Chapter 1

Groups

1.1 Definitions and Elementary Properties

Definition 1.1.1. A binary operation $*$ on a set S is a function

$$
\begin{aligned}
*: S \times S & \rightarrow S \\
(a, b) & \mapsto a * b .
\end{aligned}
$$

$*$ is called associative if $(a * b) * c=a *(b * c) \quad \forall a, b, c \in S$.

* is called commutative if $a * b=b * a \quad \forall a, b \in S$.

Definition 1.1.2. A group consists of a set G together with a binary operation

$$
\begin{aligned}
*: G \times G & \mapsto G \\
(g, h) & \mapsto g * h,
\end{aligned}
$$

such that the following conditions are satisfied:

1. $(a * b) * c=a *(b * c) \quad \forall a, b, c \in S$ (associativity),
2. There exists an element $e \in G$ such that $e * a=a$ and $a * e=a \quad \forall a \in G$ (identity),
3. For each $a \in G$, there exists an element $b \in G$ such that $a * b=e$ and $b * a=e$ (inverse).

Definition 1.1.3. A group ($G, *$) is called abelian (or commutative) if $a * b=b * a \quad \forall a, b \in G$.
Definition 1.1.4. Let H be a non-empty subset of the group G. Suppose that the product in G of two elements of H lies in H and that the inverse in G of any element of H lies in H. Then H is called a subgroup of G, written $H \leq G$.

Notation: For $X \subset G$, write

$$
\langle X\rangle=\bigcap_{X \subset H \leq G} H .
$$

This is called the subgroup of G generated by X.
Exercise: show that $\langle X\rangle$ is a subgroup.

Example 1.1.5.

1. Cyclic groups C_{n}

Let $n \in \mathbb{N} . C_{n}:=\left\{e=x^{0}, x, x^{2}, \ldots, x^{n-1}\right\}$, with multiplication $x^{j} * x^{k}:=x^{(j+k) \bmod n}$. Also, the infinite cyclic group is $C_{\infty}:=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$ with $x^{j} * x^{k}:=x^{j+k}$.

2. Permutation groups

Let X be a set. $S_{X}:=\{f: X \mapsto X \mid f$ is a bijection $\}$. Multiplication is composition

$$
\begin{aligned}
S_{X} \times S_{X} & \mapsto S_{X} \\
(f, g) & \mapsto g \circ f .
\end{aligned}
$$

Notation: In case $X=\{1, \ldots, n\}$ for some $n \in \mathbb{N}$, write S_{n} for S_{X} (called a symmetric group). If $G \leq S_{n}$ for some n, G is a permutation group of degree n.

3. Linear groups

A field $(\mathbb{F},+, \cdot)$ consists of a set \mathbb{F} together with binary operations + and \cdot, such that:
(a) $(\mathbb{F},+)$ forms an abelian group,
(b) $(\mathbb{F}-\{0\}, \cdot)$ forms an abelian group (where 0 is the identity for $(\mathbb{F},+)$),
(c) $a \cdot(b+c)=a \cdot b+a \cdot c \quad \forall a, b, c \in \mathbb{F}$ (distributivity).

Let \mathbb{F} be a field. $G L_{n}(\mathbb{F}):=\{$ invertible $n \times n$ matrices with entries from $\mathbb{F}\}$. The group operation is matrix multiplication. $G L_{n}$ is called the general linear group. If $G \leq G L_{n}(\mathbb{F})$ for some \mathbb{F} and n then G is called a linear group of degree n.
4. Symmetry groups Let $X \subset \mathbb{R}^{n}$. The group of symmetries of X, denoted $\operatorname{Sym}(X)$, is the subgroup of S_{X} containing only isometries (that is, functions $f: X \mapsto X$ such that $\|f(x)-f(y)\|=$ $\|x-y\| \quad \forall x, y \in X)$.
Notation: In case $N=2$ and $X=$ the regular n-gon, $\operatorname{Sym}(X)$ is called the $n^{\text {th }}$ dihedral group, written $D_{2 n}$.

Proposition 1.1.6. Let G be a group. Then \exists exactly one element $e \in G$ such that $e * g=g$ and $g * e=g \quad \forall g \in G$.

Proof. By definition, such an element exists. If $e, e^{\prime} \in G$ both have the property then

$$
e=e * e^{\prime}=e^{\prime}
$$

Proposition 1.1.7. Let G be a group and let $g \in G$. Then \exists exactly one element $h \in G$ such that $g * h=e$ and $h * g=e$.

Proof. By definition, such an element exists. Suppose h, h^{\prime} are both inverses to g. Then

$$
h^{\prime}=h^{\prime} * e=h^{\prime} *(g * h)=\left(h^{\prime} * g\right) * h=e * h=h .
$$

Notation: The inverse to g will be denoted g^{-1}.
Proposition 1.1.8. Let G be a group and let $x, y, z \in G$.

1. If $x z=y z$ then $x=y$.
2. If $z x=z y$ then $x=y$.

Proof.

1. $x=x e=x\left(z z^{-1}\right)=(x z) z^{-1}=(y z) z^{-1}=y\left(z z^{-1}\right)=y e=y$.
2. Likewise.

Note: $x z=z y \nRightarrow x=y$; "mixed" cancellation doesn't work.
Corollary 1.1.9. Let G be a group and let $g, h \in G$ such that $g * h=e$. Then $h=g^{-1}\left(\right.$ and $\left.g=h^{-1}\right)$.
Proof. $g * h=e$ is given; $g * g^{-1}=e$ by the definition of g^{-1}. So by cancellation, $h=g^{-1}$.
Proposition 1.1.10. In a group G, $(g h)^{-1}=h^{-1} g^{-1}$.
Proof.

$$
(g h)\left(h^{-1} g^{-1}\right)=g\left(h h^{-1}\right) g^{-1}=g e g^{-1}=g g^{-1}=e .
$$

$\therefore h^{-1} g^{-1}$ is the inverse of $g h$.
Proposition 1.1.11. Let G be a group and $g, h \in G$. Then

1. \exists ! solution x in G to the equation $g x=h$.
2. \exists ! solution x in G to the equation $x g=h$.

Proof.

1. $x=g^{-1} h$.
2. $x=h g^{-1}$.

Proposition 1.1.12. A non-empty subset H of a group G is a subgroup iff $x, y \in H$ implies $x y^{-1}$ lies in H.

Proof. Exercise.
G is called a finite group if its underlying set is finite. In this case, the number of elements in G is called the order of G, written $|G|$.

Definition 1.1.13. Let $x \in G$. The order of x, written $|x|$, is the least integer k (if any) such that $x^{k}=e$.
Note: some, or even all elements of a group might have finite order even if $|G|$ is infinite.
Definition 1.1.14. Let $(G, *)$ and (H, Δ) be groups. A function $f: G \mapsto H$ is called a (group) homomorphism if $f(x * y)=f(x)_{\Delta} f(y) \quad \forall x, y \in G$. A homomorphism $f: G \mapsto H$ which is a bijection is called an isomorphism.

Notation: $\phi: G \stackrel{\cong}{\longmapsto} H$ means that ϕ is an isomorphism from G to H.
$G \cong H$ means that there exists an isomorphism $\phi: G \stackrel{\cong}{\rightleftarrows} H$.
Isomorphisms preserve all group properties. e.g. if $\phi: G \stackrel{\cong}{\longmapsto} H$ then:

$$
\begin{aligned}
& G \text { is abelian } \Longleftrightarrow H \text { is abelian, } \\
& \quad|x|=|\phi(x)| \quad \forall x \in G, \text { etc. }
\end{aligned}
$$

Lemma 1.1.15. Let $\phi: G \mapsto H$ be a homomorphism, and let e, e^{\prime} be the identities in G, H respectively. Then $\phi(e)=e^{\prime}$.

Proof. Let $h=\phi(e)$.

$$
h^{2}=\phi(e) \phi(e)=\phi\left(e^{2}\right)=\phi(e)=h=h e^{\prime}
$$

\therefore by cancellation, $h=e^{\prime}$.
Corollary 1.1.16. Let $\phi: G \mapsto H$ be a homomorphism. Then $\forall g \in G, \phi\left(g^{-1}\right)=\phi(g)^{-1}$.

Proof.

$$
\phi(g) \phi\left(g^{-1}\right)=\phi\left(g g^{-1}\right)=\phi(e)=e^{\prime} .
$$

Thus, $\phi(g)^{-1}=\phi\left(g^{-1}\right)$.
Proposition 1.1.17. Let $\phi: G \mapsto H$ be a group isomorphism. Let $\phi^{-1}: H \mapsto G$ be the inverse function to the bijection ϕ. Then ϕ^{-1} is an isomorphism.

Proof. Must show ϕ^{-1} is a homomorphism. Let $h_{1}, h_{2} \in H$. Since ϕ is a bijection, $\exists!g_{1}, g_{2} \in G$ such that $\phi\left(g_{1}\right)=h_{1}, \phi\left(g_{2}\right)=h_{2}$.

$$
\phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=h_{1} h_{2}
$$

So $\phi^{-1}\left(h_{1} h_{2}\right)=g_{1} g_{2}=\phi^{-1}\left(h_{1}\right) \phi^{-1}\left(h_{2}\right)$.
Proposition 1.1.18. The composition of group homomorphisms is a homomorphism. The composition of group isomorphisms is a isomorphism.

Proof. Trivial.
Notation: $\operatorname{Aut}(G)=\{$ self-isomorphisms of $G\} \leq S_{G}$.

Fundamental Problem of Group Theory:

Make a list of all possible types of groups. ie. Make a list of groups such that every group is isomorphic to exactly one group on the list.

Given two groups (defined, for example, by multiplication tables, or by generators and relations), the problem of determining whether or not the groups are isomorphic is, in general, very difficult (NP-hard).

1.2 New Groups from Old

1.2.1 Quotient Groups

Definition 1.2.1. Let $\phi: G \mapsto H$ be a homomorphism. The kernel of ϕ is

$$
\operatorname{ker} \phi:=\{g \in G \mid \phi(g)=e\} .
$$

The image of ϕ is

$$
\operatorname{Im} \phi:=\{h \in H \mid h=\phi(g) \text { for some } g \in G\} .
$$

Proposition 1.2.2. $\operatorname{ker} \phi \leq G$ and $\operatorname{Im} \phi \leq G$.
Proof. Trivial.
Definition 1.2.3. For $x, y \in G$, we say y is conjugate to x (in G) if $\exists g \in G$ such that $y=g x g^{-1}$.
Proposition 1.2.4. Conjugacy is an equivalence relation.
Proof. Trivial.
Notation: If A, B are subsets of G, let $A B:=\{a b \mid a \in A, b \in B\}$. For $g \in G, H \leq G$, the set $g H$ is called the left coset of H generated by $g ; H g$ is the right coset of H generated by g.

Definition 1.2.5. A subgroup N of G is called normal, written $N \triangleleft G$, if $g N=N g$ for all $g \in G$.
Proposition 1.2.6. $N \leq G$ is normal $\Longleftrightarrow g x g^{-1} \in N \quad \forall x \in N, g \in G$.

Proof.

\Rightarrow : Suppose N is normal. Then for all $x \in N, g \in G, g x \in g N=N g$, so $g x=y g$ for some $y \in N$.
Thus, $g x g^{-1}=y \in N$.
$\Leftarrow:$ Suppose $g x g^{-1} \in N \quad \forall x \in N, g \in G$. If $z \in g N$ then $z=g x$ for some $x \in N$. Hence,

$$
z=g x\left(g^{-1} g\right)=\left(g x g^{-1}\right) g \in N g
$$

$\therefore g N \subset N g$. Similarly,$N g \subset g N$.

Corollary 1.2.7. Let $\phi: G \mapsto H$ be a homomorphism. Then $\operatorname{ker} \phi \triangleleft G$.

Proof. Let $x \in \operatorname{ker} \phi$ and let $g \in G$. Then

$$
\phi\left(g x g^{-1}\right)=\phi(g) e \phi(g)^{-1}=e
$$

so $g x g^{-1} \in \operatorname{ker} \phi$.
Conversely:
Theorem 1.2.8. Suppose $N \triangleleft G$. Then \exists a group H and a homomorphism $\phi: G \mapsto H$ such that $N=\operatorname{ker} \phi$.

Proof. Exercise: check the details of the following:

1. For $g, g^{\prime} \in G$, define $g \sim g^{\prime}$ if $g^{\prime} g^{-1} \in N$.
2. Check that \sim is an equivalence relation.
3. Define $H:=G / N:=\{$ set of equivalence classes of G under $\sim\}$.
4. Define binary operation $*$ on G / N by $\bar{x} * \bar{y}=\overline{x y}$. Check that this is well-defined, ie. suppose $x^{\prime} \sim x$ and $y^{\prime} \sim y$. Is $x^{\prime} y^{\prime} \sim x y$?
Well, $x^{\prime} \sim x$ means $x^{\prime} x^{-1}=n_{1} \in N$, so $x^{\prime}=n_{1} x$. Likewise, $y^{\prime} \sim y$ means $y^{\prime} y^{-1}=n_{2} \in N$, so $y^{\prime}=n_{2} y$. So

$$
x^{\prime} y^{\prime}=n_{1} x n_{2} y=n_{1}\left(x n_{2} x^{-1}\right) x y=n_{1} n_{2}^{\prime} x y,
$$

where $n_{2}^{\prime}=x n_{2} x^{-1} \in N$ since N is normal. Hence, $x^{\prime} y^{\prime} \sim x y$.
5. Check that $(G / N, *)$ forms a group.
6. Define $\phi: G \mapsto H$ by $\phi(x)=\bar{x}$.
7. Check that ϕ is a group homomorphism.
8. Check that $N=\operatorname{ker} \phi$.
G / N (as constructed above) is called a quotient group.

1.2.2 Product Groups

Let G, H be groups. The product group is the set $G \times H$, with multiplication

$$
(g, h) \cdot\left(g^{\prime}, h^{\prime}\right):=\left(g g^{\prime}, h h^{\prime}\right)
$$

Clearly the projection maps

$$
\begin{aligned}
\Pi_{G}: G \times H & \mapsto G \\
(g, h) & \mapsto g
\end{aligned}
$$

and

$$
\begin{aligned}
\Pi_{H}: G \times H & \mapsto H \\
(g, h) & \mapsto h
\end{aligned}
$$

are group homomorphisms.
Proposition 1.2.9. Let A, G, H be groups.

1. Universal Property of Product:

Given group homomorphisms $p: A \mapsto G$ and $q: A \mapsto H$, ヨ! group homomorphism $\phi: A \mapsto$ $G \times H$ such that:

This says that $G \times H$ is the product of G and H in the category of groups.
2. Given a function $\phi: A \mapsto G \times H$, ϕ is a group homomorphism if and only if $\Pi_{G} \circ \phi$ and $\Pi_{H} \circ \phi$ are group homomorphisms.

1.2.3 Free Products

Let G, H be groups. The free product of G and H is $G * H:=\{$ words in $G \amalg H\} / \sim$, where \sim is the equivalence relation generated by the following: for $g, g^{\prime} \in G$,

$$
x_{1} \cdots x_{n} g g^{\prime} y_{1} \cdots y_{m} \sim x_{1} \cdots x_{n}\left(g g^{\prime}\right) y_{1} \cdots y_{m}
$$

and for $h, h^{\prime} \in H$,

$$
x_{1} \cdots x_{n} h h^{\prime} y_{1} \cdots y_{m} \sim x_{1} \cdots x_{n}\left(h h^{\prime}\right) y_{1} \cdots y_{m}
$$

Note: Given $A \subset X \times X$, the equivalence relation generated by A is

$$
\bigcap\{B \subset X \times X \mid B \text { is an equivalence relation and } A \subset B\} .
$$

Multiplication in $G * H$ is given by juxtaposition: $\left(v_{1} \cdots v_{n}\right) *\left(w_{1} \cdots w_{m}\right)=v_{1} \cdots v_{n} w_{1} \cdots w_{m}$.
Proposition 1.2.10. Universal Property of Free Product:

(Here, G and H each embed into the words of length 1 in $G \times H$).
This says that $G * H$ is the coproduct of G and H in the category of groups.
$F(x)=\left\{x^{n} \mid n \in \mathbb{Z}\right\}\left(=C_{\infty}\right)$ is called the free group on the generator x.
$F(x, y):=F(x) * F(y)$ is the free group on 2 generators.
More generally, given a set S,

$$
F(S)=\{\text { words in } S\}
$$

is called the free group on S. A group homomorphism $F(S) \mapsto G$ is uniquely determined by any (set) function $S \mapsto G$.

1.3 Centralizers, Normalizers, and Commutators

Let G be a group, $X \subset G$.

Notation:

$$
\begin{aligned}
\mathrm{C}_{G}(X) & :=\left\{g \in G \mid g x g^{-1}=x \quad \forall x \in X\right\} \quad \text { is the centralizer of } X \text { in } G \\
\mathrm{~N}_{G}(X) & :=\left\{g \in G \mid g X g^{-1}=X\right\} \quad \text { is the normalizer of } X \text { in } G \\
& =\{g \in G \mid g X=X g\}
\end{aligned}
$$

These definitions do not require that X be a subgroup, but note that $\mathrm{C}_{G}(X)=\mathrm{C}_{G}(\langle X\rangle)$. Also,

$$
\begin{aligned}
\mathrm{Z}(G) & :=\mathrm{C}_{G}(G) \quad \text { is the center of } G \\
& =\{g \in G \mid g x=x g \quad \forall x \in G\}
\end{aligned}
$$

Note: $\mathrm{Z}(G)=G \Longleftrightarrow G$ is abelian.
Example 1.3.1. Let $G=G L_{n}(\mathbb{F})$. Then $Z(G)=\left\{c I \mid c \in \mathbb{F}^{\times}\right\}$.
Proposition 1.3.2. $\mathrm{C}_{G}(X)$ and $\mathrm{N}_{G}(X)$ are subgroups of G.
Proof.

$$
\begin{aligned}
& g, g^{\prime} \in \mathrm{C}_{G}(X) \Rightarrow\left(g g^{\prime}\right)(x)\left(g g^{\prime}\right)^{-1}=g\left(g^{\prime} x g^{\prime-1}\right) g^{-1}=g x g^{-1}=x \quad \forall x \in X \\
& g \in \mathrm{C}_{G}(X) \Rightarrow g^{-1} x g=g^{-1}\left(g x g^{-1}\right) g=\left(g^{-1} g\right) x\left(g^{-1} g\right)=x \quad \forall x \in X
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
& g, g^{\prime} \in \mathrm{N}_{G}(X) \Rightarrow\left(g g^{\prime}\right) X\left(g g^{\prime}\right)^{-1}=g\left(g^{\prime} X g^{-1}\right) g^{-1}=g X g^{-1}=X \\
& g \in \mathrm{~N}_{G}(X) \Rightarrow g^{-1} X g=g^{-1}\left(g X g^{-1}\right) g=\left(g^{-1} g\right) X\left(g^{-1} g\right)=X
\end{aligned}
$$

Clearly, $\mathrm{Z}(G)=\mathrm{C}_{G}(G)$ is always abelian, but for arbitrary $H, \mathrm{C}_{G}(H)$ need not be abelian. For example, in the extreme case, $\mathrm{C}_{G}(\{e\})=G$, which might not be abelian.

For $H \leq G$, by construction, $H \triangleleft \mathrm{~N}_{G}(H)$, and $H \triangleleft G \Longleftrightarrow \mathrm{~N}_{G}(H)=G$.
Proposition 1.3.3. For $A \leq B \leq G$,

$$
g \in \mathrm{~N}_{G}\left(\mathrm{~N}_{B}(A)\right) \Rightarrow g\left(\mathrm{~N}_{B}(A)\right) g^{-1} \subset \mathrm{~N}_{G}(A) .
$$

Proof. If $b \in \mathrm{~N}_{B}(A)$ and $g \in \mathrm{~N}_{G}\left(\mathrm{~N}_{B}(A)\right)$ then $b^{\prime}=g b g^{-1} \in \mathrm{~N}_{B}(A)$, so

$$
\left(g b g^{-1}\right) a\left(g b g^{-1}\right)^{-1}=b^{\prime} a\left(b^{\prime}\right)^{-1} \in A
$$

Note: $K \triangleleft H$ and $H \triangleleft G \nRightarrow K \triangleleft G$. For a counterexample, take

$$
\begin{aligned}
G & =S_{4} \\
H & =\left\langle\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)\right\rangle \cong D_{8} \\
K & =\left\langle\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)\right\rangle \cong C_{4}
\end{aligned}
$$

Notation: For $a, b \in G$, let $[a, b]:=a b a^{-1} b^{-1}$.
Definition 1.3.4. The commutator subgroup G^{\prime} is the subgroup of G generated by

$$
\{[a, b] \mid a, b \in G\} .
$$

Proposition 1.3.5. $g[a, b] g^{-1}=\left[g a g^{-1}, g b g^{-1}\right]$.
Corollary 1.3.6. $G^{\prime} \triangleleft G$.
$G_{a b}:=G / G^{\prime}$ is abelian. Universal property: given any homomorphism $\phi: G \mapsto H$ with H abelian,

That is, if $\phi: G \mapsto H$ with H abelian then $G^{\prime} \subset \operatorname{ker} \phi$.

1.4 Isomorphism Theorems

Theorem 1.4.1 (First Isomorphism Theorem). Let $\phi: G \mapsto H$ be a group homomorphism. Then $G / \operatorname{ker} \phi \cong \operatorname{Im} \phi$.

Proof. Set $N:=\operatorname{ker} \phi$. Elements of G / N are cosets $N g$, where $g \in G$. Define $\psi: G / N \mapsto \operatorname{Im} \phi$ by $\psi(N g)=\phi(g)$.

1. ψ is well defined:

Suppose $N g=N g^{\prime}$. Then $g=n g^{\prime}$ for some $n \in N$. Hence,

$$
\phi(g)=\phi\left(n g^{\prime}\right)=\phi(n) \phi\left(g^{\prime}\right)=e_{H} \phi\left(g^{\prime}\right)=\phi\left(g^{\prime}\right),
$$

since $n \in N=\operatorname{ker} \phi$.
2. ψ is a homomorphism - easy.
3. ψ is surjective - easy.
4. ψ is injective:

If $\psi\left(N g_{1}\right)=\psi\left(N g_{2}\right)$ then

$$
\phi\left(g_{1}\right)=\phi\left(g_{2}\right) \Rightarrow \phi\left(g_{1} g_{2}^{-1}\right)=e_{H} \Rightarrow g_{1} g_{2}^{-1} \in N \Rightarrow N g_{1}=N g_{2}
$$

Proposition 1.4.2. If H, K subgroups of G then $H K \leq G \Longleftrightarrow H K=K H$.
Proof.
\Rightarrow : Suppose $H K \leq G$. Let $x \in H K$. Then $x^{-1} \in H K$. Write $x^{-1}=h k$ for some $h \in H, k \in K$. Then

$$
x=(h k)^{-1}=k^{-1} h^{-1} \in K H,
$$

so $H K \subset K H$, and similarly, $K H \subset H K$.
$\Leftarrow:$ Suppose $H K=K H$. Let $x, x^{\prime} \in H K$. Write $x=k h, x^{\prime}=h^{\prime} k^{\prime}$, for some $h, h^{\prime} \in H, k, k^{\prime} \in K$. Then

$$
\begin{aligned}
x^{\prime} x^{-1} & =h^{\prime} k^{\prime} h^{-1} k^{-1} \\
& =h^{\prime} h^{\prime \prime} k^{\prime \prime} k^{-1}, \quad \text { letting } k^{\prime} h^{-1}=h^{\prime \prime} k^{\prime \prime}, \text { since } H K=K H \\
& \in H K
\end{aligned}
$$

Corollary 1.4.3. Let H, K be subgroups of G. If $H \subset \mathrm{~N}_{G}(K)$ then $H K \leq G$ and $K \triangleleft H K$.
Proof. Let $x=h k \in H K$. Then $x=\left(h k h^{-1}\right) h \in K H$, since $h k h^{-1} \in K$. So, $H K \subset K H$. Similarly, if $x=k h \in H K$ then $x=h\left(h^{-1} k h\right) \in H K$, whence $K H \subset H K$. Hence

$$
H K=K H \leq G .
$$

Also, $K \subset \mathrm{~N}_{G}(K)$ (always) and $H \subset \mathrm{~N}_{G}(K)$ (given), so

$$
H K \subset \mathrm{~N}_{G}(K) \Rightarrow K \triangleleft H K
$$

Corollary 1.4.4. If $K \triangleleft G$ then $H K \leq G$ for any $H \leq G$.
Proof. If $K \triangleleft G$ then $\mathrm{N}_{G}(K)=G$, so automatically, $H \subset \mathrm{~N}_{G}(K)$.
Theorem 1.4.5 (Second Isomorphism Theorem). Let H, K be subgroups of G such that

$$
H \subset \mathrm{~N}_{G}(K) .
$$

Then $H \cap K \triangleleft H, K \triangleleft H K$, and

$$
\frac{H K}{K} \cong \frac{H}{H \cap K}
$$

Proof. $K \triangleleft H K$ was shown above. Define $\phi: H \mapsto H K / K$ by $\phi(h)=K h \in H K / K$. ie. ϕ is the composition

$$
H \hookrightarrow H K \mapsto H K / K
$$

1. ϕ is a homomorphism (composition of homomorphisms).
2. ϕ is surjective

Proof. Let $K x \in H K / K$, where $x \in H K$. By above, $H K \leq G$, so $H K=K H$; thus let $x=k h$, for some $k \in K, h \in H$. Hence,

$$
K x=K k h=K h=\phi(h)
$$

3. $\operatorname{ker} \phi=H \cap K$

Proof.

$$
\begin{aligned}
\operatorname{ker} \phi & =\{y \in H \mid \phi(y)=e\} \\
& =\{y \in H \mid K y=e\} \\
& =\{y \in H \mid y \in K\} \\
& =H \cap K
\end{aligned}
$$

$H \cap K \triangleleft H$ and

$$
\frac{H}{H \cap K}=\frac{H}{\operatorname{ker} \phi} \cong \operatorname{Im} \phi=\frac{H K}{K} .
$$

Theorem 1.4.6 (Third Isomorphism Theorem). Let $K \triangleleft G$ and $H \triangleleft G$ with $K \subset H$. Then $H / K \triangleleft G / K$ and

$$
\frac{G / K}{H / K} \cong G / H
$$

Proof. Define ϕ by composition

$$
G \mapsto G / K \mapsto \frac{G / K}{H / K}
$$

Check that $\operatorname{ker} \phi=H$ (exercise).

1.5 The Pullback

Definition 1.5.1. Let $\phi: G \mapsto H$ and $j: B \mapsto H$ be group homomorphisms. Define the pullback $G \times_{H} B$ of ϕ and j by

$$
G \times_{H} B:=\{(g, b) \in G \times B \mid \phi(g)=j(b)\} .
$$

The pullback gives:

Proposition 1.5.2. $G \times_{H} B \leq G \times B$.
Proof. If (g, b) and $\left(g^{\prime}, b^{\prime}\right)$ belong to $G \times_{H} B$ then

$$
\phi\left(g g^{\prime}\right)=\phi(g) \phi\left(g^{\prime}\right)=j(b) j\left(b^{\prime}\right)=j\left(b b^{\prime}\right)
$$

If $(g, b) \in G \times_{H} B$ then

$$
\phi\left(g^{-1}\right)=\phi(g)^{-1}=j(b)^{-1}=j\left(b^{-1}\right) .
$$

Proposition 1.5.3. Let $\phi: G \mapsto H, j: B \mapsto H$ and $i: A \mapsto B$ be homomorphisms. Then

and $A \times_{B}\left(B \times_{H} G\right) \cong A \times_{H} G$. (Composition of pullbacks is a pullback).
Proof.

$$
A \times_{B}\left(B \times_{H} G\right)=\left\{(a,(b, g)) \mid a \in A,(b, g) \in B \times_{H} G, i(a)=\Pi_{B}(b, g)=b\right\}
$$

In this description, b is redundant because it is determined by a via $b=i(a)$. Also, $(b, g) \in B \times_{H} G$ means that $j(b)=\phi(g)$. So,

$$
A \times_{B}\left(B \times_{H} G\right) \cong\{(a, g) \mid j(i(a))=\phi(g)\}=A \times_{H} G .
$$

Note some special cases:

1. If $H=\{e\}$ then $j(b)=\phi(g)$ holds $\forall b, g$, so $B \times_{\{e\}} G=B \times G$.
2. If $B \leq H$ and j is the inclusion, then

$$
\begin{aligned}
B \times_{H} G & =\{(b, g) \mid j(b)=\phi(g)\}, \quad \text { so } b \text { is redundant } \\
& \cong\{g \in G \mid \phi(g) \in B\} \\
& =\phi^{-1}(B)
\end{aligned}
$$

Proposition 1.5.4. Let

be a pullback. Then $\operatorname{ker} \Pi_{B} \cong \operatorname{ker} \phi$ and $\operatorname{ker} \Pi_{G} \cong \operatorname{ker} j$.

Proof.

$$
\begin{aligned}
\operatorname{ker} \Pi_{B} & =\{(b, g) \in B \times G \mid b=e \text { and } \phi(g)=j(b)\} \\
& =\{(e, g) \in B \times G \mid \phi(g)=j(e)=e\} \\
& =\{e\} \times \operatorname{ker} \phi \subset B \times G \\
& \cong \operatorname{ker} \phi
\end{aligned}
$$

Now consider the special case where $B \leq H$ and j is inclusion. Set $A=B \times_{H} G=\phi^{-1}(B)$.

Proposition 1.5.5.

1. If $B \triangleleft H$ then $A \triangleleft G$.
2. If $B \triangleleft H$ and ϕ is onto then $G / A \cong H / B$.

Proof.

