y€l ter

The number A represents the height of the mountain pass, and it sat-
isfies h > a.

If the infsup is attained at some points 7 and ¢ = £(7), then h is
the value of €& at w = 7(t), h = £(w). The point @ is the highest point
on the mountain pass, and we expect that the slope there is horizon-
tal: DE(u) = 0. To see that this is indeed what happens, we need an
unpleasant technical assumption: the Palais-Smale (PS) condition. A
sequence {u,} is called a Palais—Smale (or simply PS) sequence iff

(PS1) |E(uy)| < C, uniformly in n,
(PS2) ||DE (uy)||xr — 0, as n — oo.
The Palais—Smale Condition is the following:
(PS) Any PS sequence contains a convergent subsequence.

Theorem (the Mountain Pass Lemma). Let £ be C' in X, and
suppose conditions (i), (i1) and (PS) are satsified. Then & has a critical
point uy with €(ug) = h.

Idea of the proof. (For details, see E. Zeidler, Applied Functional
Analysis, Springer, Theorem 25, p.88) Since for a given v, ¢t — E((t))
is a continuous real function, on the closed bounded interval I = [0, 1],
it reaches its maximum, say at t,. Thus F(y) = £(y(t,)). Now let 7,
be a minimizing sequence for F'(7):

F(v,) = h=inf F(vy).
2
The minimizing sequence can be picked so that F(vy,) < h + 1. The

key claim is that the sequence u, := v,(t,,) is a PS sequence. The first
defining property of a PS sequence, (PS1), is immediate:

E(un) = E(Yn(ty,)) = F(1m) < h + 1.
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The second defining property, (PS2), namely DE (u,) — 0, as n — oo,
is intuitively clear, but very tedious to prove. The condition says just
that the slope at points of the ridge leading to the pass decreases, i.e.
the path becomes more and more horizontal as we approach the top of
the pass.

Given that {u,} is a PS sequence, the rest is easy. By the PS-
condition, {u,} contains a convergent subsequence, which we denote
again by {u,}. Let u, — u. Since u +— DE(u) is continuous, then
DE(u) = im DE (uy,) = 0, so 4 is a critical point, and £(u) = im & (uy,) =
h. [ |

Example. Let us go back to the functional (31.2). Assume Q is a
bounded domain in R*, n > 3, and 2 < p < % and a continuous. We

check first that (31.2) is defined on Hfo)(Q):

\ [ alu
Q

In the section on Sobolev spaces, we have proven that the following
inequality holds, for any u € H(Q):

Ssup|a|/ lulP. (31.4)
Q Q

2n
n—2

lully < Cpllulley, 2<p< (31.5)

Recall that [|ul/) is the norm in the Sobolev space Hj. Thus, if
u € H?(Q), then Jo [Vul? < oo, and | [, alul’| < oo, so |€(u)| < 0.
Therefore, £ is defined on Hl(o)(Q).

Theorem. The functional (31.2) has a critical point in the space

Hfo) (Q). Consequently, the boundary value problem (81.1) has a (weak)
solution.

Proof. We check that the conditions of the MPL are satisfied. We
choose ug = 0, so £(ug) = 0.

(i) We claim that

E(u) > =cp?, (31.6)
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provided ||ul|qy = p, where p = and where ¢ is the

__¢c
2supq |a|’

(largest) constant entering into the Poincaré inequality (c.f. (17.6)):

[ 19u? > dlulfy,
Q

i.e. cis the lowest eigenvalue of —A on (2.
Indeed, equations (31.4) and (31.5) imply that

/ aluf?
Q

This together with the Poincaré inequality implies

< sup |al ||ul[fy,.
Q

E(u) = |[ullfy) | ¢ = supal [|ullf) |,
Q
which in turn implies (31.6).
Thus condition (i) of the MPL is satisfied with o = ¢p?/2, and
p= 2su1§9 la| -
We claim that condition (ii) of the MPL is satisfied as well: take

u; = Au, with u € H{O)(Q) arbitrary but fixed, and A sufficiently
large. Then we get

1 1
£(w) = )\2—/ Vul? — A”—/ alufP = —oo,
2 Ja PJa
as A — oo since p > 2. So for A sufficiently large, and u; = \u,

we get £(u) < 0.

This condition is the most difficult to check. Let {u,} be a PS
sequence, i.e.

E(ua)] < C (31.7)

IDE (un)||xr — 0 (31.8)

We want to show that {u,} contains a convergent subsequence.
Equation (31.7) implies that

1 1
§||Vun|\2 <C+ 1_7 ‘/Qa|un\p , (31.9)
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and (31.8) implies that
Ve Ing : ||DE(un)||xr <€, for n > ng. (31.10)

Equation (31.10) and the Poincaré inequality yield

/Vun-Vv - / alun [P unv
0 0

for any v € Hfo) (), provided n is sufficiently large. Take € =

(14 +/c)™", and v = u,,. Then the last estimate gives

/ alul?
Q

Combining this with (31.9) gives

< eljvllw) < el +Vo)l[Vvl],

< IVual + [ V|

1 1 1
5IIVunll” <O+ —[|Vun[[ + ~[[Vun|*
p p

Since p > 2, this implies ||Vu,|| < C;. Thus {u,} is bounded
in H(Q) uniformly in n (Poincaré inequality), so there is a
subsequence {uy, } converging weakly in H © (Q).

Now observe that DE (u,) = —Auy, + alu, [P~ u,. We solve this
equation for u,, as

U, = (=A) 'DE(uy,) — (—A) talu, P2

Since DE (u,) — 0 in H_1(Q), we have that (—=A)™'DE(u,) — 0
n H1 (Q)

Next, we claim that the operator u — A~'G(u), where G(u) :=
a|u|P~?u, is compact in H; (), i.e. it maps weakly convergent se-
quences into strongly convergent ones. Indeed, u,—u in H; ()
implies that (up to a subsequence) u,, — v in L¥(Q), for any a <
20 (see (31.5)), and in particular for & = p. Since a is uniformly
bounded, the latter fact implies that a|u,|P~?u, — a|ul/P~?u in
L7 1(R2). Now since 5> 20 we have by the Sobolev embed-

n—27
ding theorem that

(=8) afunup = (=2) 7 uu
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in H{(2). Hence u, converges in H{(2), and consequently, the
(PS) condition is fulfilled as well.

We verified all the conditions of the MPL for the functional (31.2) on
Hfo) (€2), hence by the MPL this functional has a critical point. |
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Chapter V. Dynamical
systems

A dynamical system is an evolution equation of the form

dut
— = F(uy), 32.1
= F(w) (32,1
where t € [0,00) is the “time”-variable, and ¢ — u; is a differentiable
path in a Banach space X, i.e. a differentiable vector function from
[0,00) to X. It is assumed that F' maps the space X into itself. X is
called the phase space or state space and F' is called a wvector field on
X.

Examples. 1) A one dimensional dynamical system is given by
& = F(z), z: R — R. Here, z = 2, and & = %,
2) A two dimensional dynamical system coming from Newton’s equa-
tion & = —V'(z), where V : R — R is the potential corresponding to

the “force” —V' (the negative derivative of V) is given by

%@):(—v%(m))'

3) The heat equation:

Here, F(u) = Au + g(u).

Other examples are the Schrédinger equation, the wave equation,
the Euler equation, the Navier—Stokes equation, the KdV equation, etc.

115
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In the theory of dynamical systems one is interested in the long time
behaviour of solutions u, for various initial conditions ug (i.e. ug is con-
sidered to be given). One usually seeks qualitative pictures describing
possible scenarios of the evolution of the system rather than quantita-
tive ones. For example, assume the potential V' in example 2) is of the
following form (two hills and a valley in between)

AV

Vo

ARERV

Then trajectories of this system in phase space R? (space of points
(z, %)) look like

The subject of dynamical systems is vast. We consider one of the
central questions which is natural from the viewpoint of this course,
namely the long—time dynamics near equilibria. However, before pro-
ceeding to this topic, let us introduce some basic notions.
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32. The flow

If the vector field F is linear, F'(u) = Au, then the flow is another name
for the evolution operator, or exponent exp(At). Moreover, the notion
of flow covers also the nonlinear case. Assume equation (32.1) has a
unique solution, u;, say on the interval ¢ € [0, 7], for some T > 0, and
for any up € X. This defines a family of maps ¢, : X — X by

¢t(uo) = Ut,

i.e. the map ¢, shifts the function on which it acts along the solution
of equation (32.1). The family {¢:}+>¢ is called the flow (generated by
F). Flows have the following properties:

(

(

a) ¢O = ]17
b) @10 ¢s = Piys,
(c) F(u) =0<= ¢(u) =u.

A point @ is called an equilibrium point of (32.1) iff w does not depend
on time, i.e. iff F(uw) = 0.
Property (c) says that the fixed points of the flow are precisely the
zeroes of the vector field F, i.e. equilibrium points of (32.1).
Exercise. Prove (a)-(c).
Let ¢ : X — X be a map. We define the discrete time flow ¢"™(u) for
n=0,1,... by " := 1, and

¢" :=¢po...0¢p, n>0.
———
n times

For example if ¢, is a flow, then ¢, = (¢1)™ is a discrete flow.
Example: linear flow. Let F(u) = Au, where A is a bounded
linear operator (or a self-adjoint operator). Then the flow is given by

bi(u) = e*u.

This linear flow exists for all times. This formula shows that ¢; gen-
eralizes the notion of the exponential mapping or evolution operator
(in fact, one can think about a flow as an exponential of, in general,
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nonlinear maps).
The next theorem shows that the linearization of a flow at an equi-
librium point is a linearized flow.

Theorem. Let F be a C'-map, and let T be an equilibrium point
(i.e. F(u)=0). Then ¢, is C*, and

Doy (T) = PP, (32.2)

Exercise. Prove this theorem. (Hint: assuming ¢ is C!, take the
Fréchet derivative of the initial value problem 2¢,(u) = F(¢(u)), and
¢o(u) = u at w. The solution of the resulting equation leads to (32.2).
Then use this to argue that ¢, is in fact C*).