1. Suppose $B \triangleleft H$. Let $a \in A$. Then for $g \in G$,

$$
\phi\left(g a g^{-1}\right)=\phi(g) \phi(a) \phi(g)^{-1} \in B, \quad \text { since } \phi(a) \in B \triangleleft H,
$$

so $\mathrm{gag}^{-1} \in A$.
2. Let ψ be the composition

$$
G \stackrel{\phi}{\longmapsto} H \stackrel{q}{\longmapsto} H / B,
$$

where q is the quotient map. Then $\phi(A) \subset B=\operatorname{ker} q$ so $A \subset \operatorname{ker} \psi$. If $g \in \operatorname{ker} \psi$ then $\phi(g) \in$ $\operatorname{ker} q=B$, so $g \in \phi^{-1}(B)=A$. Thus, $\operatorname{ker} \psi=A$. Hence,

$$
\frac{G}{A}=\frac{G}{\operatorname{ker} \psi} \cong \operatorname{Im} \psi=\frac{H}{B}
$$

since both ϕ and q are onto.

Theorem 1.5.6 (Fourth Isomorphism Theorem). Suppose $N \triangleleft G$. Then the quotient map $q: G \mapsto G / N$ induces a bijection between the subgroups of G which contain N and the subgroups of G / N. Explicitly,

$$
\begin{aligned}
A \leq G & \mapsto q(A) \leq G / N, \quad \text { and } \\
X \leq G / N & \mapsto q^{-1}(X) \leq G
\end{aligned}
$$

Moreover, this bijection satisfies

1. $A \leq B$ iff $q(A) \leq q(B)$, and in this case $B: A=q(B): q(A)$.
2. $q(A \cap B)=q(A) \cap q(B)$.
3. $A \triangleleft B$ iff $q(A) \triangleleft q(B)$.

Proof. Exercise.

1.6 Symmetric Groups

$$
\left|S_{n}\right|=n!
$$

Notation for elements of S_{n} : Consider $\sigma \in S_{6}$ given by:

$$
\begin{aligned}
& \sigma(1)=2 \\
& \sigma(2)=4 \\
& \sigma(3)=5 \\
& \sigma(4)=6 \\
& \sigma(5)=3 \\
& \sigma(6)=1
\end{aligned}
$$

Mapping Notation:

$$
\sigma=\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 5 & 6 & 3 & 1
\end{array}
$$

Cycle Notation:

$$
\sigma=(1246)(35)
$$

Usually omit cycles of length one. eg. $\tau=\left(\begin{array}{ll}1 & 4\end{array}\right)$ means $(143)(2)(5)(6)$.
The group operation on S_{n} is $*$ given by

$$
\sigma * \tau=\tau \circ \sigma
$$

Note: Dummit and Foote use the opposite convention: $\sigma_{\Delta} \tau=\sigma \circ \tau$. However, the results are isomorphic; $\left(S_{n}, *\right) \cong\left(S_{n}, \Delta\right)$.
Notation: $\quad S_{X}:=$ permutations of X with $f * g=g \circ f$.
$S_{X}^{\prime}:=$ permutations of X with $f * g=f \circ g$.

$$
\begin{aligned}
& \sigma \tau=((1246)(35))(143)=(1235)(46) \\
& \tau \sigma=(143)((1246)(35))=(16)(2456)
\end{aligned}
$$

So S_{n} is not abelian.
Note: There is an ambiguity in the cycle notation: (1246)(35) could mean either σ or (1246)* (35). This is not important because these are equal.

1.6.1 Conjugation in S_{n}

Example 1.6.1. Let $\sigma=\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)(45), \tau=(25)$. Then

$$
\tau \sigma \tau^{-1}=(25)(123)(45)(25)=(153)(42)
$$

This is obtained from σ by switching 2 and 5 (in the cycle notation).
Proposition 1.6.2. Let $\sigma, \tau \in S_{n}$, with

$$
\sigma=\left(a_{1}^{(1)} \cdots a_{1}^{\left(r_{1}\right)}\right) \cdots\left(a_{n}^{(1)} \cdots a_{n}^{\left(r_{n}\right)}\right) .
$$

Then

$$
\tau \sigma \tau^{-1}=\left(\tau^{-1}\left(a_{1}^{(1)}\right) \cdots \tau^{-1}\left(a_{1}^{\left(r_{1}\right)}\right)\right) \cdots\left(\tau^{-1}\left(a_{n}^{(1)}\right) \cdots \tau^{-1}\left(a_{n}^{\left(r_{n}\right)}\right)\right) .
$$

Proof. In general, $\left(\tau \sigma \tau^{-1}\right)(j)=\tau^{-1}(\sigma(\tau(j)))$. So

$$
\left(\tau \sigma \tau^{-1}\right)\left(\tau^{-1} a_{1}^{(1)}\right)=\tau^{-1}\left(\sigma\left(\tau\left(\tau^{-1} a_{1}^{(1)}\right)\right)\right)=\tau^{-1}\left(\sigma\left(a_{1}^{(1)}\right)\right)=\tau^{-1} a_{1}^{(2)}
$$

etc.
Notice that $\tau \sigma \tau^{-1}$ has the same cycle type as σ.
Corollary 1.6.3. σ is conjugate to $\sigma^{\prime} \Longleftrightarrow \sigma$ and σ^{\prime} have the same cycle type.
Proof. Above shows that any conjugate of σ has the same cycle type as σ. Conversely, suppose that σ, σ^{\prime} have the same cycle type. Let

$$
\begin{aligned}
\sigma & =\left(a_{1}^{(1)} \cdots a_{1}^{\left(r_{1}\right)}\right) \cdots\left(a_{n}^{(1)} \cdots a_{n}^{\left(r_{n}\right)}\right) \\
\sigma^{\prime} & =\left(a_{1}^{(1) \prime} \cdots a_{1}^{\left(r_{1}\right) \prime}\right) \cdots\left(a_{n}^{(1) \prime} \cdots a_{n}^{\left(r_{n}\right) \prime}\right)
\end{aligned}
$$

Choose $\tau \in S_{n}$ such that $\tau^{-1}\left(a_{i}^{(j)}\right)=a_{i}^{(j) \prime}$. Then $\sigma^{\prime}=\tau \sigma \tau^{-1}$.

1.6.2 The Alternating Group

Define the polynomial Δ by

$$
\Delta\left(x_{1}, \ldots, x_{n}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

For $\sigma \in S_{n}$, let

$$
\sigma(\Delta)\left(x_{1}, \ldots, x_{n}\right)=\Delta\left(x_{\sigma}(1), \ldots, x_{\sigma}(n)\right) .
$$

Here, all the same factors appear, but with some signs reversed.
$\therefore \sigma \Delta= \pm \Delta$.
Define $\epsilon: S_{n} \mapsto\{1,-1\}$ by

$$
\epsilon(\sigma)=\left\{\begin{array}{ll}
1 & \text { if } \sigma \Delta=\Delta \\
-1 & \text { if } \sigma \Delta=-\Delta
\end{array} .\right.
$$

$\{1,-1\}$ is a group under multiplication ($\cong C_{2}$), and ϵ is a group homomorphism.
Set $A_{n}:=\operatorname{ker} \epsilon \triangleleft S_{n}$. This is the alternating group.
Proposition 1.6.4. Let $\gamma=(p q) \in S_{n}$ be a transposition (ie. 2-cycle). Then $\gamma \notin A_{n}$ (ie. $\gamma \Delta=-\Delta$).
Proof. Say $p<q$.

$$
\begin{aligned}
\Delta & =\prod_{i<j}\left(x_{i}-x_{j}\right) \\
& =\left(x_{p}-x_{q}\right)\left(\prod_{i<p}\left(x_{i}-x_{p}\right)\right)\left(\prod_{i>p}\left(x_{p}-x_{i}\right)\right)\left(\prod_{i<q}\left(x_{i}-x_{q}\right)\right)\left(\prod_{i>q}\left(x_{q}-x_{i}\right)\right)\left(\prod_{\substack{i<j \\
i \neq p, q \\
j \neq p, q}}\left(x_{i}-x_{j}\right)\right)
\end{aligned}
$$

By applying γ to Δ :

- $\left(x_{p}-x_{q}\right)$ becomes $\left(x_{q}-x_{p}\right)=-\left(x_{p}-x_{q}\right)$,
- The factors $\left(\prod_{i<p}\left(x_{i}-x_{p}\right)\right)$ and $\left(\prod_{i<q}\left(x_{i}-x_{q}\right)\right)$ switch,
- The factors $\left(\prod_{i>p}\left(x_{p}-x_{i}\right)\right)$ and $\left(\prod_{i>q}\left(x_{q}-x_{i}\right)\right)$ switch, and
- The factor

$$
\left(\prod_{\substack{l<j \\ i \neq p, q \\ j \neq p, q}}\left(x_{i}-x_{j}\right)\right)
$$

is unchanged.
Thus, $\gamma \Delta=-\Delta$.
Any permutation can be written (in many ways) as a product of transpositions.
Corollary 1.6.5. $\sigma \in A_{n} \Longleftrightarrow \sigma$ is the product of an even number of transpositions.

1.7 Group Actions

Theorem 1.7.1 (Lagrange's Theorem). Let G be finite, $H \leq G$. Then $|H|$ divides $|G|$, and

$$
G: H:=\frac{|G|}{|H|}=\# \text { of left cosets of } H \text { in } G=\# \text { of right cosets of } H \text { in } G .
$$

($G: H$ is called the index of H in G).
Proof. Define the equivalence relation \sim by $g \sim g^{\prime} \Longleftrightarrow g H=g^{\prime} H$. For $g \in G,|H|=|g H|$ (because the map $x \mapsto g x$ is a bijection). Hence, \sim partitions G into equivalence classes (cosets of H), each containing $|H|$ elements. ie.

$$
\begin{aligned}
|G| & =\text { (number of equiv. classes) } \times \text { (number of elts. per equiv. class) } \\
& =(\text { number of left cosets }) \times|H|
\end{aligned}
$$

Similarly, $|G|=$ (number of right cosets) $\times|H|$.
Corollary 1.7.2. If $H \triangleleft G$ then $|G / H|=|G| /|H|$.
Corollary 1.7.3. For $x \in G,|x|$ divides $|G|$.
Proof. Set $H=\langle x\rangle$. Then $|x|=|H|| | G \mid$.
Corollary 1.7.4. If $|G|=p$, a prime number, then $G \cong C_{p}$.
Proof. Let $x \in G, x \neq e$. Then $|x|=p$, so $G=\langle x\rangle \cong C_{p}(x)$.
Definition 1.7.5. A left action of a group G on a set X consists of an operation

$$
\begin{aligned}
G \times X & \mapsto X \\
(g, x) & \mapsto g \cdot x
\end{aligned}
$$

such that:

1. $(g h) \cdot x=g \cdot(h \cdot x) \quad \forall g, h \in G, x \in X$, and
2. e. $x=x \quad \forall x \in X$.

Equivalently, an action of G on X is a group homomorphism $G \mapsto S_{X}^{\prime}$.

Example 1.7.6.

1. \mathbb{F} a field, $G=G L_{n}(\mathbb{F}), X=\mathbb{F}^{n}$.
G acts on X by matrix multiplication, $A \cdot x=A x$.
2. G any group, $X=G$.
G acts by left multiplication on X, ie. $g \cdot x=g x$.
3. G a group, $N \triangleleft G$.
G acts by conjugation on N, ie. $g \cdot x=g x g^{-1}$.

$$
(g h) \cdot x=g h x(g h)^{-1}=g h x h^{-1} g^{-1}=g(h \cdot x) g^{-1}=g \cdot(h \cdot x) .
$$

In this example, the image of $G \mapsto S_{X}^{\prime}$ lies in $\operatorname{Aut}(N)$, ie.

$$
g \cdot(x y)=g x y g^{-1}=g x g^{-1} g y g^{-1}=(g \cdot x)(g \cdot y)
$$

Note special case where $N=G$.
Similarly, we may define a right action (it is a group homomorphism $G \mapsto S_{X}$). Given a right action \odot of G on X, can define a left action of G on X by

$$
g \cdot x:=x \cdot g^{-1}
$$

Example 1.7.7. $G=S_{n}, X=\{1, \ldots, n\}$. Then

$$
X \times G \mapsto X \text { by } j \cdot \sigma=\sigma(j)
$$

yields a right action of G on $X, i e$.

$$
j \cdot(\sigma \tau)=(\sigma \tau)(j)=(\tau \circ \sigma)(j)=\tau(\sigma(j))=(j \cdot \sigma) \cdot \tau
$$

\therefore Define left action $G \times X \mapsto X$ by $\sigma \cdot j:=j \cdot \sigma^{-1}=\sigma^{-1}(j)$.
Definition 1.7.8. Let $G \times X \mapsto X$ be a (left) action of G on X. Let $x \in X$. The orbit of x is

$$
\operatorname{Orb}(x):=\{g \cdot x \mid g \in G\} \subset X
$$

The stabilizer of x is

$$
\operatorname{Stab}(x):=\{g \in G \mid g \cdot x=x\} \subset G
$$

Proposition 1.7.9. $\operatorname{Stab}(x) \leq G$.
$\operatorname{Proposition~1.7.10.} \operatorname{Orb}(x)=\operatorname{Orb}(y) \Longleftrightarrow y \in \operatorname{Orb}(x)$.
Proof.
\Rightarrow Suppose $\operatorname{Orb}(x)=\operatorname{Orb}(y)$. Then

$$
y=e \cdot y \in \operatorname{Orb}(y)=\operatorname{Orb}(x)
$$

\Leftarrow Suppose $y \in \operatorname{Orb}(x)$. Write $y=g \cdot x$, for some $g \in G$.
$\therefore g^{-1} \cdot y=g^{-1} \cdot(g \cdot x)=g^{-1} g \cdot x=e \cdot x=x$ and thus $x \in \operatorname{Orb}(y)$.
If $z \in \operatorname{Orb}(y)$ then $z=g^{\prime} \cdot y=g^{\prime} \cdot(g \cdot x)=\left(g g^{\prime}\right) \cdot x$ so $z \in \operatorname{Orb}(x)$. Hence $\operatorname{Orb}(x) \subset \operatorname{Orb}(y)$, and similarly, $\operatorname{Orb}(y) \subset \operatorname{Orb}(x)$.

Corollary 1.7.11. Given an action of G on X, the relation $x \sim y \Longleftrightarrow \operatorname{Orb}(x)=\operatorname{Orb}(y)$ is an equivalence relation.

Theorem 1.7.12. Let G be a finite group. Let $G \times X \mapsto X$ be an action of G on X. Then for $x \in X$,

$$
|\operatorname{Orb}(x)||\operatorname{Stab}(x)|=|G| .
$$

Note: Lagrange's Theorem is a special case. ie. $H \leq G, X=\{$ left cosets of $H\}$.

$$
G \times X \mapsto X \text { by } g \cdot C=g C
$$

defines a left action. Set $x=H$.
Proof.

$$
\frac{|G|}{|\operatorname{Stab}(X)|}=G: \operatorname{Stab}(X)=\# \text { of left cosets of } \operatorname{Stab}(X) \text { in } G
$$

Define

$$
\begin{aligned}
\theta:\{\text { left cosets of } \operatorname{Stab}(X)=H\} & \mapsto \operatorname{Orb}(x) \\
g H & \mapsto g \cdot x
\end{aligned}
$$

1. θ is well-defined:

Suppose $g H=g^{\prime} H$. Then $g=g^{\prime} h$ for some $h \in H$. Hence,

$$
g \cdot x=\left(g^{\prime} h\right) \cdot x=g^{\prime} \cdot(h \cdot x)=g^{\prime} \cdot x, \quad \text { since } h \in \operatorname{Stab}(x)
$$

2. θ is surjective:

If $y \in \operatorname{Orb}(x)$ then $y=g \cdot x$, for some $g \in G$. Thus $y=\theta(g H)$.
3. θ is injective:

Suppose $\theta(g H)=\theta\left(g^{\prime} H\right)$. Then $g \cdot x=g^{\prime} \cdot x$. Hence,

$$
x=g^{-1} \cdot(g \cdot x)=g^{-1} \cdot\left(g^{\prime} \cdot x\right)=\left(g^{-1} g^{\prime}\right) \cdot x
$$

$\therefore g^{-1} g^{\prime} \in H$, ie. $g^{\prime}=g h$ for some $h \in H$. Thus $g^{\prime} H=g H$.
$\therefore \theta$ is a bijection and the theorem follows.
Corollary 1.7.13. Let G be a finite group acting on a finite set X. Then

$$
|X|=\sum \frac{|G|}{|\operatorname{Stab}(x)|},
$$

where the sum is taken over one element from each orbit.
Proof. The equivalence relation $x \sim y \Longleftrightarrow \operatorname{Orb}(x)=\operatorname{Orb}(y)$ partitions X into disjoint subsets. So

$$
\begin{aligned}
|X| & =\sum|\operatorname{Orb}(x)|, \quad \text { summed over one element from each orbit } \\
& =\sum \frac{|G|}{|\operatorname{Stab}(x)|}
\end{aligned}
$$

Consider the action of G on itself by conjugation. ie. $X=G$ and $g \cdot x=g x g^{-1}$. Then

$$
\operatorname{Stab}(x)=\{g \in G \mid g \cdot x=x\}=\left\{g \in G \mid g x g^{-1}=x\right\}=\mathrm{C}_{G}(x)
$$

Corollary 1.7.14. Class Formula:

$$
|G|=\sum \frac{|G|}{\left|\mathrm{C}_{G}(x)\right|},
$$

summed over one element from each conjugacy class.
Corollary 1.7.15. Let p be prime and let G be a p-group (ie. $|G|$ is a power of p). Then $\mathrm{Z}(G) \neq\{e\}$.
Proof. $\mathrm{C}_{G}(e)=G$. By the class formula,

$$
\begin{aligned}
|G| & =\sum_{\text {all conj. classes }} \frac{|G|}{\left|\mathrm{C}_{G}(x)\right|} \\
& =\frac{|G|}{\left|\mathrm{C}_{G}(e)\right|}+\sum_{\begin{array}{c}
\text { remaining conj. } \\
\text { classes }
\end{array}} \frac{|G|}{\left|\mathrm{C}_{G}(x)\right|} \\
\therefore p^{n} & =1+\sum_{\begin{array}{c}
\text { remaining conj. } \\
\text { classes }
\end{array}} \frac{|G|}{\left|\mathrm{C}_{G}(x)\right|}
\end{aligned}
$$

$\therefore \exists x \neq e$ such that $\frac{|G|}{\left|C_{G}(x)\right|}$ is not divisible by p. Since $|G|=p^{n}$, this can happen only when $\left|\mathrm{C}_{G}(x)\right|=p^{n}$, ie. when $\mathrm{C}_{G}(X)=G$. ie. $\exists e \neq x \in G$ such that $\mathrm{C}_{G}(x)=G$, ie. $x \in \mathrm{Z}(G)$.

Corollary 1.7.16. If $|G|=p^{2}$ where p is prime then G is abelian.
Proof. Let $x \neq e$ such that $x \in \mathrm{Z}(G)$. If $G=\langle x\rangle$ then G is abelian. Otherwise, $|x|=p$, and since $x \in \mathrm{Z}(G),\langle x\rangle \triangleleft G$. So, $\exists y \in G$ such that \bar{y} generates $G /\langle x\rangle \cong C_{p}$. Then x and y generate G, and since $x \in \mathrm{Z}(G), x \leftrightarrow y$. Hence G is abelian.

1.8 Semi Direct Products

Let H, K be subgroups of G. Define $\mu: H \times K \mapsto G$ by $\mu(h, k)=h k$.
Proposition 1.8.1. If $H \cap K=\{e\}$ then μ is injective.
Proof. Suppose $h k=h^{\prime} k^{\prime}$. Then

$$
\left(h^{\prime}\right)^{-1} h=k^{\prime} k^{-1} \in H \cap K=\{e\}
$$

so $h^{\prime-1}=e=k^{\prime} k^{-1}$. ie. $h=h^{\prime}$ and $k=k^{\prime}$.
Assuming (for the rest of this section) that $H \cap K=\{e\}$, the above says

$$
\mu: H \times K \mapsto H K \subset G
$$

is a bijection. We wish to compare $H \times K$ to $H K$ (which, in general, may not be a subgroup of G). Suppose that $H \triangleleft G$. Then $H K=K H$ is a subgroup of G, but is not necessarily isomorphic to $H \times K$. Besides $H \times K$, what other possibilities are there for $H K$?

Suppose $g=h k$ and $g^{\prime}=h^{\prime} k^{\prime}$ lie in $H K$. Then

$$
g g^{\prime}=h k h^{\prime} k^{\prime}=h k h^{\prime} k^{-1} k k^{\prime}=h^{\prime \prime} k^{\prime \prime}
$$

where $h^{\prime \prime}=h\left(k h^{\prime} k^{-1}\right) \in H$ and $k^{\prime \prime}=k k^{\prime} \in K$.
ie., Labelling elements of $H K$ by the corresponding element in $H \times K$, the group operation in $H K$ can be written

$$
(h, k)\left(h^{\prime}, k^{\prime}\right)=\left(h k \cdot h^{\prime}, k k^{\prime}\right)
$$

where $k \cdot h^{\prime}:=k h^{\prime} k^{-1}$ (the restriction to K of the conjugation action of G on the normal subgroup H). Recall that this action satisfies $k \cdot\left(h_{1} h_{2}\right)=\left(k \cdot h_{1}\right)\left(k \cdot h_{2}\right)$, ie. it is a homomorphism into $\operatorname{Aut}(H)$. Reverse the process:

Definition 1.8.2. Given groups H, K together with a group homomorphism $\phi: K \mapsto \operatorname{Aut}(H)$, (an action of K on H - denote $k \cdot h=\phi(k)(h))$, the semidirect product $H \rtimes K$ is the set $H \times K$ with the binary operation

$$
(h, k)\left(h^{\prime}, k^{\prime}\right):=\left(h\left(k \cdot h^{\prime}\right), k k^{\prime}\right) .
$$

Proposition 1.8.3. $H \rtimes K$ forms a group.

Proof.

$$
\begin{aligned}
\left((h, k)\left(h^{\prime}, k^{\prime}\right)\right)\left(h^{\prime \prime}, k^{\prime \prime}\right) & =\left(h\left(k \cdot h^{\prime}\right), k k^{\prime}\right)\left(h^{\prime \prime}, k^{\prime \prime}\right) \\
& =\left(h\left(k \cdot h^{\prime}\right)\left(k k^{\prime} \cdot h^{\prime \prime}\right), k k^{\prime} k^{\prime \prime}\right), \quad \text { and } \\
(h, k)\left(\left(h^{\prime}, k^{\prime}\right)\left(h^{\prime \prime}, k^{\prime \prime}\right)\right) & =(h, k)\left(h^{\prime}\left(k^{\prime} \cdot h^{\prime \prime}\right), k^{\prime} k^{\prime \prime}\right) \\
& =\left(h\left(k \cdot\left(h^{\prime}\left(k^{\prime} \cdot h^{\prime \prime}\right)\right)\right), k k^{\prime} k^{\prime \prime}\right) .
\end{aligned}
$$

However, since $\operatorname{Im} \phi \subset \operatorname{Aut}(H)$,

$$
\begin{gathered}
k \cdot\left(h^{\prime}\left(k^{\prime} \cdot h^{\prime \prime}\right)\right)=\left(k \cdot h^{\prime}\right)\left(k \cdot\left(k^{\prime} \cdot h^{\prime \prime}\right)\right)=\left(k \cdot h^{\prime}\right)\left(k k^{\prime} \cdot h^{\prime \prime}\right) \\
\therefore\left((h, k)\left(h^{\prime}, k^{\prime}\right)\right)\left(h^{\prime \prime}, k^{\prime \prime}\right)=(h, k)\left(\left(h^{\prime}, k^{\prime}\right)\left(h^{\prime \prime}, k^{\prime \prime}\right)\right) \\
(e, e)\left(h^{\prime}, k^{\prime}\right)=\left(e\left(e \cdot h^{\prime}\right), e k^{\prime}\right)=\left(e h^{\prime}, e k^{\prime}\right)=\left(h^{\prime}, k^{\prime}\right), \quad \text { and } \\
(h, k)(e, e)=(h(k \cdot e), k e)=(h e, k e)=(h, k)
\end{gathered}
$$

(Here, $k \cdot e=e$ since $\operatorname{Im} \phi \subset \operatorname{Aut}(H)$.) Hence (e, e) is the identity.

$$
\begin{aligned}
(h, k)\left(k^{-1} \cdot h^{-1}, k^{-1}\right) & =\left(h\left(k \cdot\left(k^{-1} \cdot h^{-1}\right)\right), k k^{-1}\right) \\
& =\left(h\left(\left(k k^{-1}\right) \cdot h^{-1}\right), k k^{-1}\right) \\
& =\left(h\left(e \cdot h^{-1}\right), k k^{-1}\right) \\
& =\left(h h^{-1}, k k^{-1}\right) \\
& =(e, e), \quad \text { and } \\
\left(k^{-1} \cdot h^{-1}, k^{-1}\right)(h, k) & =\left(\left(k^{-1} \cdot h^{-1}\right)\left(k^{-1} \cdot h\right), k^{-1} k\right) \\
& =\left(k^{-1} \cdot\left(h^{-1} h\right), k^{-1} k\right), \quad \text { since } \operatorname{Im} \phi \subset \operatorname{Aut}(H) \\
& =\left(k^{-1} \cdot e, e\right) \\
& =(e, e) .
\end{aligned}
$$

Hence $(h, k)^{-1}=\left(k^{-1} \cdot h^{-1}, k^{-1}\right)$.
Define

$$
\begin{aligned}
i_{H}: H & \mapsto H \rtimes K \\
h & \mapsto(h, e), \quad \text { and } \\
i_{K}: K & \mapsto H \rtimes K \\
k & \mapsto(e, k)
\end{aligned}
$$

Proposition 1.8.4. i_{H} and i_{K} are (injective) group homomorphisms.
Proof.

$$
\begin{aligned}
& (h, e)\left(h^{\prime}, e\right)=\left(h\left(e \cdot h^{\prime}\right), e e\right)=\left(h h^{\prime}, e\right) \\
& (e, k)\left(e, k^{\prime}\right)=\left(e(k \cdot e), k k^{\prime}\right)=\left(e e, k k^{\prime}\right)=\left(e, k k^{\prime}\right)
\end{aligned}
$$

Using i_{H} and i_{K}, regard H and K as subgroups of $H \rtimes K$.

$$
\text { ie. } \begin{aligned}
H \cong i_{H}(H) & =\{(h, e)\} \leq H \rtimes K \\
K & \cong i_{K}(K)
\end{aligned}=\{(e, k)\} \leq H \rtimes K
$$

Proposition 1.8.5. $H \triangleleft(H \rtimes K)$ and $(H \rtimes K) / H \cong K$.
Proof. Define $\phi: H \rtimes K \mapsto K$ by $\phi(h, k)=k$. Then

$$
\phi\left((h, k)\left(h^{\prime}, k^{\prime}\right)\right)=\phi\left(h\left(k \cdot h^{\prime}\right), k k^{\prime}\right)=k k^{\prime}
$$

so ϕ is a group homomorphism.

$$
\operatorname{ker} \phi=\{(h, e) \in H \rtimes K\}=i_{H}(H) \cong H .
$$

Returning to the motivating example, $H \triangleleft G, K \leq G, H \cap K=\{e\}$, and by construction,

$$
H K \cong H \rtimes K .
$$

Proposition 1.8.6. If both $H \triangleleft G$ and $K \triangleleft G$ with $H \cap K=\{e\}$ then $\mu: H \times K \mapsto H K$ is an isomorphism.

Proof. For $h \in H, k \in K$,

$$
\begin{aligned}
& h k h^{-1} k^{-1}=\left(h k h^{-1}\right) k^{-1} \in K, \quad \text { and } \\
& h k h^{-1} k^{-1}=h\left(k h^{-1} k^{-1}\right) \in H
\end{aligned}
$$

So $h k h^{-1} k^{-1} \in H \cap K=\{e\}$.

$$
\text { ie. } h k=k h \quad \forall h \in H, k \in K \text {. }
$$

Hence

$$
\mu(h, k) \mu\left(h^{\prime}, k^{\prime}\right)=h k h^{\prime} k^{\prime}=h h^{\prime} k k^{\prime}=\mu\left(h h^{\prime}, k k^{\prime}\right)=\mu\left((h, k)\left(h^{\prime}, k^{\prime}\right)\right) .
$$

$\therefore \mu$ is a homomorphisms, so $\mu: H \times K \stackrel{\cong}{\longmapsto} H K$.

Proposition 1.8.7. Let H, K be groups and let $\phi: K \mapsto \operatorname{Aut}(H)$. TFAE:

1. $H \times K \cong H \rtimes K$.
2. ϕ is the trivial homomorphism.
3. $K \triangleleft(H \rtimes K)$.

Proof.
$1 \Rightarrow 2$:

$$
\forall h, h^{\prime} \in H, k, k^{\prime} \in K, \quad\left(h h^{\prime}, k k^{\prime}\right)=(h, k)\left(h^{\prime}, k^{\prime}\right)=\left(h\left(k \cdot h^{\prime}\right), k k^{\prime}\right)
$$

$\therefore \phi(k)\left(h^{\prime}\right)=k \cdot h^{\prime}=h^{\prime} \quad \forall h^{\prime}$, ie. $\phi(k)=1_{H}$.
$2 \Rightarrow 3$: Since H, K generate $H \rtimes K$, it suffices to check $h K h^{-1} \subset K, \forall h \in H$. Note that

$$
(h, e)^{-1}=\left(h^{-1}, e\right),
$$

so

$$
\begin{aligned}
(h, e)(e, k)\left(h^{-1}, e\right) & =(h(e \cdot e), e k)\left(h^{-1}, e\right) \\
& =(h, k)\left(h^{-1}, e\right) \\
& =\left(h\left(k \cdot h^{-1}\right), k e\right) \\
& =\left(h h^{-1}, k e\right), \quad \text { by } 2 \\
& =(e, k) \in K
\end{aligned}
$$

$3 \Rightarrow 1$: This is the previous proposition.
In particular, this proposition says that if G has normal subgroups H, K such that $H \cap K=\{e\}$ and $H K=G$ then $G \cong H \times K$.

Theorem 1.8.8. Let $\phi: G \mapsto K$ be a group homomorphism. Suppose \exists a group homomorphism $s: K \mapsto G$ such that $\phi s=1_{K}$. (s is called a section or a right splitting of ϕ.) Then

$$
G \cong(\operatorname{ker} \phi) \rtimes K
$$

Proof. Observe that existence of a function $s: K \mapsto G$ such that $\phi s=1_{K}$ implies that ϕ is onto and s is injective. Let $H=\operatorname{ker} \phi$. Set

$$
\tilde{K}=\operatorname{Im} s \cong \stackrel{\cong}{\rightleftarrows} s .
$$

Then

$$
(\operatorname{ker} \phi) \rtimes K \cong H \rtimes \tilde{K} \cong H \tilde{K} \leq G
$$

so it suffices to show $H \tilde{K}=G$.
Given $g \in G$, let $k=\phi(g) \in K$ and let

$$
\tilde{k}=s(k)=s \phi(g) \in \tilde{K} .
$$

Then

$$
\phi(\tilde{k})=\phi s \phi(g)=\phi(g),
$$

since $\phi s=1_{K}$. Hence $g \tilde{k}^{-1} \in \operatorname{ker} \phi=H$, and so $g \in H \tilde{K}$. Thus $G=H \tilde{K}$.
A right splitting of ϕ does not make G a product. In contrast, a left splitting does imply that G is a product:

Theorem 1.8.9. Let $H \triangleleft G$. Let $i: H \mapsto G$ be the inclusion map. Suppose \exists a group homomorphism $r: G \mapsto H$ such that $r i=1_{H}$. Then

$$
G \cong H \times G / H .
$$

Proof. Define $\theta: G \mapsto H \times(G / H)$ by

$$
\theta(g)=(r g, q g)
$$

where $q: G \mapsto G / H$ is the quotient projection $g \mapsto g H$. Then θ is a homomorphism.
If $\theta(g)=\theta\left(g^{\prime}\right)$ then $r(g)=r\left(g^{\prime}\right)$ and $g H=g^{\prime} H$, so let $g^{\prime}=g h$ for some $h \in H$. Hence

$$
r(g)=r\left(g^{\prime}\right)=r(g) r(h),
$$

so

$$
e=r(h)=r i(h)=h .
$$

$\therefore g^{\prime}=g h=g e=g$. Thus θ is injective.
To show θ is surjective, it suffices to show $H \times\{e\} \subset \operatorname{Im} \theta$ and $\{e\} \times(G / H) \subset \operatorname{Im} \theta$, since these generate $H \times(G / H)$.

Given $h \in H$,

$$
\theta(h)=(r(h), h H)=(h, e) .
$$

Given $q(g)=g H \in G / H$, let $h=r(g)$ and set $g^{\prime}=h^{-1} g$. Then

$$
\begin{aligned}
\theta\left(g^{\prime}\right) & =\left(r\left(h^{-1} g\right), q\left(h^{-1} g\right)\right) \\
& =\left(r\left(h^{-1}\right) r(g), q(g)\right) \\
& =\left(h^{-1} h, q(g)\right) \\
& =(e, q(g))
\end{aligned}
$$

So θ is onto.

Example 1.8.10. Use $\phi=\epsilon: S_{3} \mapsto C_{2}$. Then $\operatorname{ker} \phi \cong A_{3}$. Let

$$
\begin{aligned}
s: C_{2} & \mapsto S_{3} \quad \text { by } \\
s(1) & =e \\
s(-1) & =\left(\begin{array}{ll}
1 & 2
\end{array}\right)
\end{aligned}
$$

s is a right splitting. Thus $S_{3} \cong A_{3} \rtimes C_{2}$.

1.9 Sylow Theorems

Throughout this section, p denotes a prime and G is a finite group.
Suppose $|G|=n$. If $H \leq G$ then by Lagrange, $|H| \mid n$. However, the converse is false, eg. if $G=S_{5}$ then $n=120$, but G has no subgroups of order 15,30 , or 40 . However, \exists a partial converse:
Theorem 1.9.1 ((First) Sylow Theorem). If $p^{t}| | G \mid$ then $\exists H \leq G$ such that $|H|=p^{t}$.
Proof. Write $|G|=m p^{t}$. Find $r \geq 0$ such that $p^{r} \mid m$ but $p^{r+1} \nmid m$.
Lemma 1.9.2. $\left.p^{r} \left\lvert\, \begin{array}{c}m p^{t} \\ p^{t}\end{array}\right.\right)$ but $p^{r+1} \nmid\binom{m p^{t}}{p^{t}}$.
Proof.

$$
\binom{m p^{t}}{p^{t}}=\frac{\left(m p^{t}\right)\left(m p^{t}-1\right) \cdots\left(m p^{t}-p^{t}+1\right)}{\left(p^{t}\right)\left(p^{t}-1\right) \cdots 3 \cdot 2 \cdot 1}
$$

If $0<j<p^{t}$ then

$$
\text { \# of times } \begin{aligned}
p \text { divides } p^{t}-j & =\text { \# of times } p \text { divides } j \\
& =\text { \# of times } p \text { divides } m p^{t}-j
\end{aligned}
$$

\therefore Powers of p cancel except for those in the factor m.
Proof of Theorem continued. Let $\mathcal{S}=\left\{S \subset G| | S \mid=p^{t}\right\}$. Define right action

$$
\mathcal{S} \times G \mapsto \mathcal{S} \quad \text { by } \quad S \cdot g=S g .
$$

\mathcal{S} has $\binom{m p^{t}}{p^{t}}$ elements, so there exists an orbit $X=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ (of size k) such that $p^{r+1} \nmid k$. (If p^{r+1} divided the number of elements in each orbit then p^{r+1} would divide $|\mathcal{S}|$).
$\operatorname{Orb}\left(S_{1}\right)=X$ by definition. Set $H:=\operatorname{Stab}\left(S_{1}\right) \leq G$. Then

$$
|H|=\frac{|G|}{|X|}=\frac{m p^{t}}{k}=\left(\frac{m}{k}\right) p^{t} .
$$

By construction, $p^{r+1} \nmid k$ so p divides m at least as many times as p divides k. Thus $|H|$ is divisible by p^{t}, and in particular,

$$
|H| \geq p^{t} .
$$

Pick $s \in S_{1}$. Then $\forall h \in H, s h \in S_{1}$ but $h \neq h^{\prime} \Rightarrow s h \neq s h^{\prime}$. Hence

$$
p^{t}=\left|S_{1}\right| \geq|H| .
$$

$\therefore|H|=p^{t}$.

Definition 1.9.3. Suppose $|G|=n$. Let p be a prime and let p^{t} be the largest power of p dividing n. Then a subgroup of G having order p^{t} is called a Sylow p-subgroup of G.

Notation: $\operatorname{Syl}_{p}(G):=\{$ Sylow p-subgroups of $G\}$.
Corollary 1.9.4 (Corollary to Sylow Theorem). $\operatorname{Syl}_{p}(G)$ is non-empty $\forall p$.
Suppose $H \leq G$. Then $\forall g \in G, g H g^{-1} \leq G$ and

$$
\begin{aligned}
H & \stackrel{\cong}{\longmapsto} g H^{-1} \\
x & \mapsto g g^{-1}
\end{aligned}
$$

In particular, $\left|g \mathrm{Hg}^{-1}\right|=|H| .\left(g \mathrm{Hg}^{-1}\right.$ is called a conjugate subgroup of H in $\left.G.\right)$

$$
P \in \operatorname{Syl}_{p}(G) \Rightarrow g P g^{-1} \in \operatorname{Syl}_{p}(G) \quad \forall g \in G
$$

Pick $P \in \operatorname{Syl}_{p}(G)$. Let

$$
X=\{\text { Sylow } p \text {-subgroups of } G \text { which are conjugate to } P\} .
$$

G acts on X by $g \cdot S=g S g^{-1}$.
If $Q \leq G$, can restrict to get an action of Q on X. For an action of Q on $\operatorname{Syl}_{p}(G)$, have

$$
|Q|=\left|\operatorname{Orb}_{Q}(S)\right|| | \operatorname{Stab}_{Q}(S) \mid .
$$

Here,

$$
\operatorname{Stab}_{Q}(S)=\left\{q \in Q \mid q S q^{-1}=S\right\}=\mathrm{N}_{Q}(S)
$$

Lemma 1.9.5. If Q is a p-subgroup then for any Sylow p-subgroup S,

$$
\mathrm{N}_{Q}(S)=S \cap Q
$$

Proof. Let $H=\mathrm{N}_{Q}(S)$. From the definition, $S \cap Q \subset H$. Conversely, $H \subset Q$, so it suffices to show $H \subset S$. Consider $S H$.

$$
\begin{gathered}
S H=H S \leq G, \quad \text { since } S \triangleleft H . \\
|S H|=\frac{|S||H|}{|S \cap H|}=|S| \frac{|H|}{|S \cap H|} \geq|S| .
\end{gathered}
$$

$H=\mathrm{N}_{Q}(S) \leq Q \Rightarrow|H|$ is a power of $p \Rightarrow|S H|$ is a power of p. But S is a Sylow p-subgroup and $S \subset S H$, so $S=S H$.
$\therefore H=\subset$. Thus $H=S \cap Q$.

Lemma 1.9.6. $|X| \equiv 1 \bmod p$.
Proof. Write $X=\left\{P=S_{1}, \ldots, S_{r}\right\}$. For any Q the action of Q on X divides X into orbits:

$$
|X|=\sum_{\text {orbits }}(\# \text { of elts. in that orbit }) .
$$

Apply this with $Q=S_{1}=P$:

$$
\operatorname{Stab}_{P}(S)=\mathrm{N}_{P}(S)=P \cap S
$$

$\therefore\left|\operatorname{Stab}_{P}(S)\right|||P|$, with equality only when $S=P$. Hence,

$$
\left|\operatorname{Orb}_{P}(S)\right|=\frac{|P|}{\left|\operatorname{Stab}_{P}(S)\right|}
$$

is one when $S=P$, and is divisible by p otherwise. So

$$
\begin{aligned}
|X| & =\sum_{\text {orbits }}(\# \text { of elts. in that orbit }) \\
& =1+\sum_{\substack{\text { orbits not } \\
\text { containing } P}}(\# \text { of elts. in that orbit }) \\
& \equiv 1 \quad \bmod p .
\end{aligned}
$$

Lemma 1.9.7. If Q is a p-subgroup then $Q \subset P_{j}$ for some $P_{j} \in X$.
Proof. Again,

$$
|X|=\sum_{\text {orbits }}(\# \text { of elts. in that orbit }) .
$$

Unless $Q \subset P_{j}$ for some j then for each $j, Q \cap P_{j}$ will be a proper subset of Q, so that

$$
\left|\operatorname{Orb}_{Q}\left(P_{j}\right)\right|=\frac{|Q|}{\left|\operatorname{Stab}_{Q}\left(P_{j}\right)\right|} \text { is divisible by } p \quad \forall j \text {. }
$$

But if $p \mid$ (\# of elements in orbit) for each orbit then $p||X|$, contradicting the last lemma.
$\therefore Q \subset P_{j}$ for some j.
Corollary 1.9.8. $\operatorname{Syl}_{p}(G)=X$.

Proof. For $S \in \operatorname{Syl}_{p}(G),|S|$ is a power of $p \Rightarrow S \subset P_{j}$ for some $P_{j} \in X$. But $|S|=\left|P_{j}\right|$ since both are Sylow p-subgroups.
$\therefore S=P_{j} \in X$.
Lemma 1.9.9. $\left|\operatorname{Syl}_{p}(G)\right|||G|$.
Proof. Consider the action of G on $\operatorname{Syl}_{p}(G)$. Let $P \in \operatorname{Syl}_{P}(G)$.

$$
|G|=\left|\operatorname{Orb}_{G}(P)\right|\left|\operatorname{Stab}_{G}(P)\right|
$$

$\operatorname{Orb}_{G}(P)=\{$ subgroups of G conjugate to $P\}=X=\operatorname{Syl}_{p}(G)$.
$\therefore\left|S y l_{P}(G)\right|$ divides G.
In summary:
Theorem 1.9.10 ((Main) Sylow Theorem). Let G be a finite group and let p be a prime.

1. $\left|\operatorname{Syl}_{p}(G)\right| \equiv 1 \bmod p$.
2. $\left|\operatorname{Syl}_{p}(G)\right|||G|$.
3. Any two Sylow p-subgroups of G are conjugate (and in particular, isomorphic).
4. Every p-subgroup of G is contained in some Sylow p-subgroup. In particular, every element whose order is a power of p is contained in some Sylow p-subgroup.

Proof. Showed that if $X=\left\{\right.$ Sylow p-subgroups conjugate to P \} then $\operatorname{Syl}_{P}(G)=X \Longleftrightarrow 3$.
Also showed $|X| \equiv 1 \bmod p \Longleftrightarrow 1$.
Also showed: every p-subgroup of G is contained in some $S \in X \Longleftrightarrow 4$.
Also showed $\left|\operatorname{Syl}_{P}(G)\right|||G| \Longleftrightarrow 2$.
Corollary 1.9.11. Let P be a Sylow p-subgroup of G. Then $P \triangleleft G \Longleftrightarrow P$ is the unique Sylow p-subgroup.

Proof.
\Leftarrow : Suppose \exists ! Sylow p-subgroup. Since $g P g^{-1}$ is a Sylow p-subgroup $\forall g$,

$$
g P g^{-1}=P \quad \forall G
$$

ie. $P \triangleleft G$.
\Rightarrow : Suppose $P \triangleleft G$. Then the only subgroup of G conjugate to P is P. By Sylow Theorem, 3, P is the only Sylow p-subgroup.

Corollary 1.9.12. Let P be a Sylow p-subgroup of G. Let $N=\mathrm{N}_{G}(P)$. Then

$$
\mathrm{N}_{G}(N)=N .
$$

In particular, $N \triangleleft G$ iff $P \triangleleft G$.
Proof. Set $H:=\mathrm{N}_{G}(N)$. Then $\forall h \in H, h P h^{-1} \subset N$ and $\left|h P h^{-1}\right|=|P|$, so $h P h^{-1}$ is a Sylow p-subgroup of G. But then $h P h^{-1}$ is also a Sylow p-subgroup of N. However, $P \triangleleft N$, so P is the unique Sylow p-subgroup of N.
$\therefore h P h^{-1}=P$, so $h \in \mathrm{~N}_{G}(P)=N$. Hence $H \subset N$, so $H=N$.
In particular, if $N \triangleleft G$ then $N=H=G$ so $P \triangleleft G$.

1.10 Applications of Sylow's Theorem

1. Suppose $|G|=15$. Then

$$
\underset{\left|\operatorname{Syl}_{5}(G)\right| \mid 15}{\left|\operatorname{Syl}_{5}(G)\right| \equiv 1} \bmod 5 .
$$

$\therefore \exists$! element of $\operatorname{Syl}_{5}(G)$. Let H be the unique Sylow 5-subgroup, so $H \triangleleft G$. Similarly,

$$
\begin{gathered}
\left|\operatorname{Syl}_{3}(G)\right| \equiv 1 \quad \bmod 3 \\
\left|\operatorname{Syl}_{3}(G)\right| \mid 15
\end{gathered} \Rightarrow\left|\operatorname{Syl}_{3}(G)\right|=1
$$

so \exists ! Sylow 3-subgroup K, and so $K \triangleleft G$.
Pick generators $h \in H, k \in K ;|h|=5,|k|=3 . H, K$ are normal $\Rightarrow h k=k h$, so $|h k|=15$. Hence, G has an element of order 15 , so $G \cong C_{15}$.
2. Suppose $|G|=10$.

$$
\begin{gathered}
\left|\operatorname{Syl}_{5}(G)\right| \equiv 1 \\
\left|\operatorname{Syl}_{5}(G)\right| \mid 10
\end{gathered} \Rightarrow\left|\operatorname{Syl}_{5}(G)\right|=1
$$

Let H be the unique Sylow 5-subgroup. Then $H \triangleleft G$. Pick a generator h.

$$
\begin{gathered}
\left|\operatorname{Syl}_{2}(G)\right| \equiv 1 \quad \bmod 2 \\
\left|\operatorname{Syl}_{2}(G)\right| \mid 10
\end{gathered} \Rightarrow\left|\operatorname{Syl}_{2}(G)\right|=1 \text { or } 5
$$

Case I: $\left|\operatorname{Syl}_{2}(G)\right|=1$. Then $G \cong C_{10}$, using argument above.
Case II: $\left|\operatorname{Syl}_{2}(G)\right|=5$.
Let K be a Sylow 2-subgroup; $K=\{e, k\}$. If $h k=k h$ then $|h k|=10$ and we would be in Case I. Hence,

$$
h k h^{-1}=k_{2}=\text { generator of a different Sylow 2-subgroup. }
$$

Similarly, $h^{2} k h^{-2}, h^{3} k h^{-3}, h^{4} k h^{-4}$ must be the generators of the other Sylow 2-subgroups. (Again, if $h^{i} k h^{-i}=h^{j} k h^{-j}$ for $i \neq j$ then $h^{j-i} k=k h^{j-i}$ and we would be in Case I.)
\therefore Can list the ten elements of G :

e	k
h	$h k h^{-1}$
h^{2}	$h^{2} k h^{-2}$
h^{3}	$h^{3} k h^{-3}$
h^{4}	$h^{4} k h^{-4}$

From this, we can construct the group table. eg. what is $h k$?
Well, $h k \neq h^{j}$ for any j, so $h k$ has order 2.

$$
\begin{aligned}
\therefore h k h k & =e \\
h k h & =k^{-1}=k \\
\therefore h k & =h(h k h) \\
& =h^{2} k h \\
& =h^{2}(h k h) h \\
& =h^{3} k h^{2} \\
& =h^{3} k h^{-3} .
\end{aligned}
$$

This group must be D_{10}.

$$
\begin{aligned}
& h \mapsto(12345) \\
& k \mapsto(25)(34)
\end{aligned}
$$

Conclusion: If $|G|=10$ then $G \cong C_{10}$ or $G \cong D_{10}$.
In passing: note the existence of an element k of order 2 in D_{10} gives a splitting

$$
D_{10} \underset{s}{ } D_{10} / H \cong C_{2}
$$

where if $C_{2}=\{e, x\}$ then $s(x)=k$. Thus

$$
D_{10} \cong H \rtimes C_{2}=C_{5} \rtimes C_{2} .
$$

The corresponding homomorphism $\phi: C_{2} \mapsto \operatorname{Aut}\left(C_{5}\right)$ is given by $k \cdot h=h^{-1}=h^{4}$.
($\operatorname{Aut}\left(C_{5}\right) \cong C_{4}$ is generated by the map τ, taking h to h^{2}. The only element of order 2 in $\operatorname{Aut}\left(C_{5}\right)$ is $\tau \circ \tau$, which is $h \mapsto h^{4}$.)
3. Suppose $|G|=12$. Then

$$
\begin{aligned}
& \left|\operatorname{Syl}_{2}(G)\right|=1 \text { or } 3, \\
& \left|\operatorname{Syl}_{3}(G)\right|=1 \text { or } 4 .
\end{aligned}
$$

Case I: $\left|\operatorname{Syl}_{2}(G)\right|=3$ and $\left|\operatorname{Syl}_{3}(G)\right|=4$.
Since two distinct groups of order 3 intersect only in the identity, and each Sylow 3subgroup has 2 elements of order $3, G$ has $4 \times 2=8$ elements of order 3 . The remaining 4 elements must form a Sylow 2-subgroup.
\therefore There aren't enough elements left to form any more Sylow 2-subgroups. This is a contradiction, so Case I doesn't occur.

Case II: $\mid \operatorname{Syl}_{2}(G)=1$.
Let H be the unique Sylow 2-subgroup, so $H \triangleleft G .|H|=4$, so either $H \cong C_{4}$ or $H \cong$ $C_{2} \times C_{2}$.
Case IIa: $H \cong C_{4}(\sigma)$.
Let τ be an element of some Sylow 3-subgroup, $|\tau|=3$.

$$
\begin{gathered}
\tau \sigma \tau^{-1} \in H \\
\left|\tau \sigma \tau^{-1}\right|=|\sigma|=4
\end{gathered} \Rightarrow \tau \sigma \tau^{-1}=\text { either } \sigma \text { or } \sigma^{3} .
$$

If $\tau \sigma \tau^{-1}=\sigma^{3}$ then

$$
\tau \sigma^{3} \tau^{-1}=\left(\tau \sigma \tau^{-1}\right)^{3}=\sigma^{9}=\sigma .
$$

Moreover, $\tau^{3}=e$, so

$$
\sigma=\tau^{3} \sigma \tau^{-3}=\tau^{2}\left(\tau \sigma \tau^{-1}\right) \tau^{2}=\tau^{2} \sigma^{3} \tau^{-2}=\tau\left(\tau \sigma^{3} \tau^{-1}\right) \tau^{-1}=\sigma^{3}
$$

This is a contradiction. Thus, $\tau \sigma \tau^{-1}=\sigma$.
Using the fact that τ and σ commute, $|\tau \sigma|=12$. Thus $G \cong C_{12}$.
Equivalent way of phrasing argument that $\tau \sigma \tau^{-1}=\sigma$: Let $T=\left\{e, \tau, \tau^{2}\right\}$. H is normal $\Rightarrow T$ acts on H via $\tau \cdot \sigma:=\tau \sigma \tau^{-1}$.

$$
|\operatorname{Orb}(\sigma)||\operatorname{Stab}(\sigma)|=|T|=3 .
$$

σ has order $2 \Rightarrow x \cdot \sigma$ has order $2 \forall x \in T$. So $\operatorname{Orb}(\sigma) \subset\left\{\sigma, \sigma^{3}\right\}$. Since $|\operatorname{Orb}(\sigma)|$ divides 3, $\operatorname{Orb}(\sigma)=\{\sigma\}$.
$\therefore \tau \sigma \tau^{-1}=\sigma$.
Another rephrasing: $H \triangleleft G$.

$$
G \underset{s}{\rightleftarrows} G / H \cong C_{3},
$$

where s takes the generator a to τ. ie. The existence of an element τ of order 3 in G gives a splitting, so

$$
G \cong C_{4} \rtimes_{\phi} C_{3}
$$

for some $\phi: C_{3} \mapsto \operatorname{Aut}\left(C_{4}\right)$. However, $\operatorname{Aut}\left(C_{4}\right) \cong C_{2}=\left\{1_{C_{4}}\right.$ and $\left.\sigma \mapsto \sigma^{3}\right\}$. so the only homomorphism $C_{3} \mapsto \operatorname{Aut}\left(C_{4}\right)$ is trivial.
$\therefore G \cong C_{4} \times C_{3} \cong C_{12}$.
Case IIb: $H \cong C_{2} \times C_{2}$.
Let

$$
H=\left\{e, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}, \quad \sigma_{j}^{2}=e .
$$

Let $T=\left\{e, \tau, \tau^{2}\right\}$ be some Sylow 3-subgroup.

$$
G \underset{s}{\rightleftarrows} G / H \cong C_{3},
$$

and thus,

$$
G \cong H \rtimes_{\phi} T,
$$

with $\phi: T \mapsto \operatorname{Aut}(H) \cong$ permutations of $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \cong S_{3}$. So

$$
(\phi(\tau))\left(\sigma_{1}\right)=\tau \sigma_{1} \tau^{-1}=\sigma_{1}, \sigma_{2}, \text { or } \sigma_{3}
$$

Case IIbi: $\tau \sigma_{1} \tau^{-1}=\sigma_{1}$. Then since the order of $\phi(\tau)$ must divide the order of τ, which is $3, \phi(\tau)=\mathrm{id}$. Hence $\phi=$ id and

$$
G \cong H \times T \cong C_{2} \times C_{2} \times C_{3} .
$$

Case IIIbii: $\tau \sigma_{1} \tau^{-1} \neq \sigma_{1}$.
So $\tau \sigma_{1} \tau^{-1}=\sigma_{2}$ or σ_{3}. By symmetry, assume $\tau \sigma_{1} \tau^{-1}=\sigma_{2}$. Then $\phi(\tau)$ must be a 3-cycle, so $\tau \sigma_{2} \tau^{-1}=\sigma_{3}$.
Elements of G :

e	σ_{1}	σ_{2}	σ_{3}
τ	$\tau \sigma_{1}$	$\tau \sigma_{2}$	$\tau \sigma_{3}$
τ^{2}	$\tau^{2} \sigma_{1}$	$\tau^{2} \sigma_{2}$	$\tau^{2} \sigma_{3}$

Each σ_{j} has order 2, and the elements $\tau, \tau^{2}, \tau \sigma_{j}$ and $\tau^{2} \sigma_{j}$ each have order 3. Multiplication is determined by $\tau \sigma_{1} \tau^{-1}=\sigma_{2}$ and $\tau \sigma_{2} \tau^{-1}=\sigma_{3}$. eg.

$$
\sigma_{1} \tau=\tau \tau^{-1} \sigma_{1} \tau=\tau \tau^{2} \sigma_{1} \tau^{-2}=\tau \tau \sigma_{2} \tau^{-1}=\tau \sigma_{3} .
$$

What group is this? Let $T_{1}, T_{2}, T_{3}, T_{4}$ be the Sylow 3-subgroups. ie.

$$
\begin{aligned}
& T_{j}=\left\{e, \tau \sigma_{j},\left(\tau \sigma_{j}\right)^{2}\right\} \quad j=1,2,3 \\
& T_{4}=\left\{e, \tau, \tau^{2}\right\}
\end{aligned}
$$

Let $X=\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$. Conjugation by elements of G permutes elements of X, ie. have morphism

$$
\theta: G \mapsto S_{X}=S_{4}
$$

What is $\theta(\tau)$?

$$
\begin{aligned}
& \tau T_{1} \tau^{-1}=\left\{\tau e \tau^{-1}, \tau\left(\tau \sigma_{1}\right) \tau^{-1}=\tau \sigma_{2}, \tau\left(\tau \sigma_{1}\right)^{2} \tau^{-1}\right\}=T_{2} \\
& \tau T_{2} \tau^{-1}=\left\{\tau e \tau^{-1}, \tau\left(\tau \sigma_{2}\right) \tau^{-1}=\tau \sigma_{3}, \quad \cdots,\right\}=T_{3} \\
& \tau T_{3} \tau^{-1}=T_{1} \\
& \tau T_{4} \tau^{-1}=T_{4}
\end{aligned}
$$

ie. $\tau \stackrel{\theta}{\longmapsto}\left(\begin{array}{ll}1 & 3\end{array}\right)$.
What is $\theta\left(\sigma_{1}\right) ? \sigma_{1} T_{1} \sigma_{1}^{-1}=$?
Suffices to compute $\sigma_{1}\left(\tau \sigma_{1}\right) \sigma_{1}^{-1}$.

$$
\sigma_{1}\left(\tau \sigma_{1}\right) \sigma_{1}^{-1}=\sigma_{1} \tau=\tau \sigma_{3}
$$

$\therefore \sigma_{1}\left(\tau \sigma_{1}\right) \sigma_{1}^{-1}=T_{3} .\left|\sigma_{1}\right|=2 \Rightarrow \sigma_{1} T_{3} \sigma_{1}^{-1}=T_{1}$. Likewise, $\sigma_{1} T_{4} \sigma_{1}^{-1}=T_{2}$. So $\sigma_{1} \mapsto$ (13)(24).