Our task is to study the behaviour of sulutions to equation (32.1)
near an equilibrium point w. In particular, we want to answer the
following questions:

e Do they stay in a neighbourhood of @ (Lyapunov stability)?

e Do they converge to u as t — +oo (asymptotic stability)?

e Do they move away from @ as t progresses (instability)?

To answer these questions, i.e. to understand the stability character of
the equilibrium %, we look for solutions of the form

ut:ﬂ+£ta

where & is “small” relative to w. The path ¢ — &, is called the fluctua-
tion of u; around w. It will be shown below that in the leading order in
the size of & (i.e. ||&]]), & satisfies the linearized equation (c.f. (34.3))

A& i
— = DP(@)G. (32.3)

Thus our first task is to understand_the behaviour of the linearized
dynamics (32.3) near its equilibrium & = 0 (& uy = u).
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33. Dynamics near equilibrium: linear case

Let A be a (bounded) linear operator on a Banach space X. We consider
the evolution equation

This equation has an equilibrium solution at w = 0. We want to under-
stand the behaviour of solutions of this equation near this equilibrium
point, i.e. for u; small. This behaviour can be rather complicated, as
can be seen from the following simple

Example. Let X = R? and let A be a real 2 x 2 matrix with
eigenvalues Aq, As. According to the nature of the spectrum of A, we

have the following qualitative pictures for the flow ¢;(u) = e?tu:

asymptotically stable unstable unstable

N,
NN T

A, A2 <0 A, A2 >0 A1 < 0,22 >0

asymptotically stable Lyapunov stable unstable

Rel1 = ReXs < 0 ReA;1 = Rel2 =0 ReA; = ReA2 >0

Exercises. 1) Justify the picture above, 2) analyze the stability
properties of the static solution of the equation & + cz + kx = 0, where
¢ >0,k > 0 (damped oscillator) for ¢ > 0 and ¢ = 0.

This example shows that we should try to connect the behaviour of
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u; near © = 0 with the location of the spectrum of A with respect to
the imaginary axis. For instance, if (A) C C lies in the open left half
plane, then we expect that 0 is a stable equilibrium.

We decompose thus the spectrum of A as

0(A)=0_UogUoy,
where
or:=0(A)NCyg, and og:=0(A)NiR,

with Cy = {z € C: RezzO}. In other words, o_ is the part of the
spectrum of A lying in the left half plane and so on. We assume that
the components o_, oy and o, are disjoint sets:

Now we define spectral subspaces associated with these components as
V., = RanP,, n = 4,0, where P, are bounded operators defined as
1
Po=— ¢ (A—2)""dz,

271 "’

here, 7, is a contour encircling the component o, but not intersecting
or containing the other components (see the figure above). Our main
result is

Theorem. The subspaces V,,, n = +,0 have the following proper-
ties:

(i) they span uniquely the entire space X in the sense that any vector
u € X can be uniquely written as a sum

u=u_+uy+uy, whereu, € V,, n==0, (33.2)
i.e. the space X can be decomposed as X =V_@ Vo d V,y,
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(i) they are invariant under A, i.e. A maps V, into V,, n = +,0;
(1ii) they satisfy
Vu € Vi we have ||eu|| — 0 as t — Foo,

Vu € Vi, u # 0 we have ||e**u|| — oo as t — +oo,
Vu € Vo, [letul] = [ul]

Corollary. Let Vo = {0} (i.e. 0¢ is emply: oo = ¢, which is called
the hyperbolic case). For any initial condition u, the solution of (33.1)
satisfies

ety — e*ui|| = 0 ast — oo,

where uyx € Vi and uy +u_ = u. In particular, if 0. = 09 = ¢, then
the equilibrium w = 0 is stable; if o # ¢, then it is unstable.

Vi, Vo and V_ are called unstable, central and stable subspaces.
Sometimes, they are also denoted as V,,, V. and V, respectively.

An equilibrium point is called hyperbolic iff V. = {0}. In the finite
dimensional case, i.e. for X = R", and A a n X n matrix, some n > 1,
one can show that

V. =span{(root) eigenvectors of A corresponding to eigenvalues
with real part > 0},
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V. =span{(root) eigenvectors of A corresponding to eigenvalues
with real part = 0},

Vs =span{(root) eigenvectors of A corresponding to eigenvalues
with real part < 0}.

Recall that £ is an eigenvector of A with eigenvalue A iff & and A satisfy
the equation (A — A\)¢ = 0. £ is called a root eigenvector of A with
eigenvalue )\ iff € and A satisfy the equation (A—\)"¢ = 0 and moreover,
(A — X)"~1¢ £ 0, for some integer n > 2.

Exercises. 1) In the finite dimensional case, where A is a symmetric
n X n matrix, prove the theorem as well as the characterization for
Vs, Vo and V,, given above. (Hint: use that (i) one can choose an
orthonormal basis consisting of eigenvectors of A and (ii) A = A
implies e4'¢ = eM¢). 2) Let € be a root vector of A of order 2 for an
eigenvalue ), i.e. (A — \)26 =0 but (4 — \)€ # 0. Show that

et =M (1 +t(A—-N))E

This formula shows that ||e4’¢|| — oo if ReA > 0.
We derive the theorem from properties of the operators P, given in
the following

Proposition. Under the assumptions on o(A) made above, the op-
erators P,, n = £, 0, have the following properties:

(a) [Pn, A] = 0;
(b) P2= P, and P,P,, =0 if n # m;
(c) the spectrum of A restricted to RanP, is ,: c(A | Vi) = oy;

(d) Ve > 0, [|[eMPy|| < Ceel=¥9, 150 and [[ePyl| > celb=tor,
t20, where u_ = sup{Re) : A\ € o_} and p; = inf{ReX : X €
0+ }; moreover, [le™" Pyl| = || Poll;

(6) P++P_+P0:]l

Discussion. Property (a) implies that RanP, is invariant under A:
if u € RanP,, then v : v = P,v and therefore Au = AP,u = P,Av €
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RanP,. Property (e) implies that any v € X can be decomposed as
in (33.2): u = lu = P_u + Pyu + P,u. Property (b) shows that this
decomposition is unique (the first part of this property shows that the
P,’s are projections). Property (d) implies the last statement of the
theorem. We will not use property (c).

Sketch of the proof of the proposition. We prove some of the state-
ments, the others are proven similarly.
(a) This statement follows from the representation

1
Po=—¢ (A-2)"'dz

2T o

and the fact that (4 — 2z)~! commutes with A.
(e) Deforming the contour of integration 7 := y_U~,U~v, in the domain
of analyticity of (A — z)™!, we get from

1
P+P0+P+:%}[(A—z)1dz

Y

the following equation:
1 -1
P +P+P,=— ¢(A—2)""dz, (33.3)
2mi J,

where v is a contour around the entire spectrum o(A):

Y-

We now show that the r.h.s. of (33.3) is equal to 1, so the result (e)
follows. Choose v = {|z| = p}, where p > ||A4||. Now (A —2)7! =
—27' (1= A/z)"t and ||A/z|| < ||A||/|z]| < 1if z € 7, so we can expand
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(1 — A/z)~! into an absolutely converging geometrical series, and

(A2 l= 1Y (é)k.

k=0

We obtain therefore

1 ad 1
_ A— ! - Ak— —k—1
omi 7( ?)dz 2 27m']§z dz
k=0 v
. > k 1 kZO
- >y i
k=0
= 1

(d) We prove only the part of (d) involving the upper bound on eA'P_,
the other cases are shown in the same way. We use the Cauchy formula
to get:

1 eAt 1 ezt

At
P =— dz = — dz. 33.4
¢ 2mi %A—zz 271 WA—ZZ (33.4)

This equation holds since

6At — e?t o 6(Afz)t -1
A—z — ST A
= e"‘t(A—,z)_lz—'(A—z)’c
k=1
_ eztiﬁ(A_Z)k—l
B “— k!
=1

is analytic in z, so by Cauchy’s theorem, we have

At 2t
% ¢ g,
. A-z
which proves (33.4).

We take now 7_ s.t. the distance from y_ to o_ in C is bigger than
or equal to €, which implies that

(A== <€, Yz e
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This gives us now immediately

1
At Rezt -1
Pl < — A— d
I[P < g § I d
1 . _
< e (A=) dle
Y-

< Cel-19'm

Remark. In concrete cases, we can extend the analysis above to
unbounded operators A. Using our previous results, we can do the
stability analysis for A being a multiple of the Laplacian A, which is
an unbounded operator. There is a general class of operators on Hilbert
spaces, called selfadjoint operators, for multiples of which the analysis
above can not only be done, but can actually be made more precise.
For instance, we can show for such operators that if o(4) C C_, then
u is Lyapunov stable.

34. Nonlinear case: discussion

We return to our nonlinear dynamical system

dus

= F(u). (34.1)

Assume there is an equilibrium state w, i.e. F(u) = 0. We want to
understand the behaviour of solutions to (34.1) with initial conditions
near this equilibrium u. It is natural to represent such solutions in the
form

ut:U+§t7

where &; is small compared to %, at least for small values of t.
Plugging the latter formula for u, into equation (34.1), we derive an
equation for &:

dée _

- = Fu+&).
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To present this equation in a convenient form, we expand the r.h.s.
around u:

Fu+&) =DF@)& + R(&),

where R(&) = o(||&|]) and where we have taken into account that
F(u) = 0. Thus the equation for & becomes

dg _

% — pr@e + R (34.2)

This is our basic equation for &;.

The term R(&;) is purely nonlinear in & and is small compared to
DF(u)&; for small ||&]| (except in the case when DF(u) has a zero
eigenvalue). Thus it is natural in a first step to omit this term. Conse-
quently, we obtain the linear equation

“% _ prmg, (34.3)
dt
This equation is called the linearization of equation (34.1) around the
static solution (equilibrium) @. It is the key equation in the stability
analysis. The analysis of the spectrum of (34.3) determines to a large
degree the stability properties of the solution &;. It is called the linear
stability theory.

Recall that the key element in the stability analysis of (34.3) is the

study of the linearized flow

o = e where A =DF (@).

To transfer the results of the linear stability analysis to the nonlinear
equation (34.1), we linearize the nonlinear flow ¢; at u: write u = Tw+¢,
then, using ¢;(7) = u and (32.2), we get

$u(@+€) —u = ¢ (€) + g(6),

where g(§) = o([[¢]])-
For the discrete flow ¢,(u) define

&) =1+ —u and A =" = e,
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Then we have

$(§) = A&+ 9(8), (34.4)
where g(&) = o([[¢]])-

Duhamel principle and integral equation for the flow. The
Duhamel principle is formulated as follows. Let A be a bounded op-
erator. Then the solution of the inhomogeneous initial value problem
(with given initial condition & and inhomogeneity f;)

% = A&+ fy and &li—o =& (34.5)

can be expressed in terms of the linear flow (/5,(50) = e/ (also called the
linear propagator) as follows:

t
&= (&) + [ 00(1)ds. (34.6)

0
On the other hand, if & is given by (34.6) and is differentiable, then it

satisfies the initial value problem (34.5).
Applying the Duhamel principle to equation (34.2), we obtain

t 0
&zw%@aﬂéim@»m

Expressing &; in terms of the flow ¢, for (34.2), & = ¢4(&), and replac-
ing & by &, we find

$i(€) = 8 (€) + G4(€),

where (G; is the nonlinear part of the map ¢;:

@@=Ld2@@@»m

Taking ¢ = 1 in the previous equation, we obtain an equation corre-
sponding to (34.4).
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35. Nonlinear stability

The following theorem shows that stability properties of an equilibrium
point can be determined by the stability properties of the correspond-
ing linearized system.

d
Theorem. Consider the dynamical system % = F(u;), with an
equilibrium point u: F(u) = 0. Assume F : X — X is C'. Then,
(i) if o(DF(u)) C C_, then u is asymptotically stable,
(i) if o(DF(u)) N Cy # ¢, then u is not asymptotically stable.

Here, C. denote the (open) right and left complex half-planes, re-
spectively. Asymptotic stability of @ means that Ve > 0 3§ > 0 s.t. if
the initial condition ug satisfies ||ug — @|| < 6, then ||¢(ug) — ul|| < ¢,
Vt > 0 and moreover, lim;_,q ||d:(ug) — @l|| = 0.

Proof. Without loss of generality, we assume u = 0. We show first
(i). In a first step, we transform the initial value problem (34.2) into
an integral equation, using the Duhamel principle introduced in the
previous paragraph. Setting A = DF(u), we obtain

t
&=e'6+ / e IR(E,)ds. (35.1)
0

In a second step, we estimate (35.1). First notice that by the definition
of R(£), Ve Ja s.t.

RO < €llell, i [[E]] < e (35.2)
Take initially ||&]|| < «, and set
T = sup{t: |6l < a}.

Equations (35.1) and (35.2) and the inequality ||e4’¢|| < Ce#t||¢]| (with
1 = ssupReo(A) < 0), proven before (c.f. (d) in the last proposition
above), imply

t
mmzcwmw+c/eWﬂmaw&
0
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provided t < T'. Let

a:= sup e 2t||&]|.
0<t<T

Then the latter inequality implies

t
a < C||&]| + Ce sup egt/ eh(t=s) s <e’%8||§sH) ds,
0 0

<t<T
S0, since p < 0, this yields
a < Cl|&]| — 2Cea/ .

Now choose € = (=4C/p)™", then a < C||&|| + 3a, thus a < 2C||&|.
If we take the initial condition s.t. ||&|| < ;& with C as above, then
a < «/2 and therefore T = oo (in fact, if there were a T' < oo s.t.
I|ér]] = a, then we would have e #T/2q = e #1/2||&p]] < a < /2,
which is not possible since e#7/2 > 1). Thus we have

& < aegt/2, provided |[&]] < 2.

This shows in particular that ||&|| — 0 exponentially fast, provided
the initial condition is chosen sufficiently close to the equilibrium point
u=0.

Now we show (ii), where we assume for simplicity that o(A4) N C,
contains an eigenvalue A with corresponding eigenvector £&. We can
take ||€M]|| as small as we wish. Consider then equation (35.1) with
initial condition & = £é™. We have

& =My + / t eI R(E,)ds, (35.3)
0

and therefore

t
el > RN lg| - / RN | R(E,)|ds

1— eRe)\t

> RN ||| + supt | R(&)|]

Re)\ 0<s<

1 1
Relt . R i R Il
e (ol = g s, IREN) + ey sup, IR(ED]

v



130

Recall that ReA > 0 and R(&) = o(||€]|). If ||&]| is very small, then the
negative term is very small, so that first term, which grows, dominates.
So ||&]| grows until the second term in (35.3) balances the first term,
if this ever occurs. Thus if & is in a very small ball around w = 0, then
& leaves this ball after a while. [ |

36. The stable manifold theorem

Consider a map ¢ on a Banach space X with a fixed point (equilibrium)
u, i.e. ¢(u) = u. We want to understand the behaviour of the orbits
¢™(u), starting at points u close to u. Our first step is to establish the
existence of a stable manifold My = M, (u) of @, i.e. an invariant man-
ifold for ¢ s.t. ¢"(u) — @ for all u € M,. Often in infinite dimensional
problems, the manifold M, is of a finite codimension, which allows us
to reduce the original problem to a finite dimensional one (or in some
problems, by fixing a finite number of parameters, one can place u onto
M;). This will be explained more carefully later.

We begin with stating the assumptions suggested by our previous
analysis:

(A) 3 subspaces V; = Vi(u) and V., = Vi (u) s.t. V;NV,, = {0} and
V;’ + ‘/cu = X,

(B) Vs and V,, are invariant under A := D¢(u) and ||As]| = p,
AL = ¢!, where Ay = A | Vg, # = s,cuand 0 < p < g,
p <l

Under conditions (A) and (B), we have

Theorem. There is a neighbourhood U of w and there is a local
manifold My = Ms(u) C U s.t.

(a) My is invariant under ¢,
(b) Vs is tangent to M at u,

(c) ¢"(u) = T as n — oo, Yu € M.
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Remarks. 1) (a) and (b) hold even if the condition p < 1 is removed.
2) Later on, we will give a more complete picture of the flow.
Let us give the proof of the theorem in several steps.

1) Notation. Vi, ={s € V;:||s|| < r} is the ball in V; of radius r
centered at 0. P, and P,, denote the projection operators onto the sub-
spaces V; and V,,: P? = P,, RanP, = V; and similarly for P,,, defined
by the relation P; + P., = 1, i.e. P;u = x and P.,u = y, where x € Vj
and y € V,, satisfy x + y = u. Since V, and V,, are invariant under A,
the projections Py and P,, commute with A: [A, P;] =0, [A, P.,] = 0.

Exercise. Show the operators P; and P,, defined above are pro-
jections.

Redefining the flow ¢, we can shift u to 0, so we assume to begin

with that u = 0.

2) Blow up. Instead of looking at ¢ on a small neighbourhood
of @ = 0, we blow it up as ¢.(u) := %(b(eu), then ¢, is defined on
a fixed neighbourhood of uw = 0, say the ball, X5, of radius 2. In the
proof below, we require € to be sufficiently small. The neighbourhood U
mentioned in the theorem is obtained by applying the inverse transform
to X, i.e. U = eXy = Xy (or U = u + X,). We drop from now on

the subscript e. Using that ¢(u) = 7 = 0, we expand the flow in e
¢(u) = Dp(0)u + R(u),
where R(u) = Zo(el[u|]) = 0(1) — 0 as € — 0.

3) Lipschitz continuity. Recall that a map f : X — Y is called
Lipschitz continuous iff

1f (@) = FW)lly < Lllz — yllx (36.1)

We set Lip(f) :=inf{L : (36.1) holds}.
Exercise. Show that Lip(g o h) < Lip(¢g)Lip(h). (Hint: use the
chain rule, as in derivatives).

4) Ansatz for M;. We look for M; as a graph of a map f:V,; —
Veu, 1.6. M = graphf = {us + f(us) : us € Vi1 }-



132

...................

5) Main steps of the proof.
(o) Using that M; is invariant under ¢, we derive an equation for f:
H(f)= /. (36.2)
(8) We find a space B on which H is a contraction. Then (36.2) has
a unique solution, so My = graph f!
(v) We show that Yu € My, ¢"(u) — u = 0.

Proof. () We have that u € M, < 3z € V,; s.t. u =z + f(z). Since
P,u = z, we have

u € My <= u= Pyu+ f(Psu) =: Ps(u).

Now M, is invariant under the map ¢ < {u € M, = ¢(u) € M,;} &
{u = Ps(u) = ¢(u) = Ps(¢(u))}. A sufficient condition for the last
implication to hold is

where both sides are defined as functions on V; ;. Equation (36.3) is our
equation for f. We transform it to a convenient form. First, project
it onto the space V,, i.e. apply the projector P, to (36.3). Since we
have

PP =P, (Ps+ foP;)= foP, (36.4)
we obtain

P.u¢ o Py = foPpo Py (36.5)
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Now expand ¢ o P on the Lh.s. as

¢(Py(z)) = o(z + f(2)) = D(0)(z + f(z)) + R(Pr()).

Since P,, commutes with D¢(0) and since P, (z + f(x)) = f(z) (this
is the same as (36.4)), we have

Pcuqﬁ(Pf(x)) = Acuf(x) + PcuR(Pf(I))a

where, recall; A, = A [ Vi, with A := D¢(0). Substituting this into
(36.5) and inverting A, (recall that ||AZ}|] = ¢~' < oo by condition
(B)), we obtain

f=H(f), where H(f):=A_ [foPpoP;— P,RoP]. (36.6)

This is our desired equation.

(8) Now we choose a Banach space on which we define the map
H(f). This is a crucial step. For the moment we will not worry about
smoothness and take

B :={f:Vs1 — Vulf is Lipschitz , f(0) = 0, and Lip(f) < 1}.