What is $\theta\left(\sigma_{2}\right)$?

$$
\sigma_{2} T_{1} \sigma_{2}^{-1}=\sigma_{2} \tau \sigma_{1} \sigma_{2}^{-1}=\tau \sigma_{1}^{2} \sigma_{2}^{-1}=\tau \sigma_{2} \in T_{2}
$$

etc., get $\sigma_{2} \mapsto(12)(34)$.

$$
G \cong A_{4} .
$$

Case III: $\left|\operatorname{Syl}_{2}(G)\right|=3$, so $\left|\operatorname{Syl}_{3}(G)\right|=1$.
Let $T=\left\{e, \tau, \tau^{2}\right\}$ be the unique Sylow 3-subgroup, so $T \triangleleft G$. Let H be a Sylow 2subgroup. $|H|=4$, so $H \cong C_{4}$ or $C_{2} \times C_{2}$. Then

$$
H \hookrightarrow G \mapsto G / T
$$

is an isomorphism (it is an injection since $H \cap T=\{e\}$ for degree reasons, and since $|H|=4=|G / T|$, it is bijective). This splits $q: G \mapsto G / T$, so

$$
G \cong T \rtimes_{\phi} H .
$$

Case IIIa: $H \cong C_{2} \times C_{2}$.
Let $H=\left\{e, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$.

$$
\phi: H \mapsto \operatorname{Aut} T=\operatorname{Aut} C_{3} \cong C_{2} .
$$

If $\phi(h)=1_{T} \forall h \in H$ then $G=T \times H$, transposing to Case II. So ϕ is non-trivial, ie. $\phi(h)(\tau)=\tau^{2}$ for some $h \in H$. Then

$$
\operatorname{ker} \phi=C_{2}
$$

so $\exists h \in H$ such that $h \neq e$ and $\phi(h)=1_{T} . \phi\left(h^{\prime}\right)(\tau)=\tau^{2}$ for the other two non-trivial elements h^{\prime} of H. By symmetry, suppose $\phi\left(\sigma_{3}\right)=1_{T}$, ie.

$$
\begin{aligned}
& \phi\left(\sigma_{1}\right)(\tau)=\sigma_{1} \tau \sigma_{1}^{-1}=\tau^{2}, \\
& \phi\left(\sigma_{2}\right)(\tau)=\sigma_{2} \tau \sigma_{2}^{-1}=\tau^{2}, \\
& \phi\left(\sigma_{3}\right)(\tau)=\sigma_{3} \tau \sigma_{3}^{-1}=\tau .
\end{aligned}
$$

This determines multiplication in G.
What group is this? $\sigma_{3} \tau=\tau \sigma_{3}$, so $\left|\sigma_{3} \tau\right|=\left|\sigma_{3}\right||\tau|=2 \cdot 3=6$. Set $x=\sigma_{3} \tau$. Elements of G :

$$
\begin{array}{cccccc}
e & x & x^{2} & x^{3} & x^{4} & x^{5} \\
\sigma_{1} & x \sigma_{1} & x^{2} \sigma_{1} & x^{3} \sigma_{1} & x^{4} \sigma_{1} & x^{5} \sigma_{1}
\end{array}
$$

Multiplication of elements in this form can be derived from:

$$
\sigma_{1} x=\sigma_{1} x \sigma_{1}^{-1} \sigma_{1}=\sigma_{1} \sigma_{3} \tau \sigma_{1}^{-1} \sigma_{1}=\sigma_{3}\left(\sigma_{1} \tau \sigma_{1}^{-1}\right) \sigma_{1}=\sigma_{3} \tau^{2} \sigma_{1}=\sigma_{3}^{5} \tau^{5} \sigma_{1}=x^{5} \sigma_{1}
$$

So $G \cong D_{12}$.

$$
\begin{aligned}
x & \mapsto(123456) \\
\sigma_{1} & \mapsto(26)(35)
\end{aligned}
$$

What are the 3 Sylow 2-subgroups? One is $H=\left\{e, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. Note that

$$
\begin{aligned}
& \sigma_{3}=\sigma_{3}^{3} \tau^{3}=x^{3}, \\
& \sigma_{2}=\sigma_{3} \sigma_{1}=x^{3} \sigma_{1}
\end{aligned}
$$

$\therefore H=\left\{e, \sigma_{1}, x^{3} \sigma_{1}, x^{3}\right\}$.
To find the others, pick $g \in G$ and compute gHg^{-1}.

$$
\begin{aligned}
g=x \Rightarrow g H g^{-1} & =\left\{e, x \sigma_{1} x^{-1}, x x^{3} \sigma_{1} x^{-1}, x x^{3} x^{-1}\right\} \\
& =\left\{e, x \sigma_{1} x^{5}, x^{4} \sigma_{1} x^{5}, x^{3}\right\} \\
& =\left\{e, x\left(x^{5}\right)^{5} \sigma_{1}, x^{4}\left(x^{5}\right)^{5} \sigma_{1}, x^{3}\right\} \\
& =\left\{e, x^{26} \sigma_{1}, x^{29} \sigma_{1}, x^{3}\right\} \\
& =\left\{e, x^{2} \sigma_{1}, x^{5} \sigma_{1}, x^{3}\right\} .
\end{aligned}
$$

The other is $\left\{e, x^{4} \sigma_{1}, x \sigma_{1}, x^{3}\right\}$.
Note that different Sylow p-subgroups can intersect non-trivially. eg. Here, x^{3} is in all Sylow 2-subgroups.
Case IIIb: $H \cong C_{4}$.
Let $H=\left\{e, \sigma, \sigma^{2}, \sigma^{3}\right\}$. Recall

$$
\begin{gathered}
G \cong T \rtimes_{\phi} H, \\
T=\left\{e, \tau, \tau^{2}\right\}, \\
\phi: H \cong C_{4} \mapsto \operatorname{Aut}(T) \cong C_{2}
\end{gathered}
$$

Aside from trivial ϕ (yielding $G \cong T \times H \cong C_{3} \times C_{4}$, which is Case IIa), ϕ acts non-trivially on σ and σ^{3}. ie. $\sigma \tau \sigma^{-1}=\tau^{2}$. Elements of G are:

$$
\begin{array}{cccc}
e & \sigma & \sigma^{2} & \sigma^{3} \\
\tau & \tau \sigma & \tau \sigma^{2} & \tau \sigma^{3} \\
\tau^{2} & \tau^{2} \sigma & \tau^{2} \sigma^{2} & \tau^{2} \sigma^{3}
\end{array}
$$

Multiplication is determined by $\sigma \tau \sigma^{-1}=\tau^{2}\left(\right.$ and $\left.\tau^{3}=e, \sigma^{4}=e\right)$.
In summary, there are 5 (non-isomorphic) groups of order 12: $C_{12}, C_{2} \times C_{2} \times C_{3}, A_{4}, D_{12}$, and $C_{3} \rtimes C_{4}$.

1.11 Solvable and Nilpotent Groups

Let G be a group, $A, B \subset G$.
Notation: $[A, B]:=$ subgrp. of G generated by $\{[a, b] \mid a \in A, b \in B\}$. So $[G, G]$ is the commutator subgroup of G.

Inductively define:

$$
\begin{aligned}
G^{(0)} & :=G, \\
G^{(n)} & :=\left[G^{(n-1)}, G^{(n-1)}\right], \quad \text { and } \\
G^{\prime(0)} & :=G, \\
G^{\prime(n)} & :=\left[G^{(n-1)}, G\right] .
\end{aligned}
$$

Then

$$
\begin{gathered}
G=G^{(0)} \geq G^{(1)} \geq G^{(2)} \geq \cdots \geq G^{(n)} \geq \cdots \quad \text { Derived (or commutator) series of } G \\
{ }^{\prime \prime} \geq \\
G^{\prime \prime} \geq G^{\prime \prime} \geq G^{\prime(1)} \geq G^{\prime(2)} \geq \cdots \geq G^{\prime(n)} \geq \cdots \quad \text { Lower central series of } G
\end{gathered}
$$

Definition 1.11.1. G is called solvable if $\exists N$ such that $G^{(N)}=\{e\} . G$ is called nilpotent if $\exists N$ such that $G^{\prime(N)}=\{e\}$.

Since $G^{(n)} \leq G^{(n)}$, nilpotent \Rightarrow solvable. We already showed $[G, G] \triangleleft G$, so $G^{(n)} \triangleleft G^{(n-1)}$. In fact:

Proposition 1.11.2.

1. $G^{(n)} \triangleleft G \forall n$. In particular, $G^{(n)} \triangleleft G^{(n-1)}$ (because for $A \leq B \leq G$, if $A \triangleleft G$ then $A \triangleleft B$).
2. $G^{\prime(n)} \triangleleft G \forall n$. In particular, $G^{\prime(n)} \triangleleft G^{(n-1)}$.

Proof.

1. For $g \in G$ and $[a, b]$ a generator of $G^{(n)}$, where $a, b \in G^{(n-1)}$,

$$
g[a, b] g^{-1}=\left[g a g^{-1}, g b g^{-1}\right] \in\left[G^{(n-1)}, G^{(n-1)}\right]
$$

by induction.
2. For $g \in G$ and $[a, b]$ a generator of $G^{(n)}$, where $a \in G^{(n-1)}$ and $b \in G$,

$$
g[a, b] g^{-1}=\left[\mathrm{gag}^{-1}, g b g^{-1}\right] \in\left[G^{(n-1)}, G\right]
$$

by induction.

Notice that $G^{(n-1)} / G^{(n)}=G_{a b}^{(n-1)}$ is abelian. Conversely:
Proposition 1.11.3. G is solvable iff \exists a finite sequence of subgroups

$$
\{e\}=H_{N} \triangleleft H_{N-1} \triangleleft \cdots \triangleleft H_{0}=G
$$

such that H_{n-1} / H_{n} is abelian for all n.
Proof. Suppose that such a sequence exists. Since H_{n-1} / H_{n} is abelian, $\left[H_{n-1}, H_{n-1}\right] \leq H_{n}$ for all n. Inductively,

$$
G^{(n)}=\left[G^{(n-1)}, G^{(n-1)}\right] \leq\left[H_{n-1}, H_{n-1}\right] \leq H_{n}
$$

so $G^{(n)} \leq H_{n} \forall n$. Thus,

$$
G^{(N)} \leq H_{N}=\{e\}
$$

$\therefore G^{(N)}=\{e\}$.
Lemma 1.11.4. S_{n} is solvable iff $n<5$.
Proof.
$n=1,2: S_{n}$ is abelian and thus solvable.
$n=3$: Note that $[\sigma, \tau]$ is always an even permutation, so

$$
\left[S_{n}, S_{n}\right] \leq A_{n} \quad \forall n .
$$

When $n=3, A_{3} \cong C_{3}$ is abelian, so S_{3} is solvable.
$n=4$: Since $\left[S_{4}, S_{4}\right] \leq A_{4}$, in suffices to check that A_{4} is solvable. Let

$$
H=\{e,(12)(34),(13)(24),(14)(23)\} .
$$

Then $H \cong C_{2} \times C_{2}$ is abelian, $H \triangleleft A_{4}$, and

$$
\left|A_{4} / H\right|=3,
$$

so $A_{4} / H \cong C_{3}$ is abelian.
$n \geq 5$: Let $\sigma=\left(\begin{array}{ll}1 & 5\end{array}\right), \tau=\left(\begin{array}{ll}1 & 4\end{array}\right)$. Then

$$
\begin{aligned}
{[\sigma, \tau] } & =\sigma \tau \sigma^{-1} \tau^{-1} \\
& =\left(\begin{array}{llll}
1 & 5 & 3
\end{array}\right)\left(\begin{array}{llll}
1 & 4 & 2
\end{array}\right)\left(\begin{array}{llll}
1 & 3 & 5
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 4
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 2 & 3
\end{array}\right) \in\left[\begin{array}{ll}
\left.S_{n}, S_{n}\right]
\end{array}\right.
\end{aligned}
$$

Similarly, every 3-cycle is a commutator of 3-cycles, provided $n \geq 5$. Thus, $\forall k, A_{n}^{(k)}$ contains every 3-cycle.
$\therefore A_{n}^{(k)} \neq\{e\} \forall k$, so A_{n} is not solvable.

Theorem 1.11.5. Suppose $A \triangleleft B$. Then B is solvable \Longleftrightarrow both A and B / A are solvable.
Furthermore, if $A \leq B$ and B is solvable then A is solvable (even if A is not normal in B).
Proof. Suppose B is solvable and $A \leq B$. Then $A^{(j)} \leq B^{(j)} \forall j$, so $B^{(k)}=\{e\}$ for some $k \Rightarrow A^{(k)}=\{e\}$, so A is solvable.
\Rightarrow : Suppose now that $A \triangleleft B$ and let $\pi: B \mapsto B / A$ be the canonical projection. If $x \in B$ lies in B^{\prime} then $\pi(x) \in(B / A)^{\prime}$, and conversely, if

$$
y=(\bar{u} \bar{v} \bar{u})^{-1}(\bar{v})^{-1} \in(B / A)^{\prime}
$$

then $y=\pi\left(u v u^{-1} v^{-1}\right) \in \pi\left(B^{\prime}\right)$. Hence,

$$
\begin{aligned}
\pi\left(B^{\prime}\right) & =(B / A)^{\prime} \\
\pi\left(B^{(2)}\right) & =\pi\left(B^{\prime \prime}\right)=\left(\pi\left(B^{\prime}\right)\right)^{\prime}=(B / A)^{\prime \prime}=(B / A)^{(2)} \\
& \vdots \\
\pi\left(B^{(k)}\right) & =\cdots=(B / A)^{(k)}
\end{aligned}
$$

Since $\pi\left(B^{(k)}\right)=\{e\},(B / A)^{(k)}=\{e\}$, whence B / A is solvable.
\Leftarrow : Suppose A and B / A are both solvable. If $\{e\}=(B / A)^{(k)}=\pi\left(B^{(k)}\right)$ then $B^{(k)} \subset A$. Thus, $B^{(k+j)}=$ $\left(B^{(k)}\right)^{(j)} \subset A^{(j)}$. So if $A^{(m)}=\{e\}$ then $B^{(k+m)}=\{e\}$. Hence, B is solvable.

Theorem 1.11.6. G is finite and solvable $\Rightarrow \exists$ subgroups

$$
\{e\}=A_{m} \triangleleft A_{m-1} \triangleleft \cdots \triangleleft A_{1} \triangleleft A_{0}=G
$$

such that A_{j} / A_{j+1} is cyclic of prime order $\forall j$.

Proof. The proceding theorem reduces the proof to the case where G is abelian, and it is clear that a finite abelian group has such a composition series.

Upper Central Series:

Given a group G, inductively define $Z_{n}(G)$ as follows: Set $Z_{0}:=\{e\}$. Having defined Z_{n-1} such that $Z_{n-1} \triangleleft G$, define Z_{n} as the pullback:

where $q_{n-1}: G \mapsto G / Z_{n-1}$ is the quotient map. ie.

$$
Z_{n}:=q_{n-1}^{-1}\left(\mathrm{Z}\left(G / Z_{n-1}\right)\right) .
$$

$Z_{n} \triangleleft G$ because $\mathrm{Z}\left(G / Z_{n-1}\right) \triangleleft G / Z_{n-1}$.

$$
q_{n-1}\left(\left[Z_{n}, G\right]\right) \subset\left[\mathrm{Z}\left(G / Z_{n-1}, G / Z_{n-1}\right]=\{e\},\right.
$$

so $\left[Z_{n}, G\right] \subset \operatorname{ker} q_{n-1}=Z_{n-1}$.
Lemma 1.11.7. G is nilpotent iff $Z_{N}(G)=G$ for some N.
Proof.
\Rightarrow : Suppose $Z_{N}=G$.

$$
G^{\prime(1)}=[G, G]=\left[Z_{N}, G\right] \leq Z_{N-1} .
$$

Inductively,

$$
G^{\prime(k)}=\left[G^{\prime(k-1)}, G\right] \leq\left[Z_{N-(k+1)}, G\right] \leq Z_{N-k} .
$$

$\therefore G^{\prime(N)} \leq Z_{0}=\{e\}$ so G is nilpotent.
$\Leftarrow:$ Suppose $G^{\prime(N)}=\{e\}$. Inductively (as k decreases), assume

$$
\left[G^{\prime(k)}, G\right]=G^{\prime(k+1)} \leq Z_{N-k-1} .
$$

Suppose $x \in G^{\prime(k)}$. Given $\bar{g}=q_{N-k-1}(g) \in G / Z_{N-k-1}$,

$$
\begin{aligned}
{\left[q_{N-k-1}(x), \bar{g}\right] } & =q_{N-k-1}[x, g] \\
& \in q_{N-k-1}\left(\left[G^{\prime(k)}, G\right]\right) \\
& \subset q_{N-k-1}\left(Z_{N-k-1}\right) \\
& =\{e\} .
\end{aligned}
$$

$\therefore q_{N-k-1}(x)$ commutes with $\bar{g} \forall \bar{g} \in G / Z_{N-k-1}$ so

$$
q_{N-k-1}(x) \in \mathrm{Z}\left(G / Z_{N-k-1}\right)
$$

$\therefore x \in Z_{N-k}$.
Thus $G^{\prime(k)} \leq Z_{N-k} \forall k$. Therefore,

$$
Z_{N} \geq G^{\prime(0)}=G
$$

$\therefore Z_{N}=G$ as required.

Corollary 1.11.8. If G is a finite group then G is nilpotent iff $\forall n, Z\left(G / Z_{n}\right) \neq\{e\}$ unless $G / Z_{n}=\{e\}$.
Proof. If $\mathrm{Z}\left(G / Z_{n}\right)=\{e\}$ then $Z_{n+1}=q_{n-1}^{-1}\{e\}=Z_{n}$, so the series

$$
Z_{0} \leq Z_{1} \leq \cdots Z_{n} \leq Z_{n+1} \leq \cdots
$$

never reaches G (unless $Z_{n}=G$ already).
Conversely, if $\forall n, \mathrm{Z}\left(G / Z_{n}\right) \neq\{e\}$ then

$$
Z_{n}<Z_{n+1} \quad \forall n
$$

and since G is finite, eventually $Z_{n}=G$.
Corollary 1.11.9. If G is a p-group then G is nilpotent.
Lemma 1.11.10. G is nilpotent iff $G / Z(G)$ is nilpotent. More precisely, $Z_{N+1}(G)=G$ iff $Z_{N}(G / Z(G))=$ $G / \mathrm{Z}(G)$.
Proof. Set $H:=G / Z(G)$.

Suppose inductively that $Z_{n-1}(G)$ is isomorphic to the pullback

By a property of pullbacks (Proposition 1.5.5),

$$
G / Z_{n-1}(G) \cong G / P_{n-1} \cong H / Z_{n-2}(H) .
$$

So

Then P_{n} is isomorphic to the composite pullback, which, by definition, is $Z_{n}(G)$. So

$$
Z_{n}(G) \cong P_{n} \quad \forall n .
$$

If H is nilpotent then $\exists N$ such that $Z_{N}(H)=H$. Then

shows $Z_{N+1}=G$.
Conversely, if $Z_{N+1}(G)=G$ for some N then the pullback shows

$$
H / Z_{N}(H) \cong G / Z_{N+1}(G) \cong\{e\}
$$

so $Z_{N}(H)=H$.
Corollary 1.11.11. G is nilpotent iff the sequence of surjections

eventually reaches $\{e\} .\left(Q_{N}=\{e\}\right.$ for some $\left.N\right)$.

Proof.
$\Rightarrow: Q_{n}$ is nilpotent iff Q_{n+1} is nilpotent. So, if $Q_{N}=\{e\}$ then Q_{N} is nilpotent, so $Q_{0}=G$ is nilpotent.
\Leftarrow : Suppose that G is nilpotent with $Z_{N}(G)=G$. Then $Z_{N-1}\left(Q_{1}\right)=Q_{1}$ and inductively, $Z_{N-k}\left(Q_{k}\right)=$ $Q_{k} \forall k$. Then

$$
\mathrm{Z}\left(Q_{N-1}\right)=Z_{1}\left(Q_{N-1}\right)=Q_{N-1}
$$

$$
\text { so } Q_{N}=Q_{N-1} / Z\left(Q_{N-1}\right)=\{e\} \text {. }
$$

Corollary 1.11.12. A finite product of nilpotent groups is nilpotent.
Proof. By induction, it suffices to consider the product of two nilpotent groups, G_{1} and G_{2}.

$$
\begin{aligned}
Q_{1}\left(G_{1} \times G_{2}\right) & =\frac{G_{1} \times G_{2}}{\mathrm{Z}\left(G_{1} \times G_{2}\right)} \\
& =\frac{G_{1} \times G_{2}}{\mathrm{Z}\left(G_{1}\right) \times \mathrm{Z}\left(G_{2}\right)} \\
& =G_{1} / \mathrm{Z}\left(G_{1}\right) \times G_{2} / \mathrm{Z}\left(G_{2}\right) \\
& =Q_{1}\left(G_{1}\right) \times Q_{1}\left(G_{2}\right)
\end{aligned}
$$

By iterating, $Q_{n}\left(G_{1} \times G_{2}\right)=Q_{n}\left(G_{1}\right) \times Q_{n}\left(G_{2}\right)$. So if $Q_{N_{1}}\left(G_{1}\right)=\{e\}$ and $Q_{N_{2}}\left(G_{2}\right)=\{e\}$ then $Q_{\max \left\{N_{1}, N_{2}\right\}}\left(G_{1} \times G_{2}\right)=\{e\}$.

Theorem 1.11.13. Let G be a finite group. For each prime p, let P_{p} be a Sylow p-subgroup. Then TFAE:

1. G is nilpotent.
2. $H<G \Rightarrow H<\mathrm{N}_{G}(H)$ (every proper subgroup of G is a proper subgroup of its normalizer).
3. $P_{p} \triangleleft G \quad \forall p$.
4. $G \cong \prod_{p} P_{p}$.

Proof.
$1 \Rightarrow$ 2: Suppose $H<G . \mathrm{Z}(G) \leq \mathrm{N}_{G}(H)$, so unless $\mathrm{Z}(G) \subset H$, it is immediate that $H<\mathrm{N}_{G}(H)$.
So assume $\mathrm{Z}(G) \subset H$. Write $\bar{G}:=G / \mathrm{Z}(G)$ and let

$$
q: G \mapsto \bar{G}
$$

be the quotient map. Set $\bar{H}=q(H)<\bar{G}$. G nilpotent $\Rightarrow \bar{G}$ nilpotent. By induction (assuming 1 $\Rightarrow 2$ is known for all groups of order less than $|G|$),

$$
\bar{H}<\mathrm{N}_{\bar{G}}(\bar{H})
$$

But then by the $4^{\text {th }}$ Isomorphism Theorem,

$$
H=q^{-1}(\bar{H})<q^{-1} \mathrm{~N}_{\bar{G}}(\bar{H})=\mathrm{N}_{G}(H)
$$

$2 \Rightarrow 3:$ Let $N=\mathrm{N}_{G}\left(P_{p}\right)$. By a corollary to the Sylow Theorem (Corollary 1.9.12), $\mathrm{N}_{G}(N)=N$.
\therefore Hypothesis $2 \Rightarrow N=G$, so $P_{p} \triangleleft G$.
$3 \Rightarrow 4$: Write

$$
|G|=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{m}^{r_{m}} .
$$

Suppose by induction (on m) that

$$
H=P_{p_{1}} \cdots P_{p_{m-1}} \cong P_{p_{1}} \times \cdots P_{p_{m-1}} .
$$

Then $H \triangleleft G, P_{p_{m}} \triangleleft G$, and $H \cap P_{p_{m}}=\{e\}$. Hence,

$$
P_{p_{1}} \cdots P_{p_{m}}=H P_{p_{m}} \cong H \times P_{p_{m}} \cong P_{p_{1}} \times \cdots P_{p_{m}}
$$

However, $\left|P_{p_{1}} \cdots P_{p_{m}}\right|=|G|$ so $P_{p_{1}} \cdots P_{p_{m}}=G$.
$4 \Rightarrow 1$: It was already shown that p-groups are nilpotent and a finite product of nilpotent groups is nilpotent.

1.12 Free Groups

Theorem 1.12.1. A subgroup of a free group is free.
Proof. Let S be a set and let $G=F(S)$. Suppose $H \leq G$. Let

$$
S^{\prime}=S \amalg\{\text { inverses of elts. in } S\} .
$$

Recall that elements of G are finite length words in S and S^{\prime}. Let $M\left(S^{\prime}\right)$ denote the free monoid on S^{\prime} (so that in $M\left(S^{\prime}\right), s s^{-1}$ does not simplify for $s \in S$). ヨ a surjective map of monoids $q: M\left(S^{\prime}\right) \mapsto$ $F(S)$ given by

$$
q(x)=x \quad \forall x \in M\left(S^{\prime}\right) .
$$

Write \bar{x} for $q(x)$.
Say that a word $x=x_{1} \cdots x_{k} \in M\left(S^{\prime}\right)$ (where $\left.x_{i} \in S^{\prime} \forall i\right)$ is reduced (or a reduced representative) if \nexists a shorter word $y \in M\left(S^{\prime}\right)$ s.t. $q(x)=q(y)=x_{1} \cdots x_{k}$ in G.

Well-order S^{\prime}. This induces a well-order on $M\left(S^{\prime}\right)$ by ordering the words first by length, and then lexicographically among words of the same length. Let

$$
R=\{\text { reduced words }\} \subset M\left(S^{\prime}\right) .
$$

ie. $x \in R$ iff $x=\min q^{-1}\{q(x)\}$. For $g \in G$, define $\tilde{g} \in M\left(S^{\prime}\right)$ by

$$
\tilde{g}=\min q^{-1}(H g) .
$$

ie. $\tilde{g}=\min \left\{x \in M\left(S^{\prime}\right) \mid H \bar{x}=H g\right\}$. Let

$$
\tilde{R}=\{\tilde{g} \mid g \in G\} \subset M\left(S^{\prime}\right)
$$

be the set of chosen coset representatives. Clearly, only reduced words can occur: $\tilde{R} \subset R$.
Lemma 1.12.2. A left substring of an element in \tilde{R} is in \tilde{R}.
Proof. Suppose $b=c u \in M\left(S^{\prime}\right)$ with $b \in \tilde{R}$ and c a proper substring. Check that $c \in \tilde{R}$.
Since $b \in \tilde{R}$ and c is shorter than $b, H \bar{b} \neq H \bar{c}$ (or else, c would be the chosen coset rep. for $H \bar{b}$ rather than b). If $c \notin \tilde{R}$ then $c^{\prime}<c$ and $H \overline{c^{\prime}}=H c$. So

$$
H \bar{b}=H \overline{c u}=H \overline{c^{\prime}} \bar{u}=H \overline{c^{\prime} u} .
$$

However, the ordering is such that $x<y \Rightarrow x z<y z$. So $c^{\prime}<c \Rightarrow c^{\prime} u<b$, which contradicts the minimality of b.

Proof of Theorem continued. Given $r \in \tilde{R}, s \in S^{\prime}$, define $v_{r s} \in H$ by

$$
v_{r s}=\bar{r} s\left(\overline{r^{\prime}}\right)^{-1}, \quad \text { where } r^{\prime}=\widetilde{\bar{r} s} \in \tilde{R}
$$

ie. r^{\prime} is the canonical rep. for $H \bar{r} s$. So $H \overline{r^{\prime}}=H \bar{r} s$, and thus $v_{r s} \in H$.
Notice $v_{r s}^{-1}=\overline{r^{\prime}} s^{-1}(\bar{r})^{-1}$, and

$$
H \overline{r^{\prime}}=H \overline{r s} \Rightarrow H \bar{r}=H \overline{r^{\prime}} s^{-1}
$$

and since $r \in \tilde{R}, r$ is the canonical rep. for $H \overline{r^{\prime}} s^{-1}$. Thus

$$
v_{r, s}^{-1}=v_{r^{\prime}, s^{-1}},
$$

so $\left\{v_{r, s} \mid r \in \tilde{R}, s \in S^{\prime}\right\}$ is closed under inverses. Let

$$
T=\left\{v_{r s} \in H \mid r \in \tilde{R}, s \in S^{\prime}, v_{r s} \neq e\right\} .
$$

Note that it is possible to have $v_{r, s}=v_{r^{\prime}, s^{\prime}}$ without $r=r^{\prime}$ and $s=s^{\prime}$.
Define $\phi: F(T) \mapsto H$ by $\phi\left(v_{r s}\right):=v_{r s} \forall v_{r s} \in T$. To finish the proof that H is free, we show that ϕ is an isomorphism.

Let $h \in H$. Write $h=s_{1} \cdots s_{\ell}$ in terms of generators of G. Set $b_{1}=e$ and inductively set $b_{j+1}=\widetilde{\overline{b_{j}} s_{j}}$ (ie. b_{j+1} is the canon. rep. for coset $H \overline{b_{j}} s_{j}$).
\therefore By construction, $v_{b_{j}, s_{j}}=\overline{b_{j}} s_{j}{\overline{b_{j+1}}}^{-1}$. By induction,

$$
\begin{gathered}
H \overline{b_{j+1}}=H \overline{b_{j}} s_{j}=H \overline{b_{j-1}} s_{j-1} s_{j}=\cdots H \overline{b_{1}} s_{1} \cdots s_{j}=H s_{1} \cdots s_{j} . \\
\therefore H \overline{b_{\ell+1}}=H s_{1} \cdots s_{\ell}=H h=H \text {, so } \overline{b_{\ell+1}}=e \\
\phi\left(v_{b_{1}, s_{1}} v_{b_{2}, s_{2}} \cdots v_{b_{\ell}, s_{\ell}}\right)=\overline{b_{1}} s_{1}\left(\overline{b_{2}}\right)^{-1} \overline{b_{2}} s_{2}\left(\overline{b_{2}}\right)^{-1} \cdots \overline{b_{\ell}} s_{\ell}\left(\overline{b_{\ell+1}}\right)^{-1}=s_{1} \cdots s_{\ell}=h .
\end{gathered}
$$

$\therefore \phi$ is onto.
Suppose $\phi(x)=e$ for some $x \in F(T)$ and $x \neq e$. Let $x=x_{1} \cdots x_{\ell}$ be an expression for x as a reduced word in the elts. of T. Recall that the elemnts of T can be written as $v_{r, s}$ in many ways. For each $i=1, \ldots, \ell$, pick the expression $x_{i}=v_{b_{i}, s_{i}}$ in which $b_{i} \in \tilde{R}$ be minimal. Then $v_{b_{i}, s_{i}}$ contains an occurrence of s_{i}, since if s_{i} cancelled then, using the fact that \tilde{R} is closed under left substrings, a shorter b_{i}^{\prime} and an s_{i}^{\prime} could be picked such that $x_{i}=v_{b_{i}^{\prime}, s_{i}^{\prime}}$.

Since $\phi(x)=e$, within G, the string $\phi(x)$, which initially contains all of s_{1}, \ldots, s_{ℓ}, must reduce to eliminate them. So $\exists m$ such that $\phi\left(v_{b_{m}, s_{m}} v_{b_{m+1}, s_{m+1}}\right)$ reduces to eliminate s_{m} or s_{m+1} (or both). Write $v_{b_{m}, s_{m}} v_{b_{m+1}, s_{m+1}}$ as:

$$
\overline{b_{m}} s_{m}(\bar{y})^{-1} \overline{b_{m+1}} s_{m+1}(\bar{z})^{-1}
$$

where $y=$ canon. rep. for $H \overline{b_{m}} s_{m}$ and $z=$ canon. rep. for $H \overline{b_{m+1}} s_{m+1}$. Cancellation of at least one of s_{m}, s_{m+1} can happen in one of three ways:

1. $\bar{y}=\overline{b_{m+1}}$ and $s_{m}=s_{m+1}^{-1}$, or
2. $\overline{b_{m+1}} s_{m+1}$ is a left substring of \bar{y}, or
3. $\bar{y} s_{m}^{-1}$ is a left substring of $\overline{b_{m+1}}$.