We take an unusual norm on B:

A= sup ("f(f“”'). (36.7)

w;éoawe‘/s,l

However, one can prove
Lemma. B is complete in the norm (36.7).

Observe that B is not a vector space and therefore in not a Banach
space. It is a “nonlinear space”. A proof of this lemma is simple but
slightly tedious. We omit it here and refer for it to [MMcC].

Now we turn to the technical statement:

Proposition. Let € be sufficiently small. Then H maps B into it-
self and is a contraction.
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Proof. First, we show that the map H is well defined on B. To
this end, we have to show that v := vy := Py¢ o P maps V;; into itself.
Expanding ¢ around 0, we find

P,¢(Pr(x)) = Asz + PsR(Py(x)), (36.8)

where we recall A, = D¢p(0) | Vi and where we have used that P
commutes with A, and P;P; = P;. This expansion implies

[Ps¢(Pr(2))]] < (p+ 0c(1))]|2]], (36.9)

where p := ||A;||. Hence for p < 1 and e sufficiently small (so that
p+o0c(1) <1), Pspo Pr maps Vs into itself.

The relation H(f)(0) = 0 follows from the definition of H(f) and
the relations f(0) = 0,¢(0) = 0 and R(0) = 0. In order to see that
H(f) is Lipschitz, it is convenient to write it as

H(f)(z) =H(z, f(z), f(v(2))), (36.10)
where v = P;¢ o Py and
H(x,y,2) = A;ul [z — P R(z +y)]-

Now since R is Lipschitz, then so is H in all its variables. Furthermore,
since ¢ is Lipschitz, then so is v. Hence H(f)(x) is Lipschitz (in z) as
a composition of several Lipschitz functions.

Now we estimate Lip(H(f)). Denoting by Lip,(H) the Lipschitz
constant of H in the variable x and similarly for the other variables, we
obtain by the chain rule

Lip(H(f)) < Lip,(#) + Lip, (H)Lip(f) + Lip,(#)Lip(f)Lip(v).
(36.11)

From equation (36.8), we obtain:
Lipv < p+ o.(1).

Furthermore, due to the explicit formula for H and condition (B), we
have Lip,(#) = oc(1), Lip,(H) = o0.(1) and Lip,(H) < ¢~', where
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q:=[|AL 7"
Combining the last two relations with equation (36.11), we obtain

Lip(t(9) < (2 +0.0)) Lp(s) +ou(0).

Thus, since p/q < 1, we can arrange that Lip(H(f)) < Lip(f) < 1.
Finally, we show that H : >+ H(f) is a contraction. In what
follows, we omit the argument x and write

H(f) =H(f, f(v))
instead of (36.10). Write
H(f1) — H(f2) = H(f1, f1(v1)) — H(f2; f2(v2)),

where v; = vy,. We telescope the r.h.s. as

H(fi) — H(f2) = H(f1, fi(v1)) — H(f2, fi(v1)) + H(fo, f1(v1))
—H(f2, fo(v1)) + H(f2, fo(v1)) — H(f2, f2(v2)).

We now estimate separately each of the differences on the r.h.s.:

[H(f1, fi(v) = Hf2, fitv)Il] < Lip, (F)[I[f1 = falll,
[H(f2, fr(v1)) = Hf2, o))l < Lip,(H)|I[fr = falll - [[|val],
[H(f2, fo(01)) = H(f2, fo(v2))[l] < Lip,(H)|[|f2(v1) = fa(va)]l]
< Lip,(H)Lip(f)|[[v1 — v2]|l.
We use the following facts:

Lip(f) < 1,

Lip,(H) = oc(1),

[[vill] < p+oc(1),

Lip,(H) < ¢,

o = val[l = oc(D)[[[fr = fll|

to conclude that

i) - a1 < (7 -+ (141 00 15 - £l
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Since p/q < 1, we can choose € so small that H(f) is a contraction. H
Corollary. There is a unique solution f € B to (36.6).

One can show further that f € C* and Df(0) = 0. This means that
V is the tangent plane to M, = graph f at 0.

(v) Show that Vu € M, ¢™(u) — 0.
Let u € My <> u =1z + f(z), x = Psu. Expand ¢(u) = Do(0)u + R(u).
Commuting P, through D¢(0), we obtain for () := P¢(u):

eV = Po(z + f(x)) = Do(0)z + P,R(z + f(x)).

Hence the inequality || f(x)|| < |||£]||||z|| implies ||z¥|| < §||z||, where
0 :=p—+o(1)(1+|[|f]|]). Since p < 1 by assumption, take € so small
that § < 1. Let u(™ := ¢™(u). Then for (™ = Pu(™, we obtain

™1 < 6%|z]| = 0.
Now since u(™ € M, we can write u(™ = z( + f(z(™), and so
[ < a1+ 1A,
which shows that |[u(™|| — 0. [

We proved the stable manifold theorem modulo showing that f is as
smooth as ¢ and that D¢(0) = 0. For a proof of the latter statements,
see [MMcC].

Now we refine the theorem above. Assume

(C) V. is the sum of two subspaces V., = V. +V,, V. NV, = {0},
both invariant under ¢, and

[Asel| - 1AM < 1 (36.12)
here Asc:A stc, V;’c:‘/s_*"‘/c

Theorem. Under assumptions (A)—(C), there is a neighbourhood
U of u and there are local manifolds Ms., M, C U s.t.
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(a) Vie and V, are tangent to M. and M, at 1, respectively,
(b) ¢™(u) = M. as n — oo, Yu € M,,.

M, = My(u), M, = M.(u), Ms. = Ms.(u) are called respectively the
(local) stable, central, stable-central manifolds for the fixed point .

Proof. The construction of M, is similar to that of M,; we use
condition (36.12) instead of the conditions in (B) and have to deal with

an extra technical problem, namely that v := Py.¢ o P, does not
map V. into itself. We do not address this problem here (see [L] for
details).

The construction of M, as well as the proof of convergence contains
some essential differences. We sketch this construction, leaving out
some details that are similar to those above. We start in the same way
as with M;: look for M, as M, = graphf, for some f : V1 — Vg,
where Vi, = Vs +V,,. Let Py, be the projector onto V;, (defined as P,
etc., above) and Ay, = A [ V. Define Py := P, + f o P, and derive the

following equality for f:
Py¢poPr= foP.po Py (36.13)

Now comes the difference: unlike A,,, Ay, is not invertible, so we cannot
extract f from the 1.Lh.s. We need to proceed differently. Break up
(36.13) into two equations:

P,poP; = P,foP.poPy, (36.14)
PipoP; = P,foPdoP; (36.15)

The first equation is similar to the one for M, and can be solved for
P,f:

P,f =A;'[P,foP.po Py — P,Ro Py]. (36.16)

We cannot do the same with equation (36.15), since A; is not invertible!
So instead of the l.h.s., we resolve the r.h.s.: let

gy f:Pc¢°Pf3Vc,1—>Vc,1
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and show by the implicit function theorem that g; is invertible. Then
(36.15) can be rewritten as

P,f = P,po Prog;t. 36.17
F°9y

Adding equation (36.16) to (36.17) and using that P,f + Psf = f, we
arrive at a fixed point equation for f: f = H(f).
The proof of the convergence ¢™(u) — M, Yu € M, is trickier.
Let u™ = ¢"(u), w™ = u™ — P;(u™) and u(® = u. We want to show
that w™ — 0. Then, since P;(u™) € M,, we would have
dist(u™, M,) < |[u™ — P;(u™)]| — 0,

which is what we want. As before, it suffices to prove a one step con-
traction. To simplify notation, we write u' = ¢(u), w := v — Ps(u)
and

w' =u' — Pp(u'). (36.18)
We want to show

w' = Aw + R(u), R(u) = O(||u|[*) and w, = O(w,). (36.19)

Then [[w)|| < 8]|ws]|, § = p+ 0c(1) < 1, |[wy]| < Clfws||. So |Jwi™]| <
57| |ws|[, |[wi™]] < C||wi™ || < C6™||w,]|, and therefore

[w™]| < C18"[|w,|| — 0.
Proof of (36.19). Equation (36.18) implies
w' =u' — Pu' — f(Pu') = Pyu' — f(Pu)). (36.20)
On the other hand, equation (36.13) gives
Poud(Pru) = f(Pep(Pru)).

Subtracting this from (36.20), we obtain

w' = Po ($(v) — ¢(Pru)) — (f(Ped(u)) — f(Ped(Pru))).  (36.21)
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Next, using that P.aw = 0 and u = Pju + w, we expand
d(u) — p(Pyu) = Aw + Ry (u), (36.22)
where R, (u) = R(u) — R(P;(u)) and
J(P.(w)) — f(Pg(Pyu) = D (@) PRy (u), (36.23)

where 4 is some point on the interval joining v and Pru. Equations
(36.21)—(36.23) give w' = Aw + R(u) with R(u) = O(||u||?). Thus the
first part in (36.19) is proved.

In what follows, we use the notation u. = P.u etc. We now show
that w, = O(w;). The fact that M, C M. and the definitions

Mc - {u|usu - fc(uc)} - {u‘us = Psfc(uc)a Uy = Pufc(uc)}a

where f. (denoted simply as f above) defines the central manifold
(M, = graphf,) and

Mie = {uluy = fse(usc) },
where M,. = graph f,. imply the following relation between f. and f;.:
Pufe(uc) = foc (Pofe(uc) +uc),  Vuc € Ve
On the other hand, from the definition of w we have
ws = Us — Psfe(ue) and  wy =ty — Pyfe(ue)-

The last three relations (and the fact that we take u € M., so that
Uy = fsc(usc)) giVei

Wy = foc(tse) = Pufe(te) = fse(tse) = fse(Psfelue) + uc).
Applying the mean value theorem and using that
Uge — Psfc(uc) — Ue = Ug — Psfc(uc) = Ws,

we finally obtain w, = D fs.(t4)ws, where @ is a point in the segment
between u,. and P; f.(u.) + u.. This shows the last part in (36.19). W
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Examples. 1) Consider the nonlinear diffusion equation

du
d—tt = Aut + g(ut)

This is a dynamical system with the vector field
F(u) := Au+ g(u).
Equilibrium solutions satisfy the equation
Au+g(u) =0. (36.24)

Let G be the antiderivative of g, i.e. G' = g. We consider functions g
s.t. their antiderivatives are of the form

G

Then equation (36.24) has a solution @ depending on one coordinate
only, say x1, which correspond to a Newtonian particle in the potential
G moving from the top of the left hill to the top of the right hill:

b‘ "
]

Indeed, (36.24) can be rewritten as Newton’s equation

' = —G'(u),

in which z; is thought of as the time variable. The solution % is called
the kink. Note also that @ is a separatrix for " = —g(u), considered



141
as a dynamical system: u' = v and v’ = —g(u):
The Fréchet derivative of F' at u is
DF(u) = A+ ¢'(u). (36.25)
Our task is to find the spectrum of 7' := DF(u) (recall that D¢, (u) =
ePF®) 50 for ¢(u) = ¢y (u), we have A := D¢(a) = ).
The operator (36.25) can be rewritten as
A+4¢ @) =-(-A-G"w) = —H,

where H is a Schrodinger operator with the potential —G”(u(z)) that
looks like

—G"(u(z))

It is well known that a Schrédinger operator with such a potential
has continuous spectrum in [min{—G"(a), —G"(b)},00), and possibly
eigenvalues in the interval [—G"(0), min{—G" (a), —G"(b)}).

It is not difficult to see that 0 is an eigenvalue of H. Indeed, since
equation (36.24) is invariant under coordinate translation, we know
that

du
DF(u)¢ =0, where ¢ = o

Hence ¢ is an eigenvector of 7" with eigenvalue zero. From the shape of
u, it is also clear that £(z) > 0, which allows us to conclude that 0 is
the lowest eigenvalue and it is simple.
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Chapter VI. Stochastic
Analysis

37. Basic concepts of probability theory

Probability theory deals with the description of events when only par-
tial information is available. On first sight the mathematical frame-
work of probability theory defines it as a part of real analysis. The
following table identifies main concepts of probability theory with the
corresponding concepts of analysis.

probabilistic notion analytic notion
probability space (2, B, P) measure space (X, M, )
event measurable set

random variable X measurable function f
expectation of X, F(X) integral of f, [ fdu
random variable with finite p—th moment LP-function

convergence in probability convergence in measure
almost sure(ly), a.s. almost every(where), a.e.
characteristic function Fourier transform

However, probability theory has its own distinctive viewpoint which
makes it quite different in philosophy and methods from other parts of
analysis. To immerse ourselves into this viewpoint, we adopt entirely
the probabilist’s terminology and notation. Thus our point of departure
is the probability space (2, B, P), where ) is a given set, called the
sample space, B is a o—algebra on Q (elements of B are called events) and
P is a probability measure on (Q,B), i.e. a finite measure, normalized

143
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as P(Q) = 1. The number P(E) is called the probability of the event
E € B (i.e. the probability that the event occurs).

Furthermore, a random wvariable X is a measurable real function
X : Q2 — R. An important class of events is given by

{X > a},

where o € R and where we used the typical probabilistic notation for
the measurable sets

{X >a} ={weQX(w) >a}.

Example: n tosses of a coin. Here, w = (wy,... ,w,) € 0, where
w; € {H, T} (heads or tails).

Exercise. What is B in this example ?
To continue with the probabilistic terminology, the expectation of X
(or the expected value or mean value of X) is defined by

E(X):= / XdP.

The wvariance and standard deviation are defined respectively as
o*(X):=E ((X — E(X))Z)

and

The next important notion is that of the distribution of X, Px:
Px(B) :== P (X~ '(B)), VBE€ By, (37.1)

where we recall that By is the Borel algebra of R, i.e. the algebra of
subsets of R generated by open (or semiopen or closed) intervals. The
distribution Px is a measure on (R, Bg) and Px(R) = 1.

If Px = Py we say that the random variables X and Y are identi-
cally distributed.

Exercises. Let f: R — R be Borel measurable. Show that
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(i) (foX)t=X"Tof,

(ii) Px(f~'(B)) = Pr(B),
where Y = f o X is a new random variable.
Example. Gaussian random variables.
A random variable with Gaussian (or normal) probability distribution

1
dI/Z2 () = 2—6_(“_“)2/2‘%3: (37.2)
To
is called a Gaussian random variable with mean u and variance o2 and
denoted by Ny *. In other words, for a Gaussian random variable X, we
have Px = uf in the sense that Px(B) = [, dul‘j2 (x) VB € By (Borel
o-algebra of R).

Let us discuss the notion of probability distribution in more detail.
There is an easy way to produce new measures. Let (€', B') be another
measurable space and ¢ : Q2 — Q' be a (B, B')—measurable map, i.e.
¢ '(E') € B whenever E' € B'. Then ¢ induces a probability measure
P, on (Y,B'):

P,(E") :=P (¢ '(E') VE €B.

Exercise. Show that P, is a probability measure on B’ (Hint: Use
that ¢! commutes with unions and intersections).

The following result connects integrals with respect to P and P,:

Proposition. If f: Q' — R is a measurable function, then

/QlfdP(pz/QfogodP.

Proof. Check first that it is true for characteristic functions (“indicator

functions”):
/ XE' de =
QI
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where we have used that x,-1(z) = xg 0 . Now extend this equality
first to simple functions and then to measurable functions. [ |

If in the last proposition we take ' = R and B’ = By (the Borel
o—algebra), f = id on R and ¢ = X, a random variable, then we obtain

E(X) =/deX(x)
and
o*(X) = / (z — E(X))*dPx(z)-

Now we consider several random variables Xi,...,X,. We can form
the measurable vector function X = (X1,...,X,) : 2 — R”, which
can also be considered as a vector random variable. Then the above
construction (see (37.1)) defines the measure Px, . x,) on (R", Bgs),
which is called the joint distribution of X1,... , X,.

Exercises. 1) Show that

(X1, X)) H(By X - X By) = NPXH(B).
2) Using 1) show
P(Xl,...,Xn)(El X+ X En) =P (H?XJ_I(E])) .

Taking f(z1,...,2n) = Y| x;, we derive from the proposition above
that for instance

E (ZXJ) = /Zx] dPixy,.. x) (@15, Zn).
1 1

Here, we have chosen Q' =R", ¢ = (X3,...,X,) : Q=R —->R"=Q".
Example. Family of Gaussian random variables.

A family { X, } of random variables labelled by @ € I (I some index set)

is called Gaussian iff for any n and any aq,...,q, € I, P(Xal;---;Xan) is

Gaussian:

dP(XaI;---;Xan)(xl’ Ty = Ne_(m—u,(QA)—l(z—N»’

where N = (det(27A))~"/? is the normalization constant, A is a positi-
tive n X n matrix and x = (21,... ,Zn), = (M1, --- 5 fn)- {-,-) denotes
the standard scalar product in R".
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38. Independence

This is the first distinctive concept of probability theory. First we
address the question: what is the probability of an event F' given that
an event F has taken place?

The mathematical expression for this probability is

P(ENF)

Py(F) = P(E)

(38.1)

i.e. the probability of the joint event £F'N F' normalized by the probabil-
ity of E (since we know that the event E occured). The quantity (38.1)
is called the conditional probability (on E). We say that the events E
and F' are independent iff the conditional probability is independent of
E, ie. iff

which is equivalent to
P(ENF)=P(E)P(F).

Similarly, we say that a collection {E,}, o € I is independent iff

n

P(N{E,,) = [ P(Es,)

1

for any distinct ay,...,a, € I and any n € N. Now we say that the
random variables {X,} are independent iff the events

{Xa € Ba} = {X;I(Ba)}

are independent for all Borel sets B, C R.
We now show that Xi,..., X, are independent iff

Pix,,..x,) = H Px,.
1

Indeed, by the definition of Px,,... x,), we have
Px,,.. xn)(By % ... x Ey) = P(N?X; '(E))).
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Thus if X1,... , X, are independent, then so are X; ' (E}),... , X, *(E,)
and therefore

n

P(MX;H(Ey)) = | [ P(X;H(Ey) = [ ] Px, (B

1
This proves the implication = in the above equivalence.
Exercise. Prove the < direction (take for simplicity n = 2).
( Solution:
Pix;,x,)(B1 X B2) = Px,(B1)Px,(B2)
& P(XTHB)NX; 1 (By) = P(X{H(B)P(X3'(B)),
which is equivalent to saying that X;'(B;) and X, '(B,) are indepen-

dent which is again equivalent to the fact that X; and X, are indepen-
dent.)

We present some properties of independent random variables. Let
{X;}T be independent random variables. Then

(i) {fi(X;)}t are independent random variables for any Borel mea-
surable functions f;,

(11) PX1—|—...—|—X,L = PX1 L 3 PXn,
(iii) E([17 X;) =I1] E(X;), provided X, € L' Vj,
(iv) o?(327 X;) = .7 0*(X;), provided X; € L* Vj.

Remark. Property (i) can be formulated in words as follows: func-
tions of independent random variables are independent random vari-
ables. It can be considerably generalized.

We prove statements (i) and (iii) and leave (ii) and (iv) as exercises
(see [F], paragraphs 9.4 and 9.6).

Proof of (i). Let Y; = f;(X;). If B; are Borel subsets, then by an
exercise above we know that

(Y,..., V) N (By x ... x By)
= NY;7(B)
NEXTH (7 (B)
= (X1, , Xo) H(fTH(By) XX fn_l(Bn))'
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Hence

Py, vi)(Bi X ... X Bn) = Pixy. x,) (f1H(B1) x ... x [, 1 (By)).