If 1: $H \bar{z}=H \overline{b_{m+1}} s_{m+1}=H \bar{y} s_{m}^{-1}=H \overline{b_{m}}$, so $z=b_{m}$ (both lie in \tilde{R} and they represent the same coset). So $v_{b_{m+1}, s_{m+1}}=\left(v_{b_{m}, s_{m}}\right)^{-1}$ and the word x was not reduced, which is a contradiction.

If 2: Since $b_{m}, y, b_{m+1}, z \in \tilde{R} \subset R$, all are reduced, so $\overline{b_{m+1}} s_{m+1}$ is a left substring of $\bar{y} \Rightarrow b_{m+1} s_{m+1}$ is a left substring of y. Hence $b_{m+1} s_{m+1} \in \tilde{R}$. So $b_{m+1} s_{m+1}$ and z are canon. reps. for the coset $H b_{m+1} s_{m+1}$, so $z=b_{m+1} s_{m+1}$. But then $v_{b_{m+1}, s_{m+1}}=e$ so $v_{b_{m+1}, s_{m+1}} \notin T$, which is a contradiction.
If 3: As in case $2, y s_{m}^{-1}$ is a left substring of b_{m+1} so $y s_{m}^{-1} \in \tilde{R}$ and represents the same coset as b_{m}. So $b_{m}=y s_{m}^{-1}$ and so $v_{b_{m}, s_{m}}=e \notin T$, which is a contradiction.
\therefore None of these cases can occur, so $\phi(x)=e$ for $x \neq e$ is not possible. Hence ϕ is an injection.
Note: it is possible that H is not finitely generated, even if G is finitely generated. e.g. Let $G=F(x, y)$ and let $H=[G, G]$ (the commutator subgroup). Then

$$
H=F(x, y,[y, x],[[y, x], x], \ldots,[\cdots[[y, x], x] x \cdots, x], \ldots\} .
$$

Chapter 2

Rings and Modules

2.1 Rings

Definition 2.1.1. A ring consists of a set R together with binary operations + and \cdot satisfying:

1. $(R,+)$ forms an abelian group,
2. $(a \cdot b) \cdot c=a \cdot(b \cdot c) \forall a, b, c \in R$,
3. $\exists 1 \neq 0 \in R$ such that $a \cdot 1=1 \cdot a=a \forall a \in R$, and
4. $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c \forall a, b, c \in R$.

Note:

1. Some people (e.g. Dummit + Foote) do not require condition 3, and refer to a "ring with identity" if they want to assume \cdot has an identity element.
2. People who include existence of a unit in their defn. of a ring refer to a "ring without identity" for an object satisfying the other three axioms. Some people (e.g. Jacobson) call this a "rng".
3. Some people (e.g. Lang) do not require $1 \neq 0$ in condition 3 .

Definition 2.1.2. R is called commutative if its multiplication is commutative, ie.

$$
a b=b a \quad \forall a, b \in R .
$$

Definition 2.1.3. A ring homomorphism from R to S is a function $f: R \mapsto S$ such that $\forall a, b \in R$:

1. $f(a+b)=f(a)+f(b)$,
2. $f(a b)=f(a) f(b)$, and
3. $f(1)=1$.

A bijective ring homomorphism is called an isomorphism.
Definition 2.1.4. A subring of R is a subset A which forms a ring such that the inclusion $A \hookrightarrow R$ is a ring homomorphism. A subgroup I of the abelian group $(R,+)$ is called a (two -sided) ideal if

$$
x \in I, r \in R \Rightarrow r x \in I \text { and } x r \in I .
$$

Similarly if a subgroup I satisfies

$$
x \in I, r \in R \Rightarrow r x \in I,
$$

I is called a left ideal, and if it satisfies

$$
x \in I, r \in R \Rightarrow x r \in I,
$$

it is called a right ideal.
Example 2.1.5. If $f: R \mapsto S$ is a homomorphism then $\operatorname{ker} f:=\{x \in R \mid f(x)=0\}$ is an ideal in R. (An ideal is always a subrng but never a subring, unless it is all of R.)

Theorem 2.1.6. Let $I \varsubsetneqq R$ be a proper ideal. Then \exists a ring R / I and a surjective ring homomorphism $f: R \mapsto R / I$ such that $\operatorname{ker} f=I$.

Proof. Define an equivalence relation on R by $x \sim y \Longleftrightarrow x-y \in I$. Let

$$
R / I:=\text { \{equiv. classes }\} .
$$

Define operations on R / I by

$$
\begin{aligned}
{[x]+[y] } & :=[x+y], \\
{[x] \cdot[y] } & :=[x y] .
\end{aligned}
$$

Check that these are well-defined and produce a ring structure on R / I.
Define $f: R \mapsto R / I$ by $f(x)=[x] . f$ is a ring homomorphism. Moreover, $f(x)=0$ iff $[x]=0$ iff $x=x-0 \in I$.

Definition 2.1.7. The ring R is called a division ring if $(R-\{0\}, \cdot)$ forms a group. A commutative division ring is called a field.

An element $u \in R$ for which $\exists v \in R$ such that $u v=v u=1$ is called a unit.
Notation: $R^{\times}=\{$units of $R\}$. This forms a group under multiplication.
A non-zero element $x \in R$ is called a zero divisor if $\exists y \neq 0$ such that either $x y=0$ or $y x=0$. A commutative ring with no zero divisors is called an integral domain.

Proposition 2.1.8. If $x \neq 0$ is not a zero divisor and $x y=x z$ then $y=z$.
Proof. $x(y-z)=0$ and x is not a zero divisor so either $x=0$ or $y-z=0$. But $x \neq 0$ so $y=z$.
Theorem 2.1.9 (First Isomorphism Theorem). Let $f: R \mapsto S$ be a ring homomorphism. Then $R / \operatorname{ker} f \cong \operatorname{Im} f$.

Theorem 2.1.10 (Second Isomorphism Theorem). Let $A \subset R$ be a subring and let $I \varsubsetneqq R$ be a proper ideal. Then $A+I:=\{a+x \mid a \in A, x \in I\}$ is a subring of $R, A \cap I$ is a proper ideal in A, and

$$
(A+I) / I \cong A /(A \cap I) .
$$

Theorem 2.1.11 (Third Isomorphism Theorem). Let $I \subset J$ be proper ideals of R. Then $J / I:=\{[x] \in$ $R / I \mid x \in J\}$ is an ideal in R / I, and

$$
\frac{R / I}{J / I} \cong R / J .
$$

Theorem 2.1.12 (Fourth Isomorphism Theorem). Let I be a proper ideal of R. Then the correspondence $J \mapsto J / I$ is a bijection between the ideals of J containing I and the ideals of R / I.

Let I, J be ideals in R. Define ideals

$$
\begin{aligned}
& I+J:=\{x+y \mid x \in I, y \in J\}, \\
& I \cap J, \\
& I J:=\left\{\sum_{i=1}^{n} x_{i} y_{y} \mid n \in \mathbb{N}, x_{i} \in I, y_{i} \in J\right\}
\end{aligned}
$$

Then

$$
I J \subset I \cap J \subset I \cup J \subset I+J .
$$

(Note that $I \cup J$ may not be an ideal.) $I+J$ is the smallest ideal containing both I and J.

2.2 Maximal and Prime Ideals

Definition 2.2.1. An ideal $M \varsubsetneqq R$ is called a maximal ideal if \ddagger an ideal I s.t. $M \varsubsetneqq I \varsubsetneqq R$.
Lemma 2.2.2. Given an ideal $I \varsubsetneqq R, \exists$ a maximal ideal M s.t. $I \subset M$.
Proof. Let

$$
\mathcal{S}=\{\text { ideals } J \mid I \subset J \varsubsetneqq R\} .
$$

Then \mathcal{S} is a partially ordered set (ordered by inclusion). If $C \subset \mathcal{S}$ is a chain (ie. a totally ordered subset) then

$$
J=\bigcup_{C \in C} C
$$

is an ideal which forms an upper bound for \mathcal{C} in \mathcal{S} (it is indeed a proper ideal since $1 \notin J$).
\therefore Zorn's Lemma $\Rightarrow \mathcal{S}$ has a maximal element M.
For the rest of this section, suppose that R is commutative.
Proposition 2.2.3. R is a field \Longleftrightarrow the only ideals of R are $\{0\}$ and R.
Proof.
\Rightarrow : Let R be a field and let $I \subset R$ be an ideal. If $I \neq\{0\}$ then $\exists x \neq 0 \in I$.
R a field $\Rightarrow \exists y \in R$ such that $x y=y x=1$. Since I is an ideal, $1 \in I$, so $r \in I \forall r \in R$. Thus $I=R$.
$\Leftarrow:$ Suppose the only ideals in R are $\{0\}$ and R. Let $x \neq 0 \in R$. Let

$$
I=R x:=\{r x \mid r \in R\} .
$$

I is an ideal and $x=1 x \in R$, so $I \neq 0$. Hence $I=R$, so $1 \in I$. ie. $1=y z$ for some $y \in R$.
\therefore Every $x \neq 0 \in R$ has an inverse, so R is a field.

Corollary 2.2.4. Let $f: F \mapsto S$ be a ring homomorphism where F is a field. Then f is injective.
Proof. ker f is a proper ideal in F, so $\operatorname{ker} f=0$.
Theorem 2.2.5. M is a maximal ideal $\Longleftrightarrow R / M$ is a field.
Proof. The $4^{\text {th }}$ iso. thm. says \exists a bijection between the ideals of R containing M and the ideals of R / M.
$\therefore \exists I$ s.t. $M \varsubsetneqq I \varsubsetneqq R \Longleftrightarrow \exists J$ s.t. $\{0\} \varsubsetneqq J \varsubsetneqq R / M$. ie. M is not maximal $\Longleftrightarrow R / M$ is not a field.

Definition 2.2.6. An ideal $\mathcal{P} \nsubseteq R$ is called a prime ideal if $a b \in \mathcal{P}$ implies $a \in \mathcal{P}$ or $b \in \mathcal{P}$.
Theorem 2.2.7. \mathcal{P} is a prime ideal $\Longleftrightarrow R / \mathcal{P}$ is an integral domain.
Proof.
\Rightarrow : Suppose \mathcal{P} is a prime ideal. If $[x y]=[x][y]=0$ in R / \mathcal{P} then $x y \in \mathcal{P}$, so either $x \in \mathcal{P}$ or $y \in \mathcal{P}$. ie. either $[x]=0$ or $[y]=0$. Thus R / \mathcal{P} has no zero divisors.
\Leftarrow : Suppose R / \mathcal{P} is an integral domain. If $x y \in \mathcal{P}$ then $[x][y]=0$ in R / \mathcal{P}, so $[x]=0$ or $[y]=0$. ie. either $x \in \mathcal{P}$ or $y \in \mathcal{P}$.

Corollary 2.2.8. A maximal ideal is a prime ideal.
Proof. A field is an integral domain.
Notation: $a \mid b$ means $\exists c$ s.t. $b=a c$ (say a divides b).
Proposition 2.2.9. In an integral domain, if $a \mid b$ and $b \mid a$ then $b=$ ua for some unit u.
Proof. $a \mid b \Rightarrow b=u a$ for some $u \in R . b \mid a \Rightarrow a=v b$ for some $v \in R$.
$\therefore b=u a=u v b$, and since b is not a zero divisor, $1=u v$. Thus, u is a unit.
Definition 2.2.10. q is called a greatest common divisor of a and b if:

1. $q \mid a$ and $q \mid b$, and
2. If c also satisfies $c|a, c| b$ then $c \mid q$.

Notation: $q=\operatorname{gcd}(a, b)$ means q is the greatest common divisor of a and b.
We say a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.
Proposition 2.2.11. Let R be an integral domain. If $q=\operatorname{gcd}(a, b)$ and $q^{\prime}=\operatorname{gcd}(a, b)$ then $q^{\prime}=u q$ for some unit u. Conversely, if $q=\operatorname{gcd}(a, b)$ and $q^{\prime}=u q$ where u is a unit then $q^{\prime}=\operatorname{gcd}(a, b)$.

Proof. Let $q=\operatorname{gcd}(a, b)$. If $q^{\prime}=\operatorname{gcd}(a, b)$ then $q^{\prime} \mid q$ and $q \mid q^{\prime}$ so $q^{\prime}=u q$ for some unit u.
Conversely, if $q^{\prime}=u q$ for some unit u then $q^{\prime} \mid q$ so $q^{\prime} \mid a$ and $q^{\prime} \mid b$. Also $q \mid q^{\prime}$ so whenever $c \mid a$ and $c|b, c| q$ so $c \mid q^{\prime}$.

Definition 2.2.12. A non-unit $p \neq 0 \in R$ is called a prime if $p|a b \Rightarrow p|$ a or $p \mid b$.

Notation: Let $x \in R .(x):=R x=\{r x \mid r \in R\}$ is called the principal ideal generated by x. Thus $y \in(x)$ iff $x \mid y$.

Likewise, for $x_{1}, \ldots, x_{n} \in R$, let $\left(x_{1}, \ldots, x_{n}\right)$ denote the following ideal:

$$
\left\{r_{1} x_{1}+\cdots+r_{n} x_{n} \mid r_{1}, \ldots, r_{n} \in R\right\}
$$

ie. the ideal generated by x_{1}, \ldots, x_{n}.
Proposition 2.2.13. If $p \neq 0$ then p is prime $\Longleftrightarrow(p)$ is a prime ideal.
Proof.
\Rightarrow : Suppose p is prime. If $a b \in(p)$ then $a b=r p$ for some r, so $p \mid a b$. So $p \mid a$ or $p \mid b$. ie. $a \in(p)$ or $b \in(p)$.
$\Leftarrow:$ Suppose (p) is a prime ideal. If $p \mid a b$ then $a b \in(p)$ so $a \in(p)$ or $b \in(p)$.
$\therefore p \mid a$ or $p \mid b$.

Nonzero elements x and y are called associates if \exists a unit u s.t. $x=u y, y=u^{-1} x$. Thus, x, y are associate $\Longleftrightarrow(x)=(y)$. ie. For associates x and $y, x \mid a$ iff $y \mid a$.
$x \sim y$ iff x, y are associate forms an equivalence relation on $R-\{0\}$.
Definition 2.2.14. $x \in R$ is irreducible if $x \neq 0, x$ is not a unit, and whenever $x=a b$, either a is a unit or b is a unit.

Definition 2.2.15. Ideals I and J are called comaximal or relatively prime if $I+J=R$.
Theorem 2.2.16 (Chinese Remainder Theorem). Let R be a commutative ring. Let

$$
I_{1}, \ldots, I_{k} \subset R
$$

be ideals. Suppose I_{i} and I_{j} are comaximal whenever $i \neq j$. Let

$$
\begin{aligned}
\phi: R & \mapsto R / I_{1} \times R / I_{2} \times \cdots \times R / I_{k} \\
r & \mapsto\left(r+I_{1}, r+I_{2}, \ldots, r+I_{k}\right) .
\end{aligned}
$$

Then ϕ is surjective and

$$
\operatorname{ker} \phi=I_{1} \cap I_{2} \cap \cdots \cap I_{k}=I_{1} \cdots I_{k} .
$$

Proof. Consider first the case when $k=2$. Suppose I, J are comaximal. Then $\exists x \in I, y \in J$ s.t. $x+y=$ 1. So $\phi(x)=(0,1)$ and $\phi(y)=(1,0)$. Since $(0,1)$ and $(1,0)$ generate $R / I \times R / J, \phi$ is surjective.

Clearly ker $\phi=I \cap J$, and in general, $I J \subset I \cap J$. For any $c \in I \cap J$,

$$
c=c 1=c x+c y \in I J
$$

$\therefore I J=I \cap J$.
General case: set $I=I_{1}, J=I_{2} \cdots I_{k}$. For each $i=2, \ldots, k, \exists x_{i} \in I$ and $y_{i} \in I_{i}$ s.t. $x_{i}+y_{i}=1$. Since $x_{i}+y_{i} \equiv y_{i} \bmod I$,

$$
1=1 \cdots 1=\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right) \cdots\left(x_{k}+y_{k}\right) \equiv y_{2} \cdots y_{k} \quad \bmod I
$$

So $1 \in I+J$.
$\therefore R \mapsto R / I \times R / J$ and by induction,

$$
R / I \times R / J \mapsto R / I_{1} \times R / I_{2} \times R / I_{3} \times \cdots \times R / I_{k}
$$

and

$$
I_{1} I_{2} \cdots I_{k}=I J=I \cap J=I_{1} \cap I_{2} \cap \cdots I_{k} .
$$

2.3 Polynomial Rings

Let R be a ring.

$$
R[x]:=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid n \geq 0 \in \mathbb{Z} \text { and } a_{j} \in R \text { for } j=0, \cdots, n\right\}
$$

(modulo $0 x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \sim a_{n-1} x^{n-1}+\cdots+a_{0}$). Operations are

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} x^{i}+\sum_{i=1}^{n} b_{i} x^{i} & :=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right) x^{i}, \quad \text { and } \\
\left(\sum_{i=1}^{n} a_{i} x^{i}\right)\left(\sum_{i=1}^{m} b_{i} x^{i}\right) & :=\sum_{k=0}^{n+m}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{k} .
\end{aligned}
$$

More formally,

$$
(R[x],+)=\bigoplus_{n=0}^{\infty} R,
$$

with multiplication defined by

$$
\left(a_{i}\right)_{i \geq 0}\left(b_{j}\right)_{j \geq 0}=\left(c_{k}\right)_{k \geq 0} \quad \text { where } c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i} .
$$

Inductively, set

$$
R\left[x_{1}, \ldots, x_{n}\right]:=\left(R\left[x_{1}, \ldots, x_{n-1}\right]\right)\left[x_{n}\right] .
$$

(called the polynomial ring in n variables). For an arbitrary set S, set

$$
R[S]:=\bigcup_{T=\text { finite subset of } S} R[T] .
$$

If $q(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $a_{n} \neq 0$ then n is called the degree of q. Embed $R \hookrightarrow R[x]$ via

$$
r \mapsto r \quad(\text { polynomial of degree } 0) .
$$

Some properties:

1. $R[x]$ is commutative $\Longleftrightarrow R$ is commutative.
2. $R[x]$ is an integral domain $\Longleftrightarrow R$ is an integral domain.
3. If R is an integral domain then $q(x) \in R[x]$ is invertible $\Longleftrightarrow q(x) \in R$ and is invertible in R.

Proposition 2.3.1. Let $I \subset R$ be an ideal. Let $I[x]$ denote the ideal of $R[x]$ generated by I. Then $R[x] / I[x] \cong(R / I)[x]$.

Proof. Define $\phi: R[x] \mapsto(R / I)[x]$ by

$$
\phi\left(\sum a_{i} x^{i}\right):=\sum \overline{a_{i}} x^{i} .
$$

Then ϕ is onto and $\operatorname{ker} \phi=I[x]$, so

$$
R[x] / I[x] \cong(R / I)[x] .
$$

Corollary 2.3.2. $I[x]$ is a prime ideal $\Longleftrightarrow I$ is a prime ideal.

2.4 Modules

Definition 2.4.1. Let R be a ring. A (left) R-module consists of an abelian group ($M,+$), together with a function $\cdot: R \times M \mapsto M$ s.t.

1. $(r+s) m=r m+s m \forall r, s \in R, m \in M$,
2. $r(m+n)=r m+r n \forall r \in R, m, n \in M$,
3. $(r s) m=r(s m) \forall r, s \in R, m \in M$, and
4. $1 m=m \forall m \in M$.

If R is a field, an R-module is also called a vector space over R.
Definition 2.4.2. An R-module homomorphism $f: M \mapsto N$ is a function satisfying

1. $f(a+b)=f(a)+f(b) \forall a, b \in M$ and
2. $f(r a)=r f(a) \forall r \in R, a \in M$.

If R is a field, an R-module homomorphism is also called a linear transformation. A bijective homomorphism is called an isomorphism.

Definition 2.4.3. A submodule of M is a subset A which forms an R-module s.t. the inclusion $A \hookrightarrow M$ is an R-module homomorphism. The R-module M is simple if its only submodules are M and $\{0\}$.

Example 2.4.4.

1. $M=R$ with $R \times M \mapsto M$ given by mult. in R. Submodules of R are left ideals.
2. $R=\mathbb{Z}$ and $M=$ abelian grp., with

$$
\begin{aligned}
n \cdot x & :=x+\cdots+x, \quad \text { for } n \geq 0, \text { and } \\
(-n) \cdot x & :=-(n \cdot x), \quad \text { for } n \geq 0 .
\end{aligned}
$$

Conversely, any \mathbb{Z}-module is just an abelian group.
3. F a field, V a vector space over $F, T: V \mapsto V$ a linear transformation. Let $R=F[x]$ and $M=V$. Define

$$
x^{n} \cdot v:=T^{n}(v)=T\left(T^{n-1} v\right) \quad \forall v \in V
$$

and extend linearly to an action of $F[x]$ on V.

If $f: M \mapsto N$ is an R-module homomorphism then $\operatorname{ker} f$ is a submodule of M and $\operatorname{Im} f$ is a submodule of R. If M, N are R-modules, set

$$
\operatorname{hom}_{R}(M, N):=\{R \text {-module homomorphisms from } M \text { to } N\} .
$$

$\operatorname{hom}_{R}(M, N)$ is an abelian group in general, and if R is commutative, it becomes an R-module via

$$
(r f)(m)=f(r m)
$$

Let N be a submodule of M. On the abelian group M / N, define the action of R by $r \cdot \bar{m}:=\overline{r \cdot m}$. This is well-defined and produces an R-module structure on M / N.

Theorem 2.4.5.

1. First Isomorphism Theorem

Let $f: M \mapsto N$ be an R-module homomorphism. Then $M / \operatorname{ker} f \cong \operatorname{Im} f$.
2. Second Isomorphism Theorem Let A, B be submodules of M. Then

$$
(A+B) / B \cong A /(A \cap B)
$$

where $A+B=\{a+b \mid a \in A, b \in B\}$, which itself forms a submodule.
3. Third Isomorphism Theorem Let $A \subset B \subset M$ be R-modules. Then

$$
\frac{M / A}{B / A} \cong M / B .
$$

4. Fourth Isomorphism Theorem Let $N \subset M$ be R-modules. Then $A \leftrightarrow A / N$ sets up a bijection between the submodules of M containing N and the submodules of M / N.

A sequence

$$
0 \longrightarrow A \longrightarrow \begin{aligned}
& j \\
& 0
\end{aligned}
$$

of R-module homomorphisms s.t. j is injective, f is surjective, and $\operatorname{ker} f=\operatorname{Im} j$ is called a short exact sequence of R-modules. $1^{\text {st }}$ iso. thm. $\Rightarrow C \cong B / \operatorname{Im} j$.

Proposition 2.4.6. Let

$$
\left.0 \longrightarrow A \longrightarrow \begin{array}{l}
j \\
\end{array}\right] \xrightarrow{f} C \longrightarrow
$$

be a short exact sequence of R-modules. Then TFAE:

1. $\exists s: C \mapsto B$ s.t. $f s: C \mapsto C$ is an isomorphism.
2. $\exists r: B \mapsto A$ s.t. $r j: A \mapsto A$ is an isomorphism.
3. $B \cong A \oplus C$.

Remarks:

1. The fact that the above are isomorphic as abelian groups was discussed in the section on semidirect products, since for abelian groups, all subgroups are normal and semidirect products become products.
2. As discussed in semidirect product section, $2 \Longleftrightarrow 3$, even for nonabelian groups, but in that situation, $1 \nRightarrow 2$ or 3 .

Given a set S, \exists an R-module M having the property that for any R-module M,

$$
\operatorname{hom}_{R}(M, N)=\operatorname{morphisms}_{\text {sets }}(S, N)
$$

ie. An R-module homomorphism from M is uniquely determined by the images of the elts. of S. Explicitly,

$$
M \cong R^{S} \equiv \bigoplus_{S} R
$$

M is called the free R-module with basis S. An R-module which possesses a basis is called a free R-module. An arbitrary elt. of a free R-module can be uniquely written as a finite linear combination

$$
x=\sum r_{i} s_{i}
$$

where $r_{i} \in R$ and $s_{i} \in S$. When $R=\mathbb{Z}$, the free \mathbb{Z}-module on S is also called the free abelian group on S, denoted $F_{a b}(S)$.

Let M be a right R-mod. and let N be a left R-mod. Define an abelian group $M \otimes_{R} N$ (tensor product of M, N over R) by

$$
M \otimes_{R} N=F_{a b}(M \times N) / \sim
$$

where

1. $\left(m, n_{1}+n_{2}\right) \sim\left(m, n_{1}\right)+\left(m, n_{2}\right) \forall m \in M, n_{1}, n_{2} \in N$,
2. $\left(m_{1}+m_{2}, n\right) \sim\left(m_{1}, n\right)+\left(m_{2}, n\right) \forall m_{1}, m_{2} \in M, n \in N$, and
3. $(m \cdot r, n) \sim(m, r \cdot n) \forall r \in R, m \in M, n \in N$.

Write $m \otimes n$ for the equiv. class of (m, n) in $M \otimes_{R} N$. So an arbitrary elt. of $M \otimes_{R} N$ has the form

$$
\sum_{i=1}^{k} c_{i}\left(m_{i} \otimes n_{i}\right)
$$

where $m_{i} \in M, n_{i} \in N, c_{i} \in \mathbb{Z}$.
Note that $R \otimes_{R} N \cong N$ and $M \otimes_{R} R \cong M$.
$M \otimes_{R} N$ has the universal property: q is R-bilinear and given bilinear $f: M \times N \mapsto A$,

f bilinear means:

$$
\begin{aligned}
f\left(m_{1}+m_{2}, n\right) & =f\left(m_{1}, n\right)+f\left(m_{2}, n\right), \\
f\left(m, n_{1}+n_{2}\right) & =f\left(m, n_{1}\right)+f\left(m, n_{2}\right), \quad \text { and } \\
f(m r, n) & =f(m, r n)
\end{aligned}
$$

If R is commutative then $M \otimes_{R} N$ becomes an R-module via

$$
r \cdot(m \otimes n):=m \otimes(r \cdot n)
$$

More generally, if M is an R-bimodule (ie. has both a left and a right R-module action which commute with each other) then $M \otimes_{R} N$ becomes a left R-module via

$$
r \cdot(m \otimes n):=(r \cdot m) \otimes n .
$$

Notice that R is an R-bimodule even if R is not commutative. (ie. Left multiplication commutes with right multiplication $-R$ is associative.)

More generally, let $f: R \mapsto S$ be a ring homomorphism. Then S becomes an R-bimodule via

$$
\begin{aligned}
& r \cdot s:=f(r) s \\
& s \cdot r:=s f(r)
\end{aligned}
$$

This induces a map from R-modules to S-modules given by $N \mapsto S \otimes_{R} N$.

Example 2.4.7 (Extension of Coefficients). Let N be a vector space over a field F. Let $F \hookrightarrow K$ be an extension field. Elts. of N are finite sums

$$
\sum a_{i} e_{i}
$$

where $\left\{e_{i}\right\}_{i \in T}$ forms a basis for N. Then elts. of $K \otimes_{F} N$ are finite sums

$$
\sum a_{i} e_{i}
$$

where $a_{i} \in K, i \in T$. (So $\left\{e_{i}\right\}$ forms a basis for $K \otimes_{F} N$ as a vector space over K.)
In general,

$$
M \otimes_{R}\left(\bigoplus_{i \in T} N_{i}\right) \cong \bigoplus_{i \in T}\left(M \otimes_{R} N_{i}\right),
$$

so

$$
S \otimes_{R}\left(\bigoplus_{i \in T} R\right) \cong \bigoplus_{i \in T}\left(S \otimes_{R} R\right) \cong \bigoplus_{i \in T} S .
$$

Thus if N is a free R-module with basis T then $S \otimes_{R} N$ forms a free S-module with basis T.
Theorem 2.4.8 (Steinitz Exchange Theorem). Let R be a commutative ring. Let B and T be bases for a free R-module N. Then Card $B=\operatorname{Card} T$.

Proof. If $g: R \mapsto S$ is any ring homomorphism then $S \otimes_{R} N$ is a free S-module with both B and T as bases. Letting $g: R \mapsto R / M$ where M is a maximal ideal in R, we may reduce to the case where R is a field.

Case I: At least one of $\operatorname{Card} B, \operatorname{Card} T$ is finite. Say $\operatorname{Card} B \leq \operatorname{Card} T$ and suppose $\operatorname{Card} B<\infty$. Write $B=\left\{b_{1}, \ldots, b_{n}\right\} . \exists t_{1} \in T$ s.t. when t_{i} is written in the basis B, the coeff. of b_{1} is nonzero (or else b_{2}, \ldots, b_{n} would span N). Then $\left\{t_{1}, b_{2}, \ldots, b_{n}\right\}$ forms a basis for N. Inductively, $\forall j=1, \ldots, n$, find t_{j} s.t. $\left\{t_{1}, \ldots, t_{j}, b_{j+1}, \ldots, b_{n}\right\}$ forms a basis for N. Then $\left\{t_{1}, \ldots, t_{n}\right\}$ forms a basis for N, so

$$
T=\left\{t_{1}, \ldots, t_{n}\right\}
$$

and $|T|=|B|$.
Case II: Both $\operatorname{Card} B$ and $\operatorname{Card} T$ are infinite. For each $b \in B$, set

$$
T_{b}=\{\text { elts. of } T \text { occuring in the expression for } b \text { in basis } T\} \in 2^{T} .
$$

Then T_{b} is finite $\forall b$. Define $f: B \mapsto 2^{T}$ by $f(b)=T_{b}$. If $X \subset T$ is finite with say $|X|=n$, at most n elts. of B lie in the span of X. So $\left|f^{-1}(X)\right| \leq|X|$.

$$
B=\bigcup_{\substack{X \subset T \\ X \text { finite }}} f^{-1}(X)=\bigcup_{n=1}^{\infty} \bigcup_{\substack{X \subset T \\|X|=n}} f^{-1}(X)
$$

Since T is infinite, the cardinality of

$$
\{X \subset T||X|=n\}
$$

is equal to the cardinality of $|T|$. Since $\left|f^{-1}(X)\right| \leq|X|$,

$$
\begin{aligned}
\operatorname{Card} B & =\operatorname{Card} \bigcup_{n=1}^{\infty} \bigcup_{\substack{X \subset T \\
|X|=n}} f^{-1}(X) \\
& \leq \operatorname{Card}\left(\bigcup_{n=1}^{\infty} \operatorname{Card} T\right) \\
& =\operatorname{Card} T .
\end{aligned}
$$

Similarly, $\operatorname{Card} T \leq \operatorname{Card} B$.

Note: Once we reduced to the case of a division ring, we no longer needed the commutativity of R, so the thm. also holds whenever R is a division ring, or indeed when R admits a homomorphism to a division ring. However, we used commutativity of R to produce our map $R \mapsto$ (division ring), since

$$
R / 2 \text {-sided max. ideal }
$$

need not be a division ring if R is not commutative.
If R is a commutative ring and N is a free R-module, the cardinality of any basis for N is called the rank of N. If R is a field then every R-module is free and its rank is called its dimension.

Proposition 2.4.9. If $\phi: M \mapsto N$ is a surjective R-module homomorphism and N is a free R-module then \exists an R-module homomorphism s: $N \mapsto M$ s.t. $\phi s=1_{N}$. In particular, $M \cong N \oplus \operatorname{ker} \phi$.

Proof. Let S be a basis for N. For each $x \in S$, choose $m \in M$ s.t. $\phi(m)=x$ and set $s(x)=m$. Since N is free, this extends (uniquely) to an R-module map.

An R-module P is called projective if given a surjective R-mod. homom. $\phi: M \mapsto P, \exists$ an R-mod. homom. $s: P \mapsto M$ s.t. $\phi s=1_{P}$. Equivalently, P is surjective iff $\exists Q$ s.t. $P \oplus Q \cong R^{N}$ for some N. Equivalently, P is projective iff

\exists a lift s (not necessarily unique).
\therefore Free \Rightarrow Projective.
Example 2.4.10 (A projective module which is not free). Let $R=M_{n \times n}(F)(n \times n$ matrices with entries in a field F), with $n>1$. Let

$$
P=\left(\begin{array}{cccc}
* & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
* & 0 & \cdots & 0
\end{array}\right)
$$

(matrices which are 0 beyond the first column). Then P forms a left ideal in R, ie. P is a left R-module. Let

$$
Q=\left(\begin{array}{cccc}
0 & * & \cdots & * \\
\vdots & \vdots & & \vdots \\
0 & * & \cdots & *
\end{array}\right)
$$

(matrices which are 0 in the first column). Then $P \oplus Q=R$, so P is projective. But P is not free, because if $P \cong R^{s}$ then, regarded as vector spaces over F, we would have

$$
n=\operatorname{dim} P=\operatorname{dim} R^{s}=s n^{2} .
$$

This is a contradiction since $n>1$.
Definition 2.4.11. Let R be an integral domain. An elt. x in an R-module M is called a torsion element if $\exists r \neq 0 \in R$ s.t. $r x=0 . M$ is called a torsion module if x is a torsion elt. $\forall x \in M . M$ is called torsion-free if it has no torsion elements.
x, y torsion elts. $\Rightarrow x+y$ is a torsion elt. If x is a torsion elt. and $r \in R$ then $r x$ is a torsion elt. Hence,

$$
\operatorname{Tor} M:=\{x \in M \mid x \text { is a torsion elt. }\}
$$

forms a submodule of M.

The annihilator of $x \in M$ is the left ideal

$$
\operatorname{Ann}(x):=\{r \in R \mid r x=0\} .
$$

The annihilator of M is the 2 -sided ideal

$$
\text { Ann } M:=\{r \in R \mid r x=0 \forall x \in M\} .
$$

2.5 Localization and Field of Fractions

From the $4^{\text {th }}$ isomorphism theorem we get:
Proposition 2.5.1. A left ideal I is maximal if and only if the quotient module R / I is a simple (left) R-module.

Note: It is important to remember that R / I (when I is a left ideal) is a quotient module and not (necessarily) a quotient ring.

Definition 2.5.2. A ring with a unique maximal left ideal is called a local ring.
While it appears initially that replacing "left ideal" by "right ideal" might give a different concept, as we shall see, "left local" equals "right local". That is, a ring has a unique maximal left ideal if and only if it has a unique maximal right ideal. Note however that while, as we shall see, a unique maximal left ideal must in fact be a 2 -sided ideal, the existence of a unique maximal 2 -sided ideal is not sufficient to guarantee that a ring be local. For example, when $n>1,\{0\}$ forms a unique maximal ideal for matrix rings $M_{n \times n}(F)$ over a field F, but these rings are not local since they contain nontrivial left ideals, as we saw in the previous section.

Theorem 2.5.3. Let R be a local ring with max. left ideal M. Then M is a 2 -sided ideal.
Proof. Suppose $y \in R$. Must show $M y \subset M$. If $y \in M$ this is trivial since M is a left ideal, so assume $y \notin M$. Let $I_{y}:=\{x \in R \mid x y \in M\}$. To finish the proof, we must show that $M \subset I_{y}$.

For $r \in R$ and $x \in I_{y},(r x) y=r(x y) \in r M \subset M$, using that M is a left ideal. Therefore I_{y} is a left ideal. Note that $1 \notin I_{y}$, since $y \notin M$. Thus I_{y} is a proper left ideal so $I_{y} \subset M$. Let \bar{y} denote the equivalence class of y in the quotient module R / M. Define $\phi: R \rightarrow R / M$ by $\phi(r)=r \bar{y}$. Then $\operatorname{ker} \phi=I_{y}$ by definition of I_{y}. Since M is maximal, R / M is a simple module, so $\operatorname{Im} \phi=R / M$. Therefore as left R-modules we have $R / I_{y} \cong \operatorname{Im} \phi=R / M$, which is simple and so I_{y} is a maximal left R-module. Thus $I_{y}=M$.

Corollary 2.5.4. Let R be a local ring with max. left ideal M. Then

1. $x \in R-M$ iff x is a unit.
2. R has a unique maximal right ideal.
3. The unique maximal right ideal of R is M.
4. R / M is a division ring.

Conversely, if R is a ring with an ideal M s.t. x is a unit $\forall x \in R-M$ then R is a local ring.

Proof. Since no proper ideal can contain a unit, parts (2), (3), and (4) are immediate consequences of part (1).

Given $x \in R-M$, maximality of M shows that $R x=R$ so $\exists y \in R$ such that $y x=1$. Since M is a 2-sided ideal and $x \in R-M$ it follows that y cannot lie in M. Therefore the same argument applies to y and shows that $\exists z \in R$ such that $z y=1$. But then $z=z(y x)=(z y) x=x$, so y forms a 2 -sided inverse to x, establishing (1).

Conversely if every element of $R-M$ is a unit, then the fact that no proper ideal can contain a unit shows that R is a local ring.

For the rest of this section, suppose that R is commutative.
A subset $S \subset R$ containing 1 and s.t. $0 \notin S$, which is closed under the multiplication of R is called a multiplicative subset. For example, let $\mathcal{P} \subset R$ be a prime ideal. Then $R-\mathcal{P}$ is a multiplicative subset. Form a ring called the localization of R w.r.t. S, denoted $S^{-1} R$. As a set,

$$
S^{-1} R:=R \times S / \sim,
$$

where $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ if $\exists t \in S$ s.t. $t\left(r s^{\prime}-r^{\prime} s\right)=0$. Think of (r, s) as $\frac{r}{s}$. Check \sim is an equiv. reln.:
If $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ and $\left(r^{\prime}, s^{\prime}\right) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right)$ then

$$
\begin{gathered}
\exists t \in S \text { s.t. } t\left(r s^{\prime}-r^{\prime} s\right)=0 \\
\text { and } \exists t^{\prime} \in S \text { s.t. } t^{\prime}\left(r^{\prime} s^{\prime \prime}-r^{\prime \prime} s^{\prime}\right)=0
\end{gathered}
$$

Then

$$
s^{\prime} t t^{\prime} r s^{\prime \prime}=t t^{\prime} r^{\prime} s s^{\prime \prime}=t t^{\prime} r^{\prime \prime} s^{\prime} s
$$

ie. $s^{\prime} t t^{\prime}\left(r s^{\prime \prime}-r^{\prime \prime} s\right)=0$, (and $\left.s^{\prime} t t^{\prime} \in S\right)$ so $(r, s) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right)$.
Define addition by $(r, s)+\left(r^{\prime}, s^{\prime}\right)=\left(r s^{\prime}+r^{\prime} s, s s^{\prime}\right)$. Check + is well-defined: suppose

$$
\left(r^{\prime}, s^{\prime}\right) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right), \quad \text { so } t r^{\prime} s^{\prime \prime}=t r^{\prime \prime} s^{\prime}
$$

Is $\left(r s^{\prime}+r^{\prime} s, s s^{\prime}\right) \sim\left(r s^{\prime \prime}+r^{\prime \prime} s, s s^{\prime \prime}\right)$?
Formally, $s^{2} t r^{\prime} s^{\prime \prime}=s^{2} t r^{\prime \prime} s^{\prime}$ so

$$
t\left(s s^{\prime \prime}\left(r s^{\prime}+r^{\prime} s\right)-s s^{\prime}\left(r s^{\prime \prime}+r^{\prime \prime} s\right)=t\left(s^{2} r^{\prime} s^{\prime \prime}-s^{2} r^{\prime \prime} s\right)=0\right.
$$

Define \cdot by $(r, s) \cdot\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)$ (easy to check \cdot is well-defined). $\left(S^{-1} R,+, \cdot\right)$ becomes a commutative ring ring with identity $(1,1)$.

Define the ring homomorphism

$$
\begin{aligned}
\psi: R & \mapsto S^{-1} R \\
r & \mapsto(r, 1)
\end{aligned}
$$

Note that $\psi(s)$ is a unit in $S^{-1} R \forall s \in S$. ie. $(1, s) \psi(s)=(1, s)(s, 1)=(s, s) \sim(1,1)$.
$\psi: R \mapsto S^{-1} R$ has the universal property: If $f: R \mapsto A$ is a ring homomorphism s.t. $f(s)$ is a unit in $A \forall s \in S$ then

Proposition 2.5.5. If R is an integral domain then $\psi: R \mapsto S^{-1} R$ is injective.
Proof. Suppose $(r, 1)=\psi(r)=0=(0,1)$. Then $t(r-0)=0$ for some $t \in S$, so $r=0$.
Note: if R is an integral domain, we can define the equiv. reln. simply by

$$
(r, s) \sim\left(r^{\prime}, s^{\prime}\right) \text { iff } r s^{\prime}=r^{\prime} s
$$

Special cases:

1. R an integral domain, $S=R-\{0\}$. Then $S^{-1} R$ is a field called the field of fractions of R.
2. $S=R-\mathcal{P}$ where \mathcal{P} is a prime ideal. Then $\psi(\mathcal{P})$ forms an ideal in $S^{-1} R$ and every element of $S^{-1} R$ outside of $\psi(\mathcal{P})$ is invertible (quotient of images of elts. in S).
$\therefore S^{-1} R$ is a local ring with max. ideal $\psi(\mathcal{P}) . S^{-1} R$, also written $R_{\mathcal{P}}$, is called the localization of R at the prime \mathcal{P}.
3. $S=I-\{0\}$, where I is an ideal without 0 -divisors. $S^{-1} R$ is sometimes called R with I inverted. e.g. $R=\mathbb{Z}, I=\mathbb{Z} p$. Then

$$
S^{-1} R=\mathbb{Z}\left[\frac{1}{p}\right]=\left\{\frac{m}{p^{t}} \in \mathbb{Q}\right\}
$$

is " \mathbb{Z} with p inverted" or " \mathbb{Z} with $\frac{1}{p}$ adjoined". Sometimes called the localization of \mathbb{Z} away from p.

2.6 Noetherian Rings and Modules

Definition 2.6.1. An R-module M is called Noetherian if, given any increasing chain of submodules

$$
M_{1} \subset M_{2} \subset \cdots \subset M_{n} \subset \cdots
$$

$\exists N$ s.t. $M_{n}=M_{N} \forall n \geq N$. The ring R is called a Noetherian ring if it is Noetherian when regarded as an R-module.

If R is not commutative, notions of Noetherian, "right Noetherian", and " 2 -sided Noetherian" do not necessarily coincide.

Theorem 2.6.2. Let R be a ring and let M be a left R-module. Then TFAE:

1. M is a Noetherian R-module.
2. Every non-empty set of submodules of M contains a maximal element.
3. Every submodule of M is finitely generated (and in particular, M is finitely generated).

Proof.
$1 \Rightarrow 2$: Let Σ be a nonempty collection of submodules of M. Choose $M_{1} \in \Sigma$. If M_{1} is not maximal in Σ then $\exists M_{2} \in \Sigma$ s.t. $M_{1} \varsubsetneqq M_{2}$. Having chosen M_{1}, \ldots, M_{n-1}, if M_{n-1} is not maximal in Σ then $\exists M_{n} \in \Sigma$ s.t.

$$
M_{1} \varsubsetneqq M_{2} \varsubsetneqq \cdots \varsubsetneqq M_{n-1} \varsubsetneqq M_{n} .
$$

By hypothesis, no infinite chain of this sort exists, so eventually reach a max. elt.
$2 \Rightarrow 3$: Let N be a submodule of M. Let Σ be the collection of all finitely generated submodules of N. By the hypothesis, Σ contains a maximal element N^{\prime}. If $N^{\prime} \neq N$ then pick $x \in N-N^{\prime}$. Then $\left\langle N^{\prime}, x\right\rangle$ is f.g. and properly contains N^{\prime}, which is a contradiction.
$\therefore N^{\prime}=N$, so N is f.g.
$3 \Rightarrow 1$: Suppose every submod. of M is f.g. Let

$$
M_{1} \subset M_{2} \subset M_{3} \subset \cdots
$$

be a chain of submodules. Let $N=\bigcup_{i=1}^{\infty} M_{i}$. Then $N \subset M$ is a submodule, so

$$
N=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle
$$

for some finite set $a_{1}, \ldots, a_{n} \in N$.

Since $a_{i} \in N$, each $a_{i} \in M_{k}$ for some k. So $\exists K$ s.t. M_{K} contains all of a_{1}, \ldots, a_{n}. But then $N \subset M_{K}$, so

$$
M_{K}=M_{K+1}=\cdots=M_{K+m}=\cdots=N .
$$

ie. $M_{n}=M_{K} \forall n \geq K$.

Corollary 2.6.3. Let $f: M \mapsto N$ be an R-module homomorphism. Then M is Noetherian iff $\operatorname{ker} f$ and $\operatorname{Im} f$ are Noetherian.

Proof.
\Rightarrow : Suppose M is Noetherian. Every submodule of $\operatorname{ker} f$ is a submodule of M, and thus is f.g., so $\operatorname{ker} f$ is Noetherian.

If $A \subset \operatorname{Im} f$ then $f^{-1}(A)$ is a submodule of M, thus f.g. But then the images of the generators of $f^{-1}(A)$ generate A, so A is f.g.
$\Leftarrow:$ Suppose $\operatorname{ker} f$ and $\operatorname{Im} f$ are f.g. Let $B \subset M$ be a submodule of M. Let

$$
\Delta=f(B) \subset \operatorname{Im} f .
$$

Pick a set $\overline{x_{1}}, \ldots, \overline{x_{k}}$ of generators for Δ and let x_{1}, \ldots, x_{k} be pre-images in B.
Claim. $B=\left\langle\operatorname{ker} f \cap B, x_{1}, \ldots, x_{k}\right\rangle$.
Proof. Given $b \in B, f(b) \in f(B)$ so

$$
f(b)=\sum_{i=1}^{n} r_{i} \overline{x_{i}}, \quad \text { for some } r_{1}, \ldots, r_{k} \in R
$$

Then $f\left(b-\sum_{i=1}^{n} r_{i} x_{i}\right)=0$ so

$$
b-\sum_{i=1}^{n} r_{i} x_{i} \in \operatorname{ker} f \cap B
$$

ie. $b \in\left\langle\operatorname{ker} f \cap B, x_{1}, \ldots, x_{k}\right\rangle$.
But $\operatorname{ker} f \cap B \subset \operatorname{ker} f$ is f.g., so B is f.g.

Corollary 2.6.4. Let R be Noetherian. Then R / I is Noetherian.
Proof. It follows from the preceding corollary that R / I is Noetherian when regarded as an R-module. However an increasing chain of R / I-submodules of R / I is also a increasing chain of R-submodules of R / I and so the corollary follows.

Theorem 2.6.5 (Hilbert Basis Theorem). Let R be a commutative Noetherian ring. Then $R[x]$ is Noetherian.

Note: The converse is trivial, since $R \cong R[x] / R[x] x$.
Proof. Let $I \subset R[x]$ be an ideal. Let $L \subset R$ be the set of leading coefficients of elts. in I. That is,

$$
L=\left\{a \in R \mid a x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \in I, \text { for some } c_{n-1}, \ldots, c_{0}\right\} .
$$

Then L is an ideal in R, so

$$
L=\left(a_{1}, \ldots, a_{n}\right), \quad \text { for some } a_{1}, \ldots, a_{n} \text {. }
$$

For each $i=1, \ldots, n$, choose $f_{i} \in I$ s.t. leading coeff. of f_{i} is a_{i}. Let $N:=\max \left\{N_{1}, \ldots, N_{n}\right\}$ where $N_{i}=\operatorname{deg} f_{i}$. For each $d=0, \ldots, N-1$, let

$$
L_{d}:=\{0\} \cup\{\text { leading coefficients of elts. of } I \text { of degree } d\} .
$$

Then $L_{d} \subset R$ is an ideal, so

$$
L_{d}=\left(b_{1}^{(d)}, \ldots, b_{n_{d}}^{(d)}\right), \quad \text { some } b_{1}^{(d)}, \ldots, b_{n_{d}}^{(d)} \in I .
$$

Let $f_{i}^{(d)}$ be a polynomial of degree d with leading coeff. $b_{i}^{(d)}$. To finish the proof, it suffices to show:
Claim. I is generated by

$$
\left\{f_{1}, \ldots, f_{n}\right\} \cup \bigcup_{d=0}^{N-1}\left\{f_{i}^{(d)}\right\}_{i=1, \ldots, n_{d}} .
$$

Proof. Let I^{\prime} be the ideal generated by this set. If $I^{\prime} \varsubsetneqq I$ then $\exists f \in I$ of minimal degree s.t. $f \notin I^{\prime}$. Let $e=\operatorname{deg} f$ and let a be the leading coeff. of f.

Suppose $e \geq N . a \in L$ so

$$
a=\sum_{i=1}^{n} r_{i} a_{i}, \quad \text { for some } r_{1}, \ldots, r_{n} \in R .
$$

Then

$$
\sum_{i=1}^{n} r_{i} x^{e-N_{i}} f_{i} \in I^{\prime}
$$

has degree e and leading coeff. a. So $f-\sum r_{i} x^{e-N_{i}} f_{i} \in I-I^{\prime}$ has degree less than e, which is a contradiction.
$\therefore e<N$. Hence $a \in L_{e}$, so

$$
a=\sum_{i=1}^{n_{e}} r_{i} b_{i}^{(e)}, \quad \text { for some } r_{1}, \ldots, r_{n_{e}} \in R
$$

Then $\sum r_{i} f_{i}^{(e)}$ has degree e and leading coeff. a, so $f-\sum r_{i} f_{i}^{(e)} \in I-I^{\prime}$ and has degree less than e. This is a contradiction, so $I=I^{\prime}$ and I is f.g.

2.7 Unique Factorization Domains

Note: For the remainder of this chapter, all the rings considered are integral domains, and in particular, are commutative.
$x \in R$ is called irreducible if $x \neq 0, x$ is not a unit, and whenever $x=a b$, either a is a unit or b is a unit.

Proposition 2.7.1. In an integral domain, prime \Rightarrow irreducible.
Proof. Let R be an integral domain. Let $p \in R$ be a prime and suppose $p=a b$. Then $p \mid a$ or $p \mid b$. Say $p \mid a$, so $a=z p$ for some $z \in R$. Thus $p=a b=z p b$ so $1=z b$. $\therefore b$ is a unit. Similarly, if $p \mid b$ then a is a unit. Hence p is irreducible.
Example 2.7.2. Let

$$
R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} \cong \mathbb{Z}[x] /\left(x^{2}+5\right)
$$

Claim. 2 is irreducible but not prime in R. To see 2 is irreducible, consider $N: R \mapsto \mathbb{Z}$ given by

$$
N(a+b \sqrt{-5})=|a+b \sqrt{-5}|^{2}=a^{2}+5 b^{2}
$$

(the "norm" map). N is not a ring homorphism but $N(y z)=N(y) N(z)$.
\therefore If $2=\alpha \beta$ then $4=N(\alpha) N(\beta)$, so $N(\alpha) \leq 4$ and $N(\beta) \leq 4$. The only elements with norm ≤ 4 are $1,-1,2,-2$, so

$$
\alpha, \beta \in\{1,-1,2,-2\} .
$$

Since $\alpha \beta=2$, either $\alpha= \pm 1$ or $\beta= \pm 1$, so 2 is irreducible.
However, in $R /(2)$,

$$
(1+\sqrt{5})^{2}=6+2 \sqrt{5} \equiv 0
$$

so $R /(2)$ has zero divisors.
$\therefore R /(2)$ is not an integral domain, so 2 is not prime. What are the primes in R ?
Consider first $y \in \mathbb{Z}^{+} \subset R$. If y is not prime in \mathbb{Z} then y is reducible so it is not prime in R. We already saw that 2 is not prime in R and since $5=(-\sqrt{-5})(\sqrt{-5})$ is reducible, 5 is not prime in R. Therefore suppose y is a prime $p \in \mathbb{Z}^{+}$with $p \neq 2$ or 5 . $R /(y)$ fails to be an integral domain iff \exists nonzero $s=a+b \sqrt{-5}$ and $t=c+d \sqrt{-5}$ such that

$$
s t=(a c-5 b d)+(a d+b c) \sqrt{-5}
$$

is zero in $R /(y)=(\mathbb{Z} / p)[\sqrt{-5}]$. That is, ac $=5 b d$ and $a d=-b c$ in \mathbb{Z} / p. None of a, b, c, d can be 0 in \mathbb{Z} / p since otherwise these equations would imply either $s=0$ or $=0$ in $R /(y)$. But then the equations yield

$$
\frac{a^{2}}{b^{2}}=\frac{c^{2}}{d^{2}}=-5
$$

so if $R(y)$ fails to be an integral doman than -5 is a square modulo p.
Conversely, if $\exists z$ such that $z^{2} \cong-5(\bmod p)$, then

$$
(z+\sqrt{-5})(z-\sqrt{-5})=z^{2}+5=0
$$

in $R /(y)$ so $R /(y)$ is not an integral domain. Thus $y \in \mathbb{Z}$ is a prime in R iff $|y|$ is a prime $p \neq 5$ in \mathbb{Z} such that -5 is not a square modulo p.

Now consider $y=a+b \sqrt{-5}$ with $b \neq 0$.

$$
a^{2}+5 b^{2}=(a-b \sqrt{-5}) y \in(y)
$$

so $R \mapsto R /\left(a^{2}+5 b^{2}\right) \stackrel{q}{\longmapsto} R /(y)$. q is not injective since $y \notin\left(a^{2}+5 b^{2}\right)$.
If $a^{2}+5 b^{2}$ is not a prime in \mathbb{Z} then we can see that y is not prime in R as follows. Suppose that $a^{2}+5 b^{2}=c d(c, d \neq \pm 1)$ and suppose that y is prime in R. Then $y \mid c d$ so either $y \mid c$ or $y \mid d$. Say $y \mid c$. Write $c=\lambda y$ for some $\lambda \in R$. λ is not a unit since application of the norm map shows that the only units in R are ± 1, and $c \neq \pm y$ because $c \in \mathbb{Z}, y \notin \mathbb{Z}$. Letting \bar{x} denote the complex conjugate of x, we have

$$
y \bar{y}=N(y)=c d=\lambda y d
$$

so $\bar{y}=\lambda d$. Thus $y=\bar{\lambda} \bar{d}$ and since $\bar{\lambda}$ and $\bar{d}=d$ are not units, this shows that y is reducible and therefore not prime.

If $a^{2}+5 b^{2}$ is a prime p in \mathbb{Z} then

$$
x^{2}+5 \equiv 0 \quad \bmod p
$$

has a solution $x=a / b$, so -5 is a square $\bmod p$. Set $c:=a / b \in \mathbb{Z} / p$.
Define $\phi: R /(y) \mapsto \mathbb{Z} / p \cong \mathbb{F}_{p}$ by $\phi(\sqrt{-5})=c$ and extending linearly. Then

$$
\phi(y)=a+b c \equiv 0 \quad \bmod p
$$

so ϕ is well-defined. $\left|R /\left(a^{2}+5 b^{2}\right)\right|=p^{2}$ and q is not injective so $|R /(y)|=p$ and ϕ is an isomorphism. $\therefore y=a+b \sqrt{-5}$ is prime in R whenever $a^{2}+5 b^{2}$ is prime in \mathbb{Z}.

Remark 2.7.3. The question of which primes p have the property that -5 is a square modulo p can be solved with the aid of Gauss' Law of Quadratic Reciprocity, which says that for odd primes p and q,

$$
\left(\begin{array}{l}
p \\
- \\
q
\end{array}\right)\left(\begin{array}{l}
q \\
- \\
p
\end{array}\right)=(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}
$$

where $\left(\begin{array}{l}p \\ - \\ q\end{array}\right)$ is the Legendre symbol, defined by

$$
\left(\begin{array}{l}
x \\
- \\
p
\end{array}\right)= \begin{cases}1 & \text { if } x \text { is a square modulo } p \\
-1 & \text { if } x \text { is a not square modulo } p\end{cases}
$$

Therefore

$$
\left(\begin{array}{c}
-5 \\
- \\
p
\end{array}\right)=\left(\begin{array}{c}
-1 \\
- \\
p
\end{array}\right)\left(\begin{array}{c}
5 \\
- \\
p
\end{array}\right)=\left(\begin{array}{c}
-1 \\
- \\
p
\end{array}\right)(-1)^{4\left(\frac{p-1}{2}\right)}\left(\begin{array}{c}
p \\
- \\
5
\end{array}\right)=\left(\begin{array}{c}
-1 \\
- \\
p
\end{array}\right)\left(\begin{array}{c}
p \\
- \\
5
\end{array}\right) .
$$

Since $\left(\begin{array}{l}-1 \\ - \\ p\end{array}\right)=\left\{\begin{array}{lll}1 & p \cong 1 \bmod 4 ; \\ -1 & p \cong 3 & \bmod 4,\end{array}\right.$ and $\quad\left(\begin{array}{l}p \\ - \\ 5\end{array}\right)=\left\{\begin{array}{ll}1 & p \cong 1 \text { or } 4 \bmod 5 ; \\ -1 & p \cong 2 \text { or } 3 \bmod 5,\end{array}\right.$ we get $\left(\begin{array}{l}-5 \\ - \\ p\end{array}\right)=1$ iff one of the following 4 pairs of congruences holds:

By the Chinese Remainder Theorem, this is equivalent to saying that -5 is a square modulo the prime p iff $p \cong 1,3,7$, or $9 \bmod (20)$.

Definition 2.7.4. An integral domain R is called a unique factorization domain (UFD) if every nonzero element can be factored into primes.
Lemma 2.7.5. In an integral domain, a factorization into primes (should one exist) is always unique up to associates. ie. If $x=p_{1} \cdots p_{n}$ and $x=q_{1} \cdots q_{k}$ then $k=n$ and \exists some renumbering σ of the q 's such that p_{j} and $q_{\sigma(j)}$ are associate primes $\forall j$.
Proof. Suppose

$$
p_{1} \cdots p_{n}=q_{1} \cdots q_{k}
$$

and say $n \leq k$. Then $p_{1} \mid q_{1} \cdots q_{k}$ so $p_{1} \mid q_{j}$ for some j. Renumber so that q_{j} is q_{1}.
$\therefore q_{1}=a p_{1}$ for some a. But q_{1} is a prime and thus irreducible, so either a or p_{1} is a unit. Since p_{1} is prime, it is not a unit, so a is a unit. ie. p_{1} and q_{1} are associates.
$\therefore p_{1} \cdots p_{n}=q_{1} \cdots q_{k}=a p_{1} q_{2} \cdots q_{k}$,
$\therefore p_{2} \cdots p_{n}=q_{2}^{\prime} q_{3} \cdots q_{k}$ where $q_{2}^{\prime}=a q_{2}$ is associate to q_{2}. Continuing, $\forall i=1, \ldots, n$, after renumbering q_{j} associate to p_{i}, eventually reach

$$
1=q_{n+1}^{\prime} \cdots q_{k}
$$

where q_{n+1}^{\prime} is associate to q_{n+1}. If $k>n$ this is a contradiction since prime q_{n+1} is not invertible. Hence $k=n$.

Proposition 2.7.6. In a UFD, prime \Longleftrightarrow irreducible.

Proof. Prime \Rightarrow irreducible in any integral domain, so must show irreducible \Rightarrow prime. Let $x \in R$ be irreducible. Write $x=p_{1} \cdots p_{n}$ be a product of primes and suppose $n>1$. Since x is irreducible, p_{1} is a unit or $p_{2} \cdots p_{n}$ is a unit. But p_{1} is not a unit since p_{1} is prime and $p_{2} \cdots p_{n}$ is not a unit since p_{2}, \ldots, p_{n} are primes. So this is a contradiction and thus $n=1$ and $x=p_{1}$ is prime.

Theorem 2.7.7. An integral domain is a UFD iff every nonzero elt. can be factored uniquely (up to associates) into irreducibles.

Proof.
\Rightarrow : Suppose R is a UFD. Then prime \Longleftrightarrow irreducible and every nonzero elt. has a unique factorization into primes.
\Leftarrow : Suppose every nonzero elt. has a unique factorization (up to associates) into irreducibles. It suffices to show that x is prime iff x is irreducible. ie. Show irreducible \Rightarrow prime.
Let $x \neq 0$ be irreducible. Suppose $x \mid a b$. Then $a b=z x$ for some z. Let

$$
a=a_{1} \cdots a_{n} \quad \text { and } \quad b=b_{1} \cdots b_{k}
$$

be the factorizations of a, b into irreducibles. So

$$
z x=a_{1} \cdots a_{n} b_{1} \cdots b_{k}
$$

is the factorization of $z x$ into irreducibles, so by uniqueness, x is associate to some factor on the RHS.
$\therefore x$ is assoc. to a_{j} for some j, in which case $x \mid a$, or x is assoc. to b_{j} for some j, in which case $x \mid b$. Thus x is prime.

Proposition 2.7.8. In a UFD, every pair of elts. has a g.c.d.
Proof. Let R be a UFD and suppose $x \neq 0, y \neq 0 \in R$. Factor x into primes and, replacing primes by associate ones when necessary, write

$$
x=u p_{1}^{r_{1}} \cdots p_{n}^{r_{n}}
$$

where u is a unit and p_{1}, \ldots, p_{n} are primes with p_{i} not associate to p_{j} for $i \neq j$. Similarly, write

$$
y=v q_{1}^{s_{1}} \cdots q_{k}^{s_{k}}
$$

where, replacing by associate if necessary, we may assume that if q_{j} is associate to p_{i} for some i then $q_{j}=p_{i}$. Letting z_{1}, \ldots, z_{m} be the union $\left\{p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{k}\right\}$ of all primes occurring, we can write

$$
x=u z_{1}^{e_{1}} \cdots z_{m}^{e_{m}} \quad \text { and } \quad y=v z_{1}^{f_{1}} \cdots z_{m}^{f_{m}}
$$

for some exponents $e_{1}, \ldots, e_{m}, f_{1}, \ldots, f_{m} \geq 0$. Let

$$
d=\prod z_{j}^{\min \left\{e_{j}, f_{j}\right\}} .
$$

Then $d=(x, y)$.

2.8 Principal Ideal Domains

Definition 2.8.1. A principal ideal domain (PID) is an integral domain in which every ideal is principal.

Proposition 2.8.2. In a PID, every nonzero prime ideal is maximal.
Proof. Let $I \neq 0$ be a prime ideal. Suppose $I \varsubsetneqq J \varsubsetneqq R$. Write $I=(x), J=(y)$. Since I is a prime ideal, x is prime. Since $I \subset J, x \in J$ so $x=a y$ for some $a \in R$. Thus $x \mid a$ or $x \mid y$.

If $x \mid a$ then $a=b x$ for some $b \in R$. Then $x=a y=a b x y \Rightarrow 1=b y$, so y is a unit and $J=R$. If $x \mid y$ then $y \in(x)=I$, so $J \subset I$, contradiction $I \varsubsetneqq J$. Hence I is maximal.

Example 2.8.3. Let $R=\mathbb{Z}[x]$. $R /(x) \cong \mathbb{Z}$ is an integral domain but not a field. So (x) is a prime ideal which is not maximal.
$\therefore \mathbb{Z}[x]$ is not a PID. In fact, $I=(2, x)$ is an example of a non-principal ideal in R.
Theorem 2.8.4. Every PID is Noetherian
Proof. Every ideal in R is generated by a single element, so in particular, every ideal is finitely generated. By Theorem 2.6.2, this means that R is Noetherian.

Theorem 2.8.5. Every PID is a unique factorization domain.
Proof. Let R be a PID and let $x \neq 0 \in R$ be a non-unit. Must show that x can be factored into primes. $(x) \varsubsetneqq R$ so \exists a maximal ideal M_{1} s.t.

$$
(x) \subset M_{1} \varsubsetneqq R .
$$

Write $M_{1}=\left(p_{1}\right) . M_{1}$ is maximal and thus prime, so p_{1} is prime. $x \in\left(p_{1}\right)$ says $x=p_{1} x_{1}$ for some $x_{1} \in R$. If x_{1} is a unit then $p_{1} x_{1}$ is a prime associate to p_{1} and we are done, so suppose not. Continuing, we get

$$
x_{n}=p_{n} x_{n+1} \quad \forall n .
$$

$\therefore x_{n} \in\left(x_{n+1}\right)$ so $\left(x_{n}\right) \subset\left(x_{n+1}\right)$. If x_{n} is a unit for some n then we have a factorization of x into primes. If not, we get a chain of ideals

$$
(x) \subset\left(x_{1}\right) \subset \cdots \subset\left(x_{n}\right) \subset \cdots
$$

Since R is Noetherian, $\exists N$ s.t. $\left(x_{n}\right)=\left(x_{N}\right) \forall n \geq N$. So $x_{N+1} \in\left(x_{N}\right)$ so $x_{N+1}=\lambda x_{N}=\lambda p_{N+1} x_{N+1}$ so that $1=\lambda p_{N+1}$ showing that p_{N+1} is a unit, which is a contradiction.

So the infinite chain does not exist, so the procedure terminated giving a factorization of x.
Proposition 2.8.6. Let R be a PID. Let $a, b \in R$ and $\operatorname{let} q=\operatorname{gcd}(a, b)$. Then $\exists s, t \in R$ s.t. $q=s a+t b$.

Proof. Let $I=\langle a, b\rangle=\{x a+y b \mid x, y \in R\}$. Then I is an ideal so $I=(c)$ for some $c \in R . c \in I$ so $c=x a+y b$ for some $x, y . a \in I$ so $c \mid a$ and $b \in I$ so $c \mid b$. Moreover, if $z \mid a$ and $z \mid b$ then let $a=\alpha z$ and $b=\beta z$ for some α, β. Then

$$
c=x a+y b=x \alpha z+y \beta z=(x \alpha+y \beta) z
$$

and thus $z \mid c$. So $c=\operatorname{gcd}(a, b)$.
If q is another g.c.d. of a, b then $q=u c$ for some unit u, so

$$
q=(u x) a+(u y) b .
$$

2.9 Norms and Euclidean Domains

Definition 2.9.1. A Euclidean domain is an integral domain R together with a function $d: R-\{0\} \mapsto$ $\mathbb{Z}^{+}=\{n \in \mathbb{Z} \mid n \geq 0\}$ s.t.

1. $d(a) \leq d(a b) \forall a, b \neq 0$, and
2. Given $a, b \neq 0 \in R, \exists t$, r s.t. $a=t b+r$ where either $r=0$ or $d(r)<d(b)$.

Example 2.9.2.

1. $R=\mathbb{Z}, d(n)=|n|$.
2. $R=F[x]$ where F is a field. $d(p(x))=$ polynomial degree of p.

Notice that if (R, d) is a Euclidean domain then so is $\left(R, d^{\prime}\right)$ where

$$
d^{\prime}(x)=d(x)+c, \quad \text { for some constant } c \in \mathbb{Z}^{+} .
$$

\therefore May assume that d takes values in $\mathbb{N}=\{n \in \mathbb{Z} \mid n \geq 1\}$. Then extend d by defining $d(0)=0$.
Definition 2.9.3. A Dedekind-Hasse norm on an integral domain R is a function $N: R \mapsto \mathbb{Z}^{+}$s.t.

1. $N(x)=0$ iff $x=0$, and
2. For $a, b \neq 0 \in R$ either $a \in(b)$ or \exists a nonzero $x \in(a, b)$ s.t. $N(x)<N(b)$.

If (R, d) is a Euclidean domain then d (modified s.t. $d(0)=0)$ is a Dedekind-Hasse norm: given $a, b \neq 0$,

$$
a=t b+r
$$

for some t and r, so either $b \mid a($ ie. $r=0$) or $r=a-t b \in(a, b)$ with $d(r)<d(b)$.
Theorem 2.9.4. Let R be an integral domain.

1. R is a PID iff R has a Dedekind-Hasse norm. In particular, a Euclidean domain is a PID.
2. If R has a Dedekind-Hasse norm then it is has a multiplicative Dedekind-Hasse norm (ie. one satisfying $N(a b)=N(a) N(b)$.)

Proof.

1. \Rightarrow : Suppose R has a Dedekind-Hasse norm. Let $I \subset R$ be a nonzero ideal. Choose $0 \neq b \in I$ s.t. $N(b)$ is minimum. Let $a \in I$. Then $(a, b) \subset I$ so \nexists nonzero $x \in(a, b)$ s.t. $N(x)<N(b)$. Hence $a \in(b)$. Thus $I=(b)$.
\Leftarrow : Suppose R is a PID. Define $N: R \mapsto \mathbb{Z}^{+}$as follows: $N(0):=0$. If $u \in R$ is a unit, set $N(u)=1$. If $x \neq 0 \in R$ is a nonunit, write $x=p_{1} \cdots p_{n}$ where each p_{j} is prime and set $N(x)=2^{n}$. Notice that N is multiplicative.
Suppose $a, b \neq 0 \in R . R$ is a PID so $(a, b)=(r)$ for some $r \in R$, so $b=x r$ for some $x \in R$. If $a \notin(b)$ then $r \notin(b)$ so x is not a unit, and thus

$$
N(b)=N(x) N(r)>N(r),
$$

ie. $\exists r \in(a, b)$ s.t. $N(r)<N(b)$.
2. If R has a Dedekind-Hasse norm then by part 1, it is a PID, in which case it has a multiplicative Dedekind-Hasse norm as constructed above.

2.9.1 Euclidean Algorithm

Let (R, d) be a Euclidean domain. Then R is a PID, so given $a, b \in R, \exists s, t \in R$ s.t.

$$
a s+b t=\operatorname{gcd}(a, b)
$$

The Euclidean algorithm is an algorithm for finding s and t (and thus $\operatorname{gcd}(a, b)$).

Procedure:

Say $d(b) \geq d(a)$. Set $r_{-1}:=b, r_{0}:=a$. Write

$$
\begin{aligned}
r_{-1} & =q_{1} r_{0}+r_{1}, \quad \text { some } q_{1}, r_{1} \text { with } d\left(r_{1}\right)<d\left(r_{0}\right), \\
& \vdots \\
r_{j-1} & =q_{j+1} r_{j}+r_{j+1}, \quad \text { some } q_{j+1}, r_{j+1} \text { with } d\left(r_{j+1}\right)<d\left(r_{j}\right)
\end{aligned}
$$

$\therefore d\left(r_{-1}\right) \geq d\left(r_{0}\right)>d\left(r_{1}\right)>\cdots>d\left(r_{j}\right)>\cdots$. Continue until $r_{k+1}=0$, some k. Set

$$
\begin{aligned}
s_{0} & :=0 \\
s_{1} & :=1 \\
s_{j} & :=-q_{j-1} s_{j-1}+s_{j-2} \\
t_{0} & :=1 \\
t_{1} & :=0 \\
t_{j} & :=-q_{j-1} t_{j-1}+t_{j-2}
\end{aligned}
$$

Claim. $r_{k}=\operatorname{gcd}(a, b)$ and $r_{k}=s a+t b$ where $s=s_{k+1}$ and $t=t_{k+1}$.

Proof. $r_{k+1}=0$ so $r_{k-1}=q_{k+1} r_{k}+0$. Suppose by induction that $r_{k} \mid r_{i}$ for $i \geq j$. Then $r_{j-1}=q_{j+1} r_{j}+r_{j+1}$ so $r_{k} \mid r_{j-1}$, concluding induction step.
$\therefore r_{k} \mid r_{j} \forall j$ and in particular, $r_{k} \mid r_{0}=a$ and $r_{k} \mid r_{-1}=b$.
Conversely, suppose z divides both a and b. Since $r_{j+1}=r_{j-1}-q_{j+1} r_{j}$, induction (going the other way) shows $z \mid r_{j} \forall j$. In particular, $z \mid r_{k}$. So $r_{k}=\operatorname{gcd}(a, b)$.

Also,

$$
\begin{aligned}
a s_{0}+b t_{0} & =a \cdot 0+b \cdot 1=b=r_{-1} \\
a s_{1}+b t_{1} & =a \cdot a+b \cdot 0=a=r_{0} \\
a s_{2}+b t_{2} & =a\left(-q_{1} s_{1}+s_{0}\right)+b\left(-q_{1} t_{1}+t_{0}\right)=-q_{1}\left(a s_{1}+b t_{1}\right)+\left(a s_{0}+b t_{0}\right) \\
& =-q_{1} r_{0}+r_{-1}=r_{1} \\
& \vdots \\
a s_{j}+b t_{j} & =a\left(-q_{j-1} s_{j-1}+s_{j-2}\right)+b\left(-q_{j-1} t_{j-1}+t_{j-2}\right)=-q_{j-1}\left(a s_{j-1}+b t_{j-1}\right)+\left(a s_{j-2}+b t_{j-2}\right) \\
& =-q_{j-1} r_{j-2}+r_{j-3}=r_{j-1}
\end{aligned}
$$

By induction, $a s_{j}+b t_{j}=r_{j-1} \forall j$. In particular, $a s+b t=a s_{k+1}+b t_{k+1}=r_{k}=\operatorname{gcd}(a, b)$.
Remark: In Computer Science, the speed of the Euclidean Algorithm over \mathbb{Z} is important. Estimate of the number of steps required: The faster the r 's go down, the quicker the algorithm goes, so the worst case scenario is when all the q 's are only 1 . In this case,

$$
r_{j-1}=r_{j}+r_{j+1} .
$$

ie. Worst case scenario occurs when a, b are consecutive terms of the Fibonacci Sequence. The smallest possible numbers requiring N steps would be when:

$$
r_{N}=1 \quad r_{N-1}=2 \quad r_{N-2}=3 \quad r_{N-3}=4 \cdots r_{N-j}=j^{\text {th }} \text { Fibonacci Number }
$$

$\therefore r_{0}=N^{\text {th }}$ Fibonacci Number F_{N}. ie. N steps can handle all numbers up to F_{N}.
$F_{n+1}=F_{n}+F_{n-1} \Rightarrow \frac{F_{n+1}}{F_{n}}=1+\frac{F_{n-1}}{F_{n}}$. So if $L=\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}$ then $L=1+\frac{1}{L}$. So

$$
\begin{aligned}
L^{2}-L-1 & =0 \\
L & =\frac{1 \pm \sqrt{5}}{2} \\
L & =\frac{1+\sqrt{5}}{2}=G
\end{aligned}
$$

So $F_{n} \approx G^{N}$, ie. for large N, the number of steps required is no worse than around $\log _{G}\left(r_{0}\right)$.

Lemma 2.9.5 (Gauss). Let R be a UFD and let F be its field of fractions. Let $q(x) \in R[x]$. If $q(x)$ is reducible in $F[x]$ then $q(x)$ is reducible in $R[x]$. Futhermore, if $q(x)=A(x) B(x)$ in $F[x]$ then in $R[x]$, $q(x)=a(x) b(x)$ where $A(x)=\frac{a(x)}{r}$ and $B(x)=\frac{b(x)}{s}$ for some nonzero $r, s \in F$.

Proof. Suppose $q(x)=A(x) B(x)$ where the coefficients of A, B lie in F. Multiplying by a common denominator we get

$$
d q(x)=a^{\prime}(x) b^{\prime}(x)
$$

for some $d \in R$ and polynomials $a^{\prime}(x), b^{\prime}(x) \in R[x]$. If $d \in R$ is a unit, we can divide by d to get $q(x)=\frac{a^{\prime}(x)}{d} b^{\prime}(x)$.
\therefore Suppose d is not a unit. Write $d=p_{1} \cdots p_{n}$ as a product of primes in R. Let

$$
\begin{aligned}
& R[x] \mapsto \frac{R[x]}{p_{1} R[x]} \cong\left(\frac{R}{p_{1} R}\right)[x] \\
& f(x) \mapsto \overline{f(x)}
\end{aligned}
$$

Reducing modulo $\left(p_{1} R\right)[x]$ gives $0=\overline{a^{\prime}(x)} \overline{b^{\prime}(x)}$ in the integral domain $\left(\frac{R}{p_{1} R}\right)[x]$. Hence $\overline{a^{\prime}(x)}=0$ or $\overline{b^{\prime}(x)}=0$. Say $\overline{a^{\prime}(x)}=0$. Then all the coeffs. of $a^{\prime}(x)$ are divisible by p_{1}, so can divide $d q(x)=$ $a^{\prime}(x) b^{\prime}(x)$ by p_{1} to get

$$
p_{2} \cdots p_{n} g(x)=\frac{a^{\prime}(x)}{p_{1}} b^{\prime}(x)=a^{\prime \prime}(x) b^{\prime}(x)
$$

with $a^{\prime \prime}, b^{\prime} \in R[x]$. Continuing, eventually reach $q(x)=a(x) b(x)$ with $a(x), b(x) \in R[x]$ and $a(x), b(x)$ obtained from $a^{\prime}(x), b^{\prime}(x)$ by multiplying by nonzero elements of F.

A polynomial whose leading coefficient is 1 is called monic.
Corollary 2.9.6. Let R be a UFD with field of fractions F. Let $p(x) \in R[x]$. Suppose

$$
\operatorname{gcd}\{\operatorname{coeffs} \text {. of } p\}=1 .
$$

Then $p(x)$ is irreducible in $R[x]$ iff it is irreducible in $F[x]$. In particular, if $p(x)$ is monic and irreducible in $F[x]$ then it is irreducible in $R[x]$.

Proof. If $p(x)$ is reducible in $F[x]$ then Gauss implies $p(x)$ is reducible in $R[x]$.
Conversely, if $p(x)$ is reducible in $R[x]$ then the hypothesis on $\operatorname{gcd} \Rightarrow p(x)=a(x) b(x)$ where neither $a(x)$ nor $b(x)$ is constant. Hence, $a(x), b(x)$ are not units in $F[x]$ so this factorization shows $p(x)$ is reducible in $F[x]$.

Lemma 2.9.7. Let R be a UFD and let $p(x) \in R[x]$ be irreducible. Then $p(x)$ is prime.

Proof. Let F be the field of fractions of R.

$$
\frac{R[x]}{(p(x))} \hookrightarrow \frac{F[x]}{(p(x))}
$$

\therefore To show $p(x) R[x] /(p(x))$ is an integral domain, it suffices to show that $F[x] /(p(x))$ is an integral domain.
$p(x)$ irreducible in $R[x] \Rightarrow p(x)$ irreducible in $F[x]$. However, $F[x]$ is a UFD (being a Euclidean Domain). So $p(x)$ is prime in $F[x]$ and thus $F[x] /(p(x))$ is an integral domain.
Theorem 2.9.8. R is a UFD $\Longleftrightarrow R[x]$ is a UFD.
Proof.
\Leftarrow : Suppose $R[x]$ is a UFD. Let $r \in R$. Write $r=p_{1}(x) \cdots p_{n}(x)$ as a product of primes in $R[x]$. Since $\operatorname{deg} r=0$ and R is an integral domain, $\operatorname{deg} p_{j}(x)=0 \forall j$, ie. $p_{j}(x)=p_{j} \in R$.

$$
R[x] /\left(p_{j}\right)=\left(\frac{R}{\left(p_{j}\right)}\right)[x]
$$

$\therefore R /\left(p_{j}\right)$ is an integral domain, so p_{j} is prime in R.
Thus $r=p_{1} \cdots p_{n}$ is a factorization of r into primes in R.
\Rightarrow : Suppose R is a UFD and let $0 \neq q(x) \in R[x]$. Let F be the field of fractions of R. Since $F[x]$ is a UFD, in $F[x]$ we can factor $q(x)$

$$
q(x)=p_{1}(x) \cdots p_{r}(x)
$$

where $p_{j}(x)$ is a prime in $F[x]$. By Gauss' lemma, in $R[x]$ we can write

$$
q(x)=p_{1}^{\prime}(x) \cdots p_{n}^{\prime}(x)
$$

where $\forall j \exists s_{j} \neq 0 \in F$ such that $p_{j}^{\prime}(x)=s_{j} p_{j}(x)$.
\therefore It suffices to show that $p_{j}^{\prime}(x)$ can be factored uniquely into primes in $R[x]$, as in the following claim:
Claim. If $p(x)$ is prime in $F[x]$ and $s p(x)=p^{\prime}(x) \in R[x]$ for some $0 \neq s \in F$ then $p^{\prime}(x)$ can be factored uniquely into primes in $R[x]$.
Proof. Let

$$
d=\operatorname{gcd}\left\{\text { coeffs. of } p^{\prime}(x)\right\} .
$$

Then $p^{\prime}(x)=d p^{\prime \prime}(x)$ where

$$
\operatorname{gcd}\left\{\text { coeffs. of } p^{\prime \prime}(x)\right\}=1
$$

In $F[x]$, have $p^{\prime \prime}(x)=\frac{p^{\prime}(x)}{d}=\frac{s}{d} p(x)$, which is prime in $F[x]$ since $p(x)$ is prime and $\frac{s}{d}$ is a unit. \therefore Cor. 2.9.6 $\Rightarrow p^{\prime \prime}(x)$ is irreducible in $R[x]$ and thus prime in $R[x]$ by the previous lemma. Since d can be factored into primes in R and a prime in R is also a prime in $R[x], p^{\prime}(x)=d p^{\prime \prime}(x)$ can be factored into primes in $R[x]$.Uniqueness is easy to show. This concludes the proof of the claim and thus concludes the proof of the theorem.

2.10 Modules over PID's

Note: In this section, and elsewhere, we will sometimes abuse notation and write R / p in place of $R /(p)$. (The notation \mathbb{Z} / n is generally quite common).

Theorem 2.10.1. Over a PID, a submodule of a free module is free.
Proof. Let R be a PID. Let $P=\bigoplus_{j \in J} R_{j}$ be a free R-module with basis $J\left(R_{j} \cong R \forall j\right)$, and suppose $M \subset P$ is a submodule.

Choose a well-ordering of the set J. For each $j \in J$, set $P_{j}=\bigoplus_{i \leq j} R_{i}$ and $\bar{P}_{j}=\bigoplus_{i<j} R_{i}$, so $P_{j}=\bar{P}_{j} \oplus R$.

Let f_{j} be the composite

$$
P_{j} \cap M \hookrightarrow P_{j}=\bar{P}_{j} \oplus R \mapsto R .
$$

Then ker $f_{j}=\bar{P}_{j} \cap M . \operatorname{Im} f_{j} \subset R$ is an ideal, so let $\operatorname{Im} f_{j}=\left(\lambda_{j}\right)$, some $\lambda_{j} \in R$. Pick $c_{j} \in P_{j} \cap M$ such that $f\left(c_{j}\right)=\lambda_{j}$. Let

$$
J^{\prime}=\left\{j \in J \mid \lambda_{j} \neq 0\right\} .
$$

To finish the proof we show:
Claim: $\left\{c_{j}\right\}_{j \in J^{\prime}}$ is a basis for M.
Proof. Check $\left\{c_{j}\right\}_{j \in J}$, is linearly independent:
Suppose

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} c_{j_{k}}=0, \quad \text { where } j_{1}<j_{2}<\cdots<j_{n} \tag{*}
\end{equation*}
$$

Since $j_{k}<j_{n}$ for $k<n, c_{j_{k}} \in \bar{P}_{j_{n}}$ for $k<n$.
\therefore Applying $f_{j_{n}}$ to (*) gives

$$
\sum_{k=1}^{n} a_{k} \cdot 0+a_{n} \lambda_{j_{n}}=0
$$

whence $a_{n}=0$, since $\lambda_{j_{k}} \neq 0$. Inductively, $c_{j_{k}}=0 \forall k=n, n-1, \ldots, 1$.
$\therefore\left\{c_{j_{k}}\right\}_{j \in J^{\prime}}$ is linearly independent.
Check that $\left\{c_{j}\right\}_{j \in J^{\prime}}$ spans M :
Suppose not. Then \exists a least $i \in J$ such that $P_{i} \cap M$ contains an element a not in $\operatorname{span}\left\{c_{j}\right\}_{j \in J^{\prime}}$. Must have $i \in J^{\prime}$, since if not, $f_{i}(a)=0$, so $a \in \bar{P}_{i}$, and thus $a \in P_{k}$ for some $k<i$, contradicting minimality of i.
$\therefore i \in J^{\prime} . f_{i}(a) \in\left(\lambda_{i}\right)$, so $f_{i} a=r \lambda_{i}$, for some $r \in R$. Set $b:=a-r c_{i}$. Since $a=b+r c_{i}$ cannot be written as a linear combination of $\left\{c_{i}\right\}$, neither can b. But

$$
f_{i} b=f(a)-r f\left(c_{i}\right)=r \lambda_{i}-r \lambda_{i}=0
$$

so $b \in P_{k} \cap M$ for some $k<i$, contradicting the minimality of i.
$\therefore\left\{c_{j}\right\}_{j \in J^{\prime}}$ spans M.
Theorem 2.10.2. Over a PID, a finitely generated torsion-free module is free.
Proof. Let R be a PID and let M be a finitely generated torsion-free R-module. Let $R \hookrightarrow K$ be the inclusion of R into its field of fractions, and let

$$
\tilde{M}:=K \otimes_{R} M
$$

be the extension of M to a K-vector space.
Let $x_{1}, \ldots, x_{m} \in M$ be a generating set for M. The images of x_{1}, \ldots, x_{m} generate \tilde{M}, so \exists a subset $y_{1} \ldots, y_{n}$ whose images in \tilde{M} form a basis for \tilde{M}. Each x_{j} can be written in \tilde{M} as a K-linear combination of y_{1}, \ldots, y_{n}, so clearing denominators gives that $b_{j} x_{j}$ is an R-linear combination of $y_{1}, \ldots, y_{n} \forall j$.

Set $b=b_{1} \cdots b_{m}$, so that $b x_{j}$ is an R-linear combination of $y_{1}, \ldots, y_{n} \forall j$.
$\therefore b z$ is an R-linear combination of $y_{1}, \ldots y_{n} \forall z \in M$, since x_{1}, \ldots, x_{m} span M. Since M is torsionfree,

$$
\begin{aligned}
b: M & \mapsto M \\
z & \mapsto b z
\end{aligned}
$$

is injective. Hence,

$$
M \cong M / \operatorname{ker} \phi \cong \operatorname{Im} b=b M .
$$

However,

$$
\begin{gathered}
\bigoplus_{j=1}^{n} y_{j} \stackrel{\phi}{\longmapsto} b M \\
y_{j} \mapsto y_{j}
\end{gathered}
$$

is an isomorphism (onto since $b z$ is a linear combination of $y_{1}, \ldots, y_{n} \forall z \in M,(1-1)$ since $y_{1}, \ldots y_{n}$ are linearly independent in $\tilde{M})$.
$\therefore M \cong b M \cong$ a free R-module.
Corollary 2.10.3. If M is a finitely generated module over a PID then $R \cong \operatorname{Tor}(M) \oplus R^{n}$ for some $n \in \mathbb{N}$.

Proof. $M / \operatorname{Tor}(M)$ is finitely generated and torsion-free. Hence,

$$
M / \operatorname{Tor}(M) \cong R^{n}, \quad \text { for some } n .
$$

R^{n} free $\Rightarrow M \mapsto M / \operatorname{Tor}(M) \cong R^{n}$ splits, so

$$
M \cong \operatorname{Tor}(M) \oplus R^{n} .
$$

A torsion-free module over a PID which is not finitely generated need not be free:
Example 2.10.4. Let $R=\mathbb{Z}, M=\mathbb{Q}$. Clearly \mathbb{Q} is torsion-free as a \mathbb{Z}-module. Suppose $M \cong R^{s}$. Then as a vector space $/ \mathbb{Q}$ we get

$$
\begin{aligned}
\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} & \cong M \otimes \mathbb{Q} \\
& \cong R^{s} \otimes \mathbb{Q} \\
& \cong(R \otimes \mathbb{Q})^{s} \\
& \cong \mathbb{Q}^{s}
\end{aligned}
$$

Let

$$
\begin{gathered}
\phi: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \mapsto \mathbb{Q} \\
x \otimes y \mapsto x y, \\
\psi: \mathbb{Q} \mapsto \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \\
x \mapsto x \otimes 1 .
\end{gathered}
$$

Clearly $x y=1_{\mathbb{Q}} . \psi \phi(x \otimes y)=(x y) \otimes 1$. Write $x=\frac{p}{q}, y=\frac{p^{\prime}}{q^{\prime}}$. Then in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$,

$$
\begin{aligned}
x \otimes y & =\frac{p}{q} \otimes \frac{p^{\prime}}{q^{\prime}} \\
& =q^{\prime} \frac{p}{q q^{\prime}} \otimes p^{\prime} \frac{1}{q^{\prime}} \\
& =p^{\prime} \frac{p}{q q^{\prime}} \otimes q^{\prime} \frac{1}{q^{\prime}} \\
& =\frac{p p^{\prime}}{q q^{\prime}} \otimes 1 \\
& =(x y) \otimes 1 .
\end{aligned}
$$

$\therefore \psi \phi=1_{\mathbb{Q} \otimes \mathbb{Q}}$. Hence $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$, and thus $\mathbb{Q} \cong \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^{s}$. So counting dimensions gives $\operatorname{Card} S=1$.
ie. If \mathbb{Q} is a free R-module then its rank as a \mathbb{Z}-module is 1 . So $\mathbb{Q} \cong \mathbb{Z}$ as a \mathbb{Z}-module. ie. $\exists q \in \mathbb{Q}$ s.t. $\mathbb{Q}=\mathbb{Z} q$; that is to say, $\forall x \in \mathbb{Q} \exists n \in \mathbb{Z}$ s.t. $x=n q$. This is a contradiction.

So \mathbb{Q} is not a free \mathbb{Z}-module.
We now consider decompositions of finitely generated torsion modules over a PID. Let R be a PID (throughout this section). We will show that every finitely generated R-module decomposes as a direct sum of finitely many R-modules with a single generator (called cyclic modules).

First consider torsion modules.
Notation: For $r \in R$, let $\mu_{r}: M \mapsto M$ be multiplication by r.

Lemma 2.10.5. Let M be a torsion R-module. Write $\operatorname{Ann}(M)=(a)$ and suppose $b \in R$ such that $(a, b)=1$. Then multiplication by b,

$$
M \stackrel{\mu_{b}}{\longmapsto} M
$$

is an isomorphism.
Proof. Since R is a PID, $\exists s, t \in R$ such that $s a+t b=1$. Hence, for $x \in M$,

$$
x=s a x+t b x=t b x,
$$

$\therefore b x=0 \Rightarrow x=0$, so μ_{b} is injective. Moreover,

$$
x=b(t x)=\mu_{b}(t x)
$$

so μ_{b} is surjective.
Let $M \neq 0$ be a torsion module. Let $\operatorname{Ann}(M)=(a)$. Suppose $a \neq 0$. (Note: if M is torsion and f.g. then $a \neq 0$ automatically.)
$M \neq 0 \Rightarrow a$ is not a unit. Write

$$
a=u p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}
$$

where u is a unit and p_{1}, \ldots, p_{k} are distinct primes. Replacing a by $u^{-1} a$, may assume

$$
a=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}
$$

Let

$$
M_{p_{j}}:=\left\{x \in M \mid p_{j}^{e} x=0 \text { for some } e\right\} .
$$

Lemma 2.10.6. $M \cong M_{p_{1}} \oplus \cdots \oplus M_{p_{k}}$.
Proof. $\forall x \in M$,

$$
p_{1}^{e_{1}} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}}(x)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} x=0
$$

so $\operatorname{Im} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}} \subset M_{p_{1}}$.
Since $p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is coprime to $\operatorname{Ann}\left(M_{p_{1}}\right)$, by the preceding lemma,

$$
\mu_{p_{2} \ldots \ldots p_{k}^{e_{2}}}^{\left.e_{k}\right|_{M_{p_{1}}}}
$$

is an isomorphism, so it splits the inclusion $M_{p_{1}} \hookrightarrow M$. Hence,

$$
M \cong M_{p_{1}} \oplus \operatorname{ker} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}} .
$$

$\operatorname{Ann}\left(\operatorname{ker} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}}\right)=p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$. By induction,

$$
\operatorname{ker} \mu_{p_{2} \ldots p_{k}^{e_{2}}}{ }^{e_{k}} \cong M_{p_{2}}^{\prime} \oplus \cdots \oplus M_{p_{k}}^{\prime}
$$

where

$$
\begin{aligned}
M_{p_{j}}^{\prime} & =\left\{x \in \operatorname{ker} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}} \mid p_{j}^{e} x=0 \text { for some } e\right\} \\
& \subset M_{p_{j}}=\left\{x \in M \mid p_{j}^{e} x=0 \text { for some } e\right\} .
\end{aligned}
$$

However, $M_{p_{j}} \subset \operatorname{ker} \mu_{p_{2} \ldots p_{k}^{e_{2}}}$ so $M_{p_{j}} \subset M_{p_{j}}^{\prime}$ and thus $M_{p_{j}}=M_{p_{j}}^{\prime}$.
Hence $M \cong M_{p_{1}} \oplus \cdots \oplus M_{p_{k}}$.
In the finitely generated case, we now decompose $M_{p_{j}}$ into cyclic summands for each p_{j}. ie. We have reduced to the case where $\operatorname{Ann}(M)=\left(p^{e}\right)$ for some prime p.

Suppose M is a f.g. R-module with $\operatorname{Ann}(M)=\left(p^{e}\right) . \exists x \in M$ such that $p^{e-1} x \neq 0$ (or else $\operatorname{Ann}(M)=p^{e-1}$ rather than $\left.p^{e}\right)$. Let x, m_{1}, \ldots, m_{k} be a generating set for M. Let M_{j} be the submodule

$$
M_{j}:=\left\langle x, m_{1}, \ldots, m_{j}\right\rangle .
$$

Beginning with the identity map $r_{0}: M_{0} \mapsto R x$, we inductively construct $r_{j}: M_{j} \mapsto R x$ extending $r_{j-1}: M_{j-1} \mapsto R x$ to produce a splitting $r: M \mapsto R x$ of the inclusion $R x \hookrightarrow M$.

Suppose by induction that $r_{j-1}: M_{j-1} \mapsto R x$ has been defined such that $\left.r_{j-1}\right|_{R x}=1_{R x} . M_{j}$ is generated by M_{j-1} and m_{j}. So to define r_{j} extending r_{j-1}, must define $r_{j}\left(m_{j}\right) \in R x$, ie. $r_{j}\left(m_{j}\right)=\lambda x$ for the correct λ.

Let $\left(p^{s}\right)=\operatorname{Ann}\left(M_{j} / M_{j-1}\right)$, so $p^{s} m_{j} \in M_{j-1} . r_{j-1}\left(p^{s} m_{j}\right) \in R x$, so $r_{j-1}\left(p^{s} m_{j}\right)=\alpha x$ for some $\alpha \in R$.

$$
p^{e-s} \alpha x=p^{e-s}\left(r_{j-1} p^{s} m_{j}\right)=r_{j-1}\left(p^{e} m_{j}\right)=r_{j-1}(0)=0
$$

so $p^{e-s} \alpha=\lambda p^{e}$ for some $\lambda \in R \Rightarrow \alpha=\lambda p^{s}$.
Define $r_{j}\left(m_{j}\right)=\lambda x$ and $r_{j}(y)=r_{j-1}(y) \forall y \in M_{j-1}$. Then

$$
r_{j}\left(p^{s} m_{j}\right)=p^{s} \lambda x=\alpha x=r_{j-1}\left(p^{s} m_{j}\right)
$$

so r_{j} is well-defined. Thus $M \cong R x \oplus M^{\prime}$.
Applying the procedure to M^{\prime} gives

$$
M \cong R x \oplus R x^{\prime} \oplus M^{\prime \prime}
$$

Continuing, the procedure eventually terminates since M is Noetherian.
$\therefore M \cong R x_{1} \oplus R x_{2} \oplus \cdots \oplus R x_{n}$ for some x_{1}, \ldots, x_{n} with Ann $x_{j}=\left(p^{j}\right)$ for some j. Notice that

$$
\begin{aligned}
R & \stackrel{\psi_{j}}{\longmapsto} R x_{j} \\
r & \mapsto r x_{j}
\end{aligned}
$$

is surjective with $\operatorname{ker} \psi_{j}=\operatorname{Ann} x_{j}$. Thus $R x_{j} \cong R /\left(p^{j}\right)$.
Putting it all together, we get:
Theorem 2.10.7 (Structure Theorem for Finitely Generated Modules over a PID). Let M be a finitely generated module over a PID R. Then

$$
M \cong R /\left(p_{1}^{s_{1}}\right) \oplus R /\left(p_{2}^{s_{2}}\right) \oplus \cdots \oplus R /\left(p_{n}^{s_{n}}\right) \oplus R^{k},
$$

where $p_{1}, \ldots, p_{n} \in R$ are primes (not necessarily distinct), $s_{1}, \ldots, s_{n} \in \mathbb{N}$ and $k \geq 0$.
Note that the generator of $\operatorname{Ann}(M)$ is $\operatorname{lcm}\left\{p_{1}^{s_{1}}, \ldots, p_{n}^{s_{n}}\right\}$.
We now show that this decomposition is unique. k is the dimension of $M \otimes_{R} K$, where K is the field of fractions, so k is unique, and we need only be concerned with the torsion part of the module.

Theorem 2.10.8. Suppose

$$
R /\left(p_{1}^{s_{1}}\right) \oplus R /\left(p_{2}^{s_{2}}\right) \oplus \cdots \oplus R /\left(p_{n}^{s_{n}}\right) \cong R /\left(q_{1}^{t_{1}}\right) \oplus R /\left(q_{2}^{t_{2}}\right) \oplus \cdots \oplus R /\left(q_{k}^{t_{k}}\right),
$$

with $p_{1}, \ldots, p_{n}, q_{1}, \ldots q_{k}$ primes in R and $s_{1}, \ldots s_{n}, t_{1}, \ldots t_{k} \in \mathbb{N}$. Then $n=k$ and $\left\{q_{1}^{t_{1}}, \ldots, q_{k}^{t_{k}}\right\}$ is a permutation of (associates of) $\left\{p_{1}^{s_{1}}, \ldots, p_{n}^{s_{n}}\right\}$.

Proof. Let

$$
\begin{aligned}
M & =R /\left(p_{1}^{s_{1}}\right) \oplus R /\left(p_{2}^{s_{2}}\right) \oplus \cdots \oplus R /\left(p_{n}^{s_{n}}\right) \quad \text { and } \\
N & =R /\left(q_{1}^{t_{1}}\right) \oplus R /\left(q_{2}^{t_{2}}\right) \oplus \cdots \oplus R /\left(q_{k}^{t_{k}}\right) .
\end{aligned}
$$

For any prime p, let

$$
\begin{aligned}
M_{p} & =\left\{x \in M \mid p^{e} x=0, \text { for some } e\right\}, \\
N_{p} & =\left\{x \in N \mid p^{e} x=0, \text { for some } e\right\} .
\end{aligned}
$$

If $M \cong N$ then $M_{p} \cong N_{p}$. Moreover,

$$
\begin{gathered}
M_{p} \cong \bigoplus_{p_{j} \text { assoc. to } p} R /\left(p_{j}^{s_{j}}\right), \\
N_{p} \cong \bigoplus_{q_{j} \text { assoc. to } p} R /\left(q_{j}^{t_{j}}\right) .
\end{gathered}
$$

\therefore It suffices to consider one prime at a time. ie. We are reduced to the case where $p_{j}=q_{j}=p \forall j$. Suppose

$$
M=R /\left(p^{s_{1}}\right) \oplus \cdots \oplus R /\left(p^{s_{n}}\right) \quad \text { and } \quad N=R /\left(p^{q_{1}}\right) \oplus \cdots \oplus R /\left(p^{q_{k}}\right) .
$$

For $Z=R /\left(p^{s}\right), \exists$ a short exact sequence

$$
0 \mapsto p Z \mapsto Z \mapsto R / p \mapsto 0
$$

ie. $Z / p Z \cong R / p$, a field.
Since $M \cong N$,

$$
\bigoplus_{n} R / p \cong M / p M \cong N / p N \cong \bigoplus_{k} R / p
$$

Since the dimension of a vector space is an invariant of the isomorphism class of the vector space, $n=k$.

Also, $M \cong N \Rightarrow p M \cong p N$; that is:

$$
R / p^{s_{1}-1} \oplus \cdots \oplus R / p^{s_{n}-1} \cong R / p^{t_{1}-1} \oplus \cdots \oplus R / p^{t_{k}-1}
$$

$\operatorname{Ann}(p M)$ has one less power of p than $\operatorname{Ann} M$. So by induction on the size of $\operatorname{Ann}(M)$, the positive elts. in the list $\left\{t_{1}-1, \ldots, t_{k}-1\right\}$ is a permutation of those in $\left\{s_{1}-1, \ldots, s_{n}-1\right\}$. ie. Information about summands R / p has been lost, since $p(R / p)=0$, so $p M$ and $p N$ have no record of how many summands R / p there were in M and N. But they see all the remaining summands, showing that entries in $\left\{t_{1}, \ldots, t_{k}\right\}$ which are at least 2 are the same (up to a permutation) as those in $\left\{s_{1}, \ldots, s_{n}\right\}$. The remaining entries on each list are 1 , and there are the same number of them on each list since $n=k$ and the entries greater than 1 correspond.
$\therefore\left\{t_{1}, \ldots, t_{k}\right\}$ is a permutation of $\left\{s_{1}, \ldots, s_{n}\right\}$.
Thus, $\left\{p_{j}^{s_{j}}\right\}$ is uniquely determined by (and uniquely determines) M. It is called the set of elementary divisors of M.

Example 2.10.9.

1. $R=\mathbb{Z}$. List all non-isomorphic abelian groups of order 16 :

$$
\mathbb{Z} / 16, \quad \mathbb{Z} / 8 \oplus \mathbb{Z} / 2, \quad \mathbb{Z} / 4 \oplus \mathbb{Z} / 4 \quad \mathbb{Z} / 4 \oplus \mathbb{Z} / 2, \oplus \mathbb{Z} / 2 \quad \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2
$$

(all non-isomorphic by the theorem).
2. Let F be a field, V a f.d. vector space $/ F, T: V \mapsto V$ a linear transformation. Let $R=F[x]$ (a PID) and $M=V$ with R-action

$$
f(x)(v)=f(T)(v)=\sum_{j=0}^{n} a_{j} T^{j}(v)
$$

Let

$$
\operatorname{Ch}(\lambda)=\operatorname{det}(T-\lambda I)
$$

the characteristic polynomial of T. Then $\mathrm{Ch}(T)=0$ (Cayley-Hamilton Theorem).
$\therefore \mathrm{Ch}(x) v=0 \forall v \in V$. ie. M is a torsion R-module and $\operatorname{Ch}(x) \in \operatorname{Ann}(M)$. Hence

$$
M \cong F[x] / p_{1}(x)^{r_{1}} \oplus \cdots \oplus F[x] / p_{k}(x)^{r_{k}}
$$

for some primes $p_{1}(x), \ldots, p_{k}(x) \in F[x]$.
Suppose F is algebraically closed so that every poly. in $F[x]$ factors completely as a product of linear factors. Then the primes in $F[x]$ are the degree 1 polynomials. So mult. by a scalar to make p_{j} monic:

$$
p_{j}(x)=x-\lambda_{j}
$$

for some $\lambda_{j} \in F$. Then

$$
M \cong \cdots \oplus F[x] /\left(x-\lambda_{j}\right)^{r_{j}} \oplus \cdots
$$

implies that $\exists v \in V$ s.t. $\left(x-\lambda_{j}\right) \in \operatorname{AnnV}$. ie. $\left(T-\lambda_{j}\right) v=0$. (And conversely, if $(T-\lambda) v=0$ for some v then $x-\lambda=p_{j}(x)$ for some j.)
$\therefore\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}=$ eigenvalues of T.
Examine $F[x] /\left(x-\lambda_{j}\right)^{r_{j}}$ more closely. Write λ for λ_{j} and r for r_{j}. As an $F[x]$-module, $F[x] /(x-$ $\lambda)^{r}$ is gen. by $(x-\lambda)$. Elts. can be written uniquely as

$$
\sum_{k=0}^{r-1} a_{k}(x-\lambda)^{k}
$$

where $a_{k} \in F$. ie. Over $F, F[x] /(x-\lambda)^{r}$ has dimension r with basis

$$
1, x-\lambda,(x-\lambda)^{2}, \ldots,(x-\lambda)^{r-1}
$$

Let $B=B_{j} \subset V=M$ be the image of $F[x]=\left(x-\lambda_{j}\right)^{r_{j}}$ under the iso.

$$
\psi: \bigoplus_{i} F[x] /\left(x-\lambda_{i}\right)^{r_{i}} \stackrel{\cong}{\rightleftarrows} M
$$

and let $v_{j}=\psi\left((x-\lambda)^{j-1}\right)$ for $j=1, \ldots, r$ be the F-basis for B corresponding to the basis $\left\{(x-\lambda)^{i}\right\}$.
B is a $F[x]$-submodule of V so it is closed under the action of any $f(x) \in F[x]$. For $f(x)=x-\lambda$, by construction,

$$
\begin{aligned}
& f(x) \cdot v_{j}=v_{j+1} \quad j<r \\
& f(x) \cdot v_{r}=0 .
\end{aligned}
$$

ie. when written in the basis v_{1}, \ldots, v_{r}, the matrix $T-\lambda$ is

$$
\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & & & \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

ie. T looks like

$$
\left(\begin{array}{cccc}
\lambda & 0 & \cdots & \\
1 & \lambda & & \\
0 & \ddots & \ddots & \\
\vdots & \ddots & \ddots & \lambda \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

Therefore:
Theorem 2.10.10 (Jordan Canonical Form). Let $T: V \mapsto V$ be a linear transformation where V is a f.d. vector space over an algebraically closed field F. Then \exists a basis for V in which T has the form

$$
\left(\begin{array}{cccc}
B_{1} & 0 & \cdots & 0 \\
0 & B_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & B_{k}
\end{array}\right)
$$

where

$$
B_{j}=\left(\begin{array}{ccccc}
\lambda_{j} & 0 & \cdots & & 0 \\
1 & \lambda_{j} & \ddots & & \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \lambda_{j} & 0 \\
0 & \cdots & 0 & 1 & \lambda_{j}
\end{array}\right)
$$

Note: While $\operatorname{Ch}(\lambda) \in \operatorname{Ann}(V)$, it does not necessarily generate the ideal $\operatorname{Ann}(V)$. Letting $\operatorname{Ann}(V)=$ $(M(\lambda)), M(\lambda)$ is called the minimum polynomial of T. ie.

$$
\operatorname{Ch}(x)=\prod_{j}\left(x-\lambda_{j}\right)^{r_{j}} \quad \text { but } \quad M(x)=\operatorname{lcm}\left\{\left(x-\lambda_{j}\right)^{r_{j}}\right\}
$$

Reformulation of the Structure Theorem for \mathbf{f}.g. torsion modules.

Let R be a PID and let $a, b \in R$ be relatively prime. Then $R a+R b=1$ so the Chinese Remainder Thm. applies:

$$
R \stackrel{\phi}{\longmapsto} R /(a) \times R /(b)
$$

and $\operatorname{ker} \phi=(a) \cap(b)=(a)(b)$.
Claim. R a PID and $\operatorname{gcd}(a, b)=1 \Rightarrow(a)(b)=(a b)$.
Proof. $(a)(b)=(c)$ for some c. Since $a b \in(a)(b)=(c), c \mid a b$.
Conversely, $(c)=(a) \cap(b) \subset(a)$ so $a \mid c$ and similarly $b \mid c$. Write $c=\lambda a$ and $c=\mu b . \operatorname{gcd}(a, b)=1$ $\Rightarrow \exists s, t$ s.t. $s a+t b=1$. So

$$
\begin{aligned}
\lambda & =\lambda s a+\lambda b t \\
& =s c+\lambda b t \\
& =s \mu b+\lambda b t \\
& =(s \mu+\lambda t) b
\end{aligned}
$$

$\therefore(a b)=(c)$.
Thus

$$
R /(a b) \cong R /(a) \times R /(b)
$$

By continual application of this iso. we can rewrite our decomposition thm. as follows:
Theorem 2.10.11. Let M be a f.g. R-module (R a PID). Then

$$
M \cong R^{k} \oplus R /\left(a_{1}\right) \oplus R /\left(a_{2}\right) \oplus \cdots \oplus R /\left(a_{n}\right)
$$

where $a_{n}\left|a_{n-1}\right| \cdots \mid a_{1} \neq 0$.
a_{1}, \ldots, a_{n} are called the invariant factors of M.
Example 2.10.12. Suppose

$$
M \cong \mathbb{Z} / 8 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 9 \oplus \mathbb{Z} / 3 \oplus \mathbb{Z} / 5
$$

Then

$$
M \cong \mathbb{Z} / 360 \oplus \mathbb{Z} / 6 \oplus \mathbb{Z} / 2
$$

The number of summands required is
$\max \{r \mid$ some prime p occurs r times among the elementary divisors $\}$.
Reformulation of Chinese Remainder Thm. over a PID. Suppose m_{1}, \ldots, m_{k} satisfy $\operatorname{gcd}\left(m_{i}, m_{j}\right)=$ 1 for $i \neq j$. Given $a_{1}, \ldots, a_{k}, \exists x \in R /\left(m_{1} \cdots m_{k}\right)$ s.t. $x \equiv a_{j} \bmod m_{j} \forall j=1, \ldots, k$.

Example 2.10.13. Find x s.t. $x \equiv 2 \bmod 9, x \equiv 3 \bmod 5, x \equiv 3 \bmod 7$.
Solution. $m_{1}=9, m_{2}=5, m_{3}=7, a_{1}=2, a_{2}=3, a_{3}=3$. Set $z_{1}:=m_{2} m_{3}=35$. Then

$$
\begin{array}{rlr}
y_{1} & :=z_{1}^{-1} \quad \bmod 9 \\
& =8^{-1} \quad \bmod 9 \\
& =8 .
\end{array}
$$

Likewise,

$$
\begin{aligned}
z_{2} & :=m_{1} m_{2}=60 \\
y_{2} & :=z_{2}^{-1} \quad \bmod 5 \\
& =3^{-1} \quad \bmod 5 \\
& =2, \\
z_{3} & :=m_{1} m_{2}=45 \\
y_{3} & :=z_{3}^{-1} \quad \bmod 7 \\
& =3^{-1} \quad \bmod 7 \\
& =5 .
\end{aligned}
$$

Set $x:=a_{1} y_{1} z_{1}+a_{2} y_{2} z_{2}+a_{3} y_{3} z_{3} \bmod \left(m_{1} m_{2} m_{3}\right)$. Then modulo $m_{1}, z_{2} \equiv 0, z_{3} \equiv 0, y_{1} z_{1} \equiv 1$, so $x \equiv a_{1}$ $\bmod m_{1}$, etc. In our example,

$$
\begin{aligned}
x & =2 \cdot 8 \cdot 35+3 \cdot 2 \cdot 63+5 \cdot 3 \cdot 45 \bmod (9 \cdot 5 \cdot 7) \\
& =1613 \bmod 315 \\
& =38 \bmod 315 .
\end{aligned}
$$

In general, $x=\sum_{j} a_{j} y_{j} z_{j}$ where $z_{j}=m_{1} \cdots m_{j-1} m_{j+1} \cdots m_{n}$ and $y_{j}=z_{j}^{-1} \bmod m_{j}$.

Chapter 3

Galois Theory

3.1 Preliminaries about Polynomials and Fields

Proposition 3.1.1. Let $F \subset K$ be an extension of fields. Let $f(x), g(x) \in F[x]$. Then a g.c.d. of $f(x), g(x)$ within $F[x]$ is also a g.c.d. of $f(x), g(x)$ within $K[x]$.

Proof. Let $d(x) \in F[x]$ be a g.c.d. for $f(x), g(x)$ within $F[x]$. Then $\exists s(x), t(x) \in F[x]$ s.t.

$$
\begin{equation*}
s(x) f(x)+t(x) g(x)=d(x) \tag{1}
\end{equation*}
$$

Since $F[x] \subset K[x]$, this eqn. holds in $K[x]$ also.
$d(x) \mid f(x)$ and $d(x) \mid g(x)$ holds in $F[x]$ and thus holds in $K[x]$. If $h(x) \mid f(x)$ and $h(x) \mid g(x)$ within $K[x]$ then $(1) \Rightarrow h(x) \mid d(x)$ in $K[x]$. Hence $d(x)$ is a g.c.d. for $f(x), g(x)$ in $K[x]$.

Proposition 3.1.2. The ideal $(p(x))$ in $F[x]$ is maximal $\Longleftrightarrow p(x)$ is irreducible.
Proof. $F[x]$ is a PID so in $F[x]$, prime \Longleftrightarrow irreducible \Longleftrightarrow maximal.
Corollary 3.1.3. $F[x] /(p(x))$ is a field $\Longleftrightarrow p(x)$ is irreducible.
Theorem 3.1.4 (Eisenstein Irreducibility Criterion). Let

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in R[x]
$$

where R is a UFD. Let $p \in R$ be prime. Suppose $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}$ but $p \nmid a_{n}$ and $p^{2} \nmid a_{0}$. Then $f(x)$ is irreducible in $K[x]$ where K is the field of fractions of R.

Proof. It suffices to consider the case where $\left\{a_{0}, \ldots, a_{n}\right\}$ has no common factor. Suppose $f(x)$ is reducible over K and thus (by Gauss' Lemma) reducible over R. Write

$$
f(x)=\left(b_{0}+b_{1} x+\cdots+b_{r} x^{r}\right)\left(c_{0}+c_{1} x+\cdots c_{r} x^{s}\right)
$$

in $R[x]$, with $r<n, s<n$. Then $a_{0}=b_{0} c_{0}$. Since $p \mid a_{0}$ but $p^{2} \nmid a_{0}, p$ divides one of b_{0}, c_{0} but not both. Say $p \mid b_{0}, p \nmid c_{0}$. p can't divide every b_{j} since then it would divide a_{n}, so let k be the least integer s.t. $p \nmid b_{k}$. So

$$
a_{k}=b_{k} c_{0}+b_{k-1} c_{1}+\cdots+b_{1} c_{k-1}+b_{0} c_{k} .
$$

$p \mid b_{0}, \ldots, b_{k-1}$ but $p \nmid b_{k}$ and $p \nmid c_{0} \Rightarrow p \nmid a_{k}$. This is a contradiction of one of the hypotheses. $\therefore f(x)$ is irreducible.

3.2 Extension Fields

Suppose $F \subset K, F, K$ fields. Then K is a vector space over F.
Definition 3.2.1. The degree of K over F, written $[K: F]$ is the dimension of K as a v.s. /F. If $[K: F]<\infty$ we say K is a finite extension of F.

Proposition 3.2.2. Suppose $F \subset K \subset L$ finite extensions of fields. Then

$$
[L: F]=[L: K][K: F] .
$$

Proof. Let $[K: F]=n$, and let $w_{1}, \ldots, w_{n} \in K$ form a basis for K over F. Let $[L: K]=t$, and let $v_{1}, \ldots, v_{t} \in L$ form a basis for L over K. Check that $\left\{w_{i} v_{j}\right\}_{i=1, \ldots, n, j=1, \ldots, t}$ forms a basis for L over F :

1. Let $\ell \in L . v_{1}, \ldots, v_{t}$ a basis implies

$$
\ell=k_{1} v_{1}+k_{2} v_{2}+\cdots k_{t} v_{t}
$$

for some $k_{1}, \ldots, k_{t} \in K . w_{1}, \ldots, w_{n}$ a basis implies

$$
k_{j}=f_{j 1} w_{1}+f_{j 2} w_{2}+\cdots f_{j n} w_{n}
$$

for some $f_{j 1}, \ldots, f_{j n} \in F$. Hence

$$
\begin{gathered}
\ell=f_{11}\left(w_{1} v_{1}\right)+f_{12}\left(w_{2} v_{1}\right)+\cdots+f_{1 n}\left(w_{n} v_{1}\right)+f_{21}\left(w_{1} v_{2}\right)+\cdots \\
+f_{2 n}\left(w_{n} v_{2}\right)+\cdots+f_{t 1}\left(w_{1} v_{t}\right)+\cdots+f_{t n}\left(w_{n} v_{t}\right)
\end{gathered}
$$

$\therefore \ell$ is a linear comb. of $\left\{w_{i} v_{j}\right\}$ with coeffs. in F, so $\left\{w_{i} v_{j}\right\}$ spans L.
2. $\left\{w_{i} v_{j}\right\}_{i=1, \ldots, n, j=1, \ldots, t}$ is linearly independent: Suppose

$$
\begin{aligned}
0 & =f_{11} v_{1} w_{1}+\cdots+f_{1 n} v_{1} w_{n}+\cdots+f_{i j} v_{j} w_{i}+\cdots+f_{t n} v_{t} w_{n} \\
& =\left(f_{11} w_{1}+f_{12} w_{2}+\cdots+f_{1 n} w_{n}\right) v_{1}+\cdots+\left(f_{t 1} w_{1}+f_{t 2} w_{2}+\cdots f_{t n} w_{n}\right) v_{t}
\end{aligned}
$$

Since v_{1}, \ldots, v_{t} is a basis for L over K,

$$
f_{j 1} w_{1}+\cdots+f_{j n} w_{n}=0 \quad \forall j=1, \ldots, t
$$

Since w_{1}, \ldots, w_{n} is a basis for K over $F, f_{j i}=0 \forall j=1, \ldots, t, i=1, \ldots, n$.
$\therefore\left\{f_{j} w_{i}\right\}_{i=1, \ldots, n ; j=1, \ldots, t}$ is linearly independent.

Corollary 3.2.3. If $F \subset K \subset L$ with L a finite extension of F then $[K: F] \mid[L: F]$.
eg. If $[L: F]$ is prime then $\nexists K$ lying strictly between F and L.
Suppose $F \subset K$ extension of fields. Let $a \in K$. Let

$$
F(a)=\bigcap\{M \mid M \text { is a field with } a \in M \text { and } F \subset M \subset K\} .
$$

Proposition 3.2.4. $F(a)$ is a field.
$\therefore F(a)$, the field obtained from F by adjoining a, is the smallest subfield of K containing both F and a. Explicitly,

$$
F(a)=\left\{\left.\frac{p(a)}{q(a)} \right\rvert\, p(x), q(x) \in F[x], q(a) \neq 0 \text { in } K\right\} .
$$

Proof. Let

$$
M=\left\{\left.\frac{p(a)}{q(a)} \right\rvert\, p(x), q(x) \in F[x], q(a) \neq 0 \text { in } K\right\} .
$$

Let $x=\frac{p(a)}{q(a)} \in M$. Since $F(a)$ is a field and $a \in F(a)$, field axioms $\Rightarrow p(a)$ and $q(a) \in F(a) . q(a) \neq 0$ $\Rightarrow \frac{1}{q(a)} \in F(a)$, so $x \in F(a)$. Hence $M \subset F(a)$.

It is easy to check that M is a field and clearly $a \in M$, so $F(a) \subset M$.
Definition 3.2.5. $a \in K$ is called algebraic over F if \exists a polynomial $q(x) \in F[x]$ s.t. $q(a)=0$ in K.
We say that a satisfies the equation $q(x)=0$ or say a is a root of $q(x)$ if $q(a)=0$ in K.
Definition 3.2.6. K is called algebraic over F if every element of K is algebraic over F.
Definition 3.2.7. If $a \in K$ is not algebraic over F then a is called transcendental over F.
Note:

1. We will show that a algebraic $/ F