By the independence of X, the r.hs. equals [T} Px, (f; '(B;)). Now
an exercise above shows that the latter quantity equals [ [} Py,(B;) and
therefore

Pyi,..v)(B1 x ... x By) = [ [ P, (Bj),
1

i.e. Yy,...,Y, are independent.
Proof of (iii). First, let f(ti,...,t,) =[] |t;]- Then

F(Xnsees X)) = f[ X
1
and therefore
BT = [ 1P,
1
By independence, dPx, ... x,) = [[| dPx; so by Fubini’s theorem
BT = 11 lnfiry o)
- TIE0x).
1

This proves that [[} X; € L'. Removing the absolute values in the
above argument shows (iii). [
39. The law of large numbers

The law of large numbers says essentially that the average of many
independent trials in the game of chance is approximately equal to the
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expectation for each trial.

We give a weak form of the law of large numbers. For other forms
of this law, see e.g. [F], paragraphs 9.12 and 9.13. Recall that we say
that X,, — X in probability iff Ve > 0: P(|X,—X| >¢) > 0asn — oo
(i.e. X, converges to X in measure). The key to the proof of the weak
law of large numbers is

Chebyshev’s inequality. Let X € LP, 0 < p < oo. Then for any
a > 0:

P(X|>a)< (%)p

«

Proof. Let E, = {|X| > a}. Then
Xy = [1xpap

> / | X[PdP

Zap/dP

= o’P(|X|>a)l

Theorem (The weak law of large numbers). Let {X;}{°
be a sequence of independent L? random variables with means u; and
variances o2. If lim, oo n 2 Z? 0? =0, then as n — oo:

1« 1«
—ZX]-——ZMZ-—)O in probability.
n n

Proof. The random variable S, :=n~* Y 7(X; — p1;) has mean zero
and variance n~? 7 o7 (see (iv) in the last section). Therefore

1 n
1al2: = = >0
1
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and so by Chebyshev’s inequality we have

n

1
1

The r.h.s. vanishes as n — oo by our assumption in the theorem. M

40. The central limit theorem

Let {X,}{° be ii.d.r.v. (independent identically distributed random
variables) with mean zero and variance 0. By the law of large numbers,

1 n
E;Xj—w,

but by property (iv) above,

1 n
2 2
2 —— X]‘ =0 .
The question is: does ﬁ >~ X; converge to some random variable as

n — o0o? If yes, then what is this limit random variable? An answer to
this question is given in the

Central limit theorem. Let {X,}° be a sequence of independent

identically distributed L? random variables with mean p and variance

0?. Then as n — oo, we have

1 n
— Z(Xj — ) = Ny in distribution,
ov/n 4
where we recall that Ny is the Gaussian random variable of mean 0 and
variance 1. In other words,
S

p (% i(Xj —p) < s) —>/ vy (7)dz. (40.1)

—0o0
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Proof. For a random variable X, we introduce the characteristic
function defined by

ox(t) = E(e"™¥).

This characteristic function can be expressed as

ox(t) = / €5 qPy (z),

i.e. it is the Fourier transform of the probability distribution dPx.
Exercise. Show that gy (t) = e /2.
If X € L? and E(X) =0, then expanding the exponent we have
2

i
ox(t)=1- EJQ(X) + o(t?).
Replacing X; by 1(X;— ) we may assume that 4 = 0 and o = 1. Now

let S, = ﬁ 37 X;. Then using the joint probability distribution, we
obtain

ity
ps(t) = [T ARy, @ 2)

Using the independence (i.e. dPx,,.x,) = [[| dPx;) and Fubini’s the-
orem (equality of multiple and iterated integrals), we obtain

s, (t) = f[wxj (Jt%) :

Since the X are identically distributed with mean 0 and variance 1 (in
particular, all characteristic functions ¢x;(t) are equal), this gives

s, (t) = [wxl (ﬁ)]n

—t2/2 t2/2

which converges to e as n — oo. Now since e~

= ong(t) (see
the last exercise), we have

@s,(t) — o (t)

as n — oo. From this, one can derive (40.1). [
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41. Construction of sample spaces

In experiments we are usually given joint probability distributions of
random variables and we want to reconstruct their sample space €2 or
the space of elementary events.

First, we have to decide which probability measures, say on R"
(or on a more general space), constitute probability distributions. So
consider a family {X,}qes of random variables on (92, B, P), indexed
by a set I. If the set I is finite (say it has n elements), then the answer
to our question is easy: every probability measure P on R” is a joint
probability density for some random variables X, ... , X,,. Indeed, take
Q) =R", B = Bg: and P = P, while for X, we take the coordinate
functions X; : R* > (z1,...,z,3» z;. Then (Xi,...,X,) is the

identity map on R™ and therefore

P(Xl,...,Xn)(Bl X ... X Bn) = P((Xl, . ,Xn)_l(Bl X ... X Bn))
= P(ByX...xBy)
= P(B;x...xB,)

as required.

However, if [ is infinite, then the problem is more subtle. Let us
examine the joint probability distribution for a family {X,}.e; of ran-
dom variables on (€2, B, P). Pick any number n and a finite collection
(ai,...,a) and let P,, . ,, be the joint probability distribution of
Xays- -+, Xa,- Then the P, . ., have the following properties:

(A) dPa,,(l),...,a.,r(n) (mﬁ(l)u s axﬂ'(n)) = dPal,...,an (xla s ’:rn) for any per-
mutation 7 of n indices,

(B) Pha,....opn(E) = Pay... 0, (E x R"F) Yk < n, VE € Bgs.

Sets of the form E x R** are called cylindrical: the first k coordinates
T1,...,xy are constrained to be in F while the other coordinates are
arbitrary.

Proof. We take for simplicity n = 2. Then we have

(A) Paya, (B2 x Ey) = P(X(Ey) N X (EL)) = Paya,(E1L X Ey),
(B) Poya(E x R) = P(X_HE) N X' (R)),
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but X ' (R) =, 50 Py, 0, (E X R) = Py, (E). |

A remarkable fact is that the conditions (A) and (B) are also suf-
ficient to characterize joint probability distributions. In other words,
given probability measures Py, .. o, on R” for any oy,...,a, € I sat-
isfying (A) and (B), there is a probability space (2, B, P) and a family
are joint prob-

geen n

ability distributions for {X,}aer, i-e.
Pal,...,an = P(Xal,...,Xan) val: Lo, 0p € 1.

In fact, the space €2 and the random variables X,, o € I are explicitely
constructed as follows:

Q= (R,
where R* = RU {oo} is a one point compactification of R and
R :=={f:1—R*}.

The random variables are defined as the coordinate functions, i.e. X, :
) — R* is given by

This construction is due to A. N. Kolmogorov. For a proof, see e.g. [F],
paragraph 9.18.
Exercises. 1) Show that

(a) if Ey, Fy are random events, then so are Ef, ES,

(b) the events {E,} are independent iff the random variables { X, }
are independent,

(c) if the events Ey, Es, ... ares.t. Y 1 P(Ey) < oo, then
P(ﬁ;.rjzl(uzo:mEk)) = 07

i.e. the probability that w belongs to infinitely many E}’s is zero
(the Borel-Cantelli lemma). Hint: see [F| paragraph 9.10.
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2) Consider for a > 0 a probability distribution of the form

Can
)\a =€ Zﬂék’
0

where dx(z) is the —function concentrated at k (A, is called the Poisson
distribution with parameter a). Show that

(a) the mean and variance of A, are both equal to a,
(b) /\a * )\b = )\a—l—b-

3) A fair coin is tossed 10,000 times. Let X be the number of times it
comes up heads. Use the central limit theorem to estimate:

1. the probability that 4950 < X < 5050,

2. the number £k s.t. |X — 5000] < k with probability 0.98. Hint:
consult a table of values of (2m)7*/2 [ e="/2dt.

42. The Wiener process

The Wiener process or Brownian motion is a basic stochastic process
playing the same role in stochastic analysis as the Laplace operator in
differential equations. This process was discovered by N. Wiener whose
goal was to give a mathematical justification to a physical description
by Einstein and Smolochowski of a phenomenon first observed by the
Scottish botanist Brown. The phenomenon consists of a seemingly
chaotic motion of small particles (pollen) suspended in a fluid such as
water or air.

Formally, an abstract Wiener process B;, 0 < t < oo is a stochas-
tic process (i.e. a family of random variables indexed by ¢ € [0,00))
satisfying the following conditions:

(A) By =0 (almost surely),

(B) the random variables By, — By,, ... ,B;, — B;,_, are independent
forany 0 <ty <t <...<ty,,
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(C) the random variables B; — By are Gaussian with mean zero and
variance C(t — s) for some C' > 0 and for any 0 < s < ¢.

Let us explain the meaning of these conditions. Let B; describe the
coordinate of a particle in dimension one at time ¢. Then condition
(A) states that the particle starts at the origin at ¢ = 0. It is just a
normalization condition.

Condition (B) says that the displacement of the particle at any
given moment in time is independent of its previous displacements.
This reflects the irregularity of the particle motion (the displacement
of the particle at any given moment depends only on how it was hit by
a molecule of the fluid it is suspended in at this very moment).

Condition (C) can be understood in the following way. Write B;— B;
as a sum of independent random variables

B,—B,=) (B, -By_,),
1

where ty = s and t, = t. Here, n can be taken arbitrarily large. So on
the basis of the central limit theorem, we expect that the r.h.s. is very
close to a Gaussian random variable.

The main questions we ask are

(1) Does a Wiener process exist?
(2) Is it unique?
(3) What is its concrete realization?

We now show that axioms (A)—(C) lead to the fulfilment of the con-
ditions of the Kolmogorov theorem (see last section) and therefore a
Wiener process exists and, under additional regularity conditions on
probability measures not elaborated here, the process is unique. More-
over, the same theorem leads to a concrete realization of the Wiener
process.

In order not to carry around the constant C' in condition (C), we
set for simplicity C = 1.

Thus we assume for a moment that we already know that a Wiener
process exists and compute its probability distributions.
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Exercises. 1) Let X be a random variable and 7 : R — R a
measurable function. Let Y = T'(X). Show that

(a) Py :PXOTil,
(b) dPy(z) = |T"|7'dPx (T~ (z)).

2) Generalize these statements to vector valued random variables, i.e.
for X = (Xi,...,X,) and T : R” — R (hint: use the result [ fdPx =
E(f(X)) to show that for any measurable function f: R — R,

/fdPX:/fonPy:/f|dPyoT‘1

Pick arbitrary 0 =ty <#; < {3 <...<t, and denote B; = B;; and
Y;=B;, —By,_, =Bj—Bj_1,j=1,...,n. Let us find an expression
for Pp, ... B,) based on assumptions (A)—(C). First, we observe that

(Bl, e ,Bn) = T(Yl, e ,Yn),
where
T, Yn) = W01+ Y2, Y1+ -+ Yn)-

Now the last exercise gives

P(Bl7---7B ) P(le ] ) © T 1

On the other hand, since Y7,...,Y, are independent Gaussian random
variables with mean zero and variances t; —tg,to —t1,... , 1, — 1, We
have

y2

Jj
e 2(E—tj_1)

dy,;
V2t —tio1)

dPyi,..v.) (Y1, s Yn) HdPY y;) = H
1

and therefore, since

T_l(xl, cen ,xn) = (331,.’E2 —T1y--- 3y Tp — ﬂin_l),
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we have
dP(Yl,...,Yn)(T_l(l"b ceeTp)) = Hdi/;jj:fj_l(xj);
1

where we recall that dl/Zz (x) is the normal distribution with mean p
and variance o2 (see (37.2)). Remark that det 7-' = 1, so exercise 2)
above shows that

dP(Bl,...,Bn) (Il, e ,In) = Hdl/ijjj?_l(iﬂj)
1

Consequently,
n
AP, .. By (@1, 20) = | [ dVvi 5 (), (42.1)
1
provided 0 = t5 < t; < ... < t,. For general t,...,t,, we first
time-order t1,... ,t,, say, 0 =ty < tp, < ... < tp,, and then we set
dPp,,,...B.,) (@1, .. ,Tn) = dPBy,, \....Bim, (Trmgs -+ > Ty, )-

Exercise. Show that the conditions of Kolmogorov’s reconstruc-
tion theorem are satisfied for the measures

n
tm; —tm,;_
APy . i (@1,... ,xn) = l_J:duggnfji1 (@, ), (42.2)
1
where my = 0 and m4,... ,mp aresuch that 0 =t,,,, < tpp, < ... <1p,.,
for any t¢q,...,t, € R*.

Now Kolmogorov’s reconstruction theorem tells us that the sample
space for our process is

Q= (R = {w: [0,00) — R*}
and the process B; : { — R is realized as the evaluation functional
Bi(w) = w(t).

Unfortunately, the space €2 is too large, it is the space of all functions
from [0, 00) into the compactified line. The hope is that functions from
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) which are too wild have probability zero, i.e. that our probability
measure P is supported, in fact, on a much smaller set, say the set of
continuous functions, 2. = C([0,00),R). This is indeed true:

Theorem. Let P be the unique Radon measure on Q = (R*)[%) whose
finite dimensional probability distributions are given by (42.2). Then
Q. is a Borel subset of Q and P(Q.) = 1.

For the definition of Radon measures and a proof of this theorem,
see [F].

The next question we address is how smooth in fact the sample
paths are. In other words, what is the smallest subspace Q) of
s.t. P(Q®) =1? One can show that the sample paths of the Wiener
process are almost surely nowhere differentiable. So we have to look
for Holder continuous subspaces: let

Qyi={we Q. : [wit)—w®)| <Ol —t|* for some C < oo}.

One can show that P(Q,) = 0 for & > 1/2 and P(Q,) = 1 for a < 1/2.
We can sharpen the second part of this result as

Theorem. P(Q1,,,) =1, where we defined

2

1oy = {WeEQ: wt') —w®)| <OV —t| log|t' — ]2,
for some C' < oo}.

In fact, we can say a little bit more: For C' > 0 and for a.a. w, there
isad=0dw)e (0,1) s.t.

|By(w) = By(w)| < CV/[t — ] log [t/ — £,

provided |[t' —t| < §. The constant C in the last statement is uniform
in w. See [F] for a proof of this.
Exercises. Show that (i) B; is a Gaussian process,



(ii) E(eiz’lc uibti) = e=(wCu)/2 where u = (uq,...,u;) and
t1 1t t1
= t1 to to
131 t2 123

Note that this implies that
BE(e™Br) = ¢7v2, (42.3)

(iii) Use the power series for the exponential in (42.3) to show that

2k)!
E(B*) = (2,%), t* VkeN.

The n-dimensional Wiener process is given by B, = (B}, ... ,B}),
where B} are independent, one dimensional Wiener processes, i.e.

(a) Bj is a one dimensional Wiener process for all j,

(b) ng — ng_l, 1 <j<n, 1<k < m,are independent random
variables for any 0 < t; < --- < t,,.

Exercise. Show that for ¢ > s, the random variable ét — és has
the probability distribution

2

P(t,z) := (2n(t — )2 Tl W dy, . .. dx,.

Observe that P(t, z—y) is the integral kernel of the operator e** solving
the diffusion equation 2U = AU and U(0) = id.

43. Stochastic integrals

In this section, we describe the theory of stochastic integration. One of
the main goals of this theory is to provide tools for solving stochastic
differential equations. We begin with the simple case of the Wiener
integral.
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The Wiener integral. Let B; be the Wiener process on the
probability space (2, B, P). Let f:J =1[0,1] — C. We want to define

the integral
| #wis.
7

The value of this integral is not a number, but a random variable, since
the “measure dB;” is random. To define this integral, we proceed as in
the usual theory of integration. For A = (s,t], let BAo = B; — B, and
for a simple function f =) cxxa, we define

I(f) =) &Ba,.

As before, I(f) is independent of the representation of f. For a general
measurable function f, we define the integral by approximating f first
by simple functions f® (e.g. f™ = YT f(ti)xa,, t; € Ag) and then
we take the limit of the integrals:

I(f) = lim I(f™). (43.1)

The question is whether and in what sense the r.h.s. converges. Fix
w € Q. Then t — By(w) is a usual function. Recall that a function
t — F, defines a measure iff F' is of bounded variation, i.e. iff

Var(F) ::sup{Z\th — I, 0=t <---<tn:1} < oo0.

1

However, the function ¢ — B;(w) is not of bounded variation with
probability one (i.e. for a.e. w).

Hence we have to understand the convergence in (43.1) differently.
To this end, consider the L?-space L*({, P). Observe that the inner
product in this space can be written as (X,Y) = E(XY), where we
now consider complex valued random variables. Let L? denote the
subspace of simple functions in L?(J). We claim that the linear operator
I: fw I(f)isabounded map from L? into L*(Q, P). In fact, I : L? —
L?(Q, P) is an isometry:

E(I(f)T(g)) = / /3. (43.2)
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Ineed, since Ba € L?, then so are Y ¢;Ba,. Relation (43.2) follows by
linearity from the relation

0 ifANA'=(
E(BABA'):{ A] if A=A

which is due to the definition of the Wiener process B;. [
Exercise. Show that E(BABAI) = ‘A N A"

Since the subspace of simple functions on J is dense in L?(J), we can

extend this operator to the entire space L?(J). In other words, the limit

in (43.1) must be understood in the sense of L?~random variables.
The integral (43.1) in called the Wiener integral and is written as

| ap.

The map I : f — [ fdB is an isometry from L?*(J) to L*(Q, P).

Example: The Ornstein—Uhlenbeck process. This process is
given by

t
Vi = Voe ™ + / e =)dB,. (43.3)
0

It serves as a model for the velocity of a Brownian particle, which
does not exist in the classical sense. The r.v. V; can be considered as
independent of By, t > 0.

Differentiating (43.3) formally, we obtain the stochastic Langevin
equation:

dV = —aVdt + dB, (43.4)

which expresses the fact that the acceleration is equal to the friction
plus a random kick (fluctuation). We understand (43.4) as a symbolic
expression for (43.3).

The Ito integral. Now we consider the case when the integrand
(which we write now as f;) is itself a random variable. Hence we want
to define the random variable

[ .



163

(in shorthand: [ fdB). This is a tricky business as the following ex-
ample shows. Take f; = B; and consider two “Riemannian” approx-
imations for the integral f B;dB; by replacing first B; by the simple
functions B!" = >"1 By, Xa,(t) and then by the simple functions B® =
YU By, XA]( ), where A; = [t;,t;41). This gives us two approxima-
tions for [ B;dB;, namely ) = Y1 By;Ba,; and ¥ =" By, Ba,-
We compute the difference of the expectations of these integrals:

E(I?) - B(I}Y) = ZEBA = 1A =1Jl.
1

Therefore, I and I{? can not converge to the same random variable.
Compare the last relation with a similar relation for a function F;
of bounded variation where we have

> " |Fa,|? < max |Fa|Var(F) — 0
1

as n — 0o. Roughly, the difference here is that for a differentiable
function Fa = O(]A|), while for the Wiener process, Ba = O(y/]A]).

To define the stochastic integral [ fdB for stochastic processes ft,
we begin with simple stochastic processes

=) X
1

where X; are L?-random variables and A; = [t;,%;41). We define the
integral of such functions as

) = ZXjBAj.
1
(1)

Notice that this corresponds to the choice I’ in the above example,
i.e. we choose a “Riemannian” approximation and take the value of
the function X (¢) to be integrated at the left endpoint ¢; of each inter-
val A;. The integral constructed in this way is called the Ito integral.
Other integrals can be defined, e.g. taking the midpoint of the function
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in the Riemann sum yields a stochastic integral called the Stratonovich
integral. We shall deal exclusively with the It integral.

In a second step, we approximate a stochastic process f; by simple
processes f\" (say, = Y1 fi;xa;) and define

I(f) = lim I(f™),

n—oQ

provided I( ft(")) converges in some sense. The point, as in the usual
theory of integration, is to find a class of stochastic processes f; s.t. the
above procedure makes sense.

One way to do so is as follows. Let L? C L?(J, L*(Q2, P)) be the
subspace of simple processes. Of this subspace L?, we pick again a
subspace M s.t. the map

I+ M — L*(Q,P)

is uniformly bounded (in fact, an isometry). Then we extend I to the
closure M of M in L2(J, L%(), P)) (which will happen not to be a
proper subspace of the latter!).

Let us define M right away: M is a set of simple processes which are
non-anticipating. A simple process f; = Y X;xa,;(t) is called (weakly)
non-anticipating (w.r. to B;) iff the r.v.’s X, are independent of the
r.v.’s Ba, with k > j.

Proposition. I : M — L*(Q, P) is an isomelry, i.e.

B (10)7(0) = [ Bt (13.5)

Proof.  First, observe that f; = Y X;xa,(t) is L* iff the X’s are
L?. Since X; and Ba; are L? and independent, X;Ba,; are L* r.v.’s.
Since X7 and B3 are independent r.v.’s, we have, using E(B%,) =
Var(Ba;) = 4]

B ((X;Ba, ) = E(C)E(BY)) = E(X2)[A.
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Next, since Bp, is independent of Ba,, X; and Xj for j < k, we
have by a theorem about functions of independent r.v.’s that Ba, is
independent of X;Ba; X}, and therefore, for j <k,

E(X;Ba,X;Ba,) = E(X;Ba,Xi)E(Ba,) = 0.

The last two relations imply

E (3 X;Ba)?) = 3 B(XD)|A.

Exercise. Show that
[ B =3B

The last two relations yield (43.5) for g = f. The case of arbitrary g is
treated similarly. |

The remaining question is what M is, in other words, what kind
of process in L?(J, L*(2, P)) can be approximated by simple non—
anticipating processes.

Given an L2-process f;, we approximate it by the simple processes

n—1
ft(n) = Z fthAja
0

where A; = [t;,t;4;) with ) = 0 and ¢, = 1. So a non-anticipating
process should have a property that for any such approximation, i.e.
for any t < --- < t, ftj are independent of Ba, with & > j. Since
{t;} are arbitrary, this says that f; is independent of Ba as long as
inf A > t. The latter condition is satisfied if VB € Bg, f, *(B) € B,
where B! is the o—algebra generated by B;'(C), VC € Bg, Vs < t, in
other words, if f; is measurable w.r. to B'. Such a process is called
non—anticipating (w.r. (or adapted) to BY).

Definition. V([a, b]) is the class of non-anticipating processes fi(w)
(with ¢ € [a,b]) that are Bg x B—-measurable.

Examples. a) f; = Bjy/; is non—anticipating while f; = By; is not;
b) f =3 X;xa, is non-anticipating iff X; are B%-measurable.
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A family {B'} of o-algebras s.t. B* C B' if s <t is called a filter.

Exercises. Show that the family B’ defined above is (a) a filter
and (b) right continuous in the sense that Ny B° = B*.
For a non—anticipating process f; we define the [to integral as

n—1
[ #iB = lim > fuB,

where A; = [t;,tj11), 0 =1 < t; < --- <t, =1 and the convergence
is understood in the sense of the norm /E(|X|?).

Observe that we cannot replace the r.h.s. by Zg_l ft; By, where
t; € Aj and ¢ # t;. Indeed, the simple function 23—1 ft; By, is not in
general non—anticipating.

Exercises. Show that (a) lim, Zgil[BtHl — By,]* =t with
probability one, (b) if X, = [} fdB, then X, — X, = fu(Bipn —
By) + o(h'/?), where h 'E(|o(h'/?)[?) — 0 as h — 0, (c) [, BdB =
3B7 — 5t (hint: use the identities By, (By,, — By;) = 5(B;,, — Bf) —
5By, — By)?), (d) fot sdBs = tB; — fot B,ds (integration by parts
formula, hint: use that >, A(s;B;) = >_;s;AB; + >~ Bj11As), (e)
[y B2dB, = 1B} — [ Byds.

Properties of the Ito integral. Let f,g € V([0,s]), «, 3 con-
stants and let 0 < r < u < s. Then

(i) [7fdB= ["fdB+ [’ fdB as.,

(ii) [*(af + Bg)dB=a [’ fdB+ 3 [’ ¢dB as.,
(i) B(f;] fdB) =0,
(iv) [° fdB is B*~measurable.

Exercise. Prove (i)-(iv). Hint: prove these properties first for
simple processes and then argue by continuity.
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44. Ito Processes and the Ito Formula

Our goal is to develop key rules, such as integration by parts, which
allow us to evaluate stochastic integrals. To this end, we introduce an
appropriate class of stochastic processes, the Ito processes, and prove
the Ito formula, which corresponds to the chain rule of standard differ-
ential calculus.

As before, we assume we have a Brownian motion B; on a proba-
bility space (2, B, P).

Definition. An Ito-process (or stochastic integral) is a process X
on (92, B, P) of the form

t t
X=Xy + / uds + / v,d B, (44.1)
0 0

where u; and v, are stochastic processes s.t. v € V satisfies the estimate

t
P(/ vfds<oth20):1
0

and u; is non-anticipating and satisfies the estimate

¢
P(/ \us\d8<oth20):1.
0

Differentiating (44.1) formally with respect to ¢, we get
dXt = ’U,tdt + UtdBt. (442)

We use (44.2) as a shorthand for (44.1). Thus for us, (44.2) is just a
rule of memorizing (44.1). For example,

1 1

stands for the integration formula

t
1 1
B,dB, = ~B? — _1,
/0 27t T 3
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proven in one of the exercises above.
The key result of this section is the following chain rule formula for
computing stochastic integrals of composite functions:

Theorem: Ito’s formula. Let X; be an Ito process given by dX; =
udt + v dBy. Let g € C*(RT x R). Then Y; = g(t, X;) is again an Ito
process and it is given by

2

9 19
(t, X;)dt + %(t, X)dX, + - 29

99 oy
2 0x2

dy, =
P ot

(ta Xt) (dXt)27
where (dX;)? = dX; - dX; is computed according to the rules dt - dt =

Before proving this theorem, we consider some examples and appli-
cations.
Examples. Find solutions to some exercises above using Ito’s for-
mula (with X; = B; below):
g(ta iL‘) dg(ta Bt)
l‘2/2 BtdBt + dt/2
z3/3 B?dB; + Bydt
tx B,dt + tdB;

Exercise. Check that these consequences of Ito’s formula coincide
with the results of the direct computation of Ito’s integrals performed
in the exercises above..

One can generalize the last example by letting g(¢t,z) = fid to
obtain the Leibnitz rule:

d(f:B:) = Bidf; + fidBy.

Rewriting this formula in the integral form we obtain the integration
by parts formula:

t t
fiB:y = /Bsdfs-l—/ fsdBs, or
t ° t °
/ fsst = ftBt - / Bsdfs-
0 0
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Observe that here, f; is a deterministic function.
Now we explain the main idea behind the proof of Ito’s formula.
We motivate it by analyzing the proof to the usual chain rule:

d _0Og g dz,
%g(tv xt) - ot (t: t) + %(ta xt)ﬁ; or
dg(t, ;) = %‘i (t,z,)dt + gg (t, z;)d. (44.3)

We can prove this formula as follows: expand Ag := g(t + At, 41 ar) —
g(t,z;) in At by Taylor’s theorem:

(Zg At + g—gmt +o(Ab),
where Ax; := x;, A — ;. Ignoring the higher order terms and replacing
At by dt and Ag by dg(t,z;) gives us (44.3).

We can still shortcut this derivation as follows: expand df (¢, x;) :=
g(t +dt, xy1q:) — g(t, x;) in dt and set o(dt) = 0.

Now we do the same with Y; = ¢(¢, X;) while recalling that dB; =
Byias — B, = O(\/dt) and therefore o((dX;)?) = 0! Expanding dY; :=
g(t+dt, Xiyar) — g(t, X;) in dt, we obtain

Ag =

_ Og dg 1 9%
avy = S X)de+ (1 XX+ 5o

ot
+aaa (t, X;) dt dX; + %%(t, X;)(dX;)?
+o((dt)?) + o(dt dX;) + o((dXy)?),

—(t, Xy) (dt)?

and therefore (recall that we agreed that o(dt) = 0)

Oy dg 19%g 2
aY, = 2 dt + = dX, + 525 (dX))

whith (d)(t)2 = (utdt + ’UtdBt)2 = ’Utz(dBt)Z.
Finally, we want to show that (dB;)? = dt in the sense that for any
fs € V([0,1]),

D fy(Bay)® — /t fods in L*(Q, P).
0
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Indeed, compute

b ([Z fi (Bay)” = Zfo‘AJ‘]Q)
= 3B (fufsy (Ba)? = 1A ((Ba,)? = [44])) -

i,
If i < j, then f,, f;;((Ba;)*—|A;]) are independent of Ba; and similarly
for © > 7. Hence all off-diagonal terms on the r.h.s. vanish. Since ffi
are independent of ((Ba,)? — |A;])?, the r.h.s. becomes

DB (F((Ba) ~ 1A = Y E()E (Ba) — M)  (444)

Exercise. Show that E((Ba)*) = 3|AJ? (hint: use the fact that
B, is a Gaussian random variable with mean zero and variance |A|).

The exercise implies that the expectation in the r.h.s. of (44.4) is
equal to E((Ba,)") — 2|APE((BR,)) + |Ail* = O(|Ai[*) as |Ai| — 0
(i.e. m — 00), so the r.h.s. of (44.4) is of the order

ZE(fi)|Ai|2 —0asn— ool

Exercises. 1) Use Ito’s formula to write the process X; =2 + ¢+
eP* in the standard form (dX; = wdt + v;dB;). 2) Let X;,Y; be Ito
precesses. Show that d(X;Y;) = XdY; + dX;dY;. Deduce from this the
following integration by parts formula;

t t t
/ X,dY, = X,Y, — X,V — / YidX, — / dX,dy,.
0 0 0

3) For X; = e8¢ show that dX; = (c + a?/2)X;dt + aX;dB,;. 4)
Find f, s.t. sin(B;) = E(sin B,) + [, f,dBs.
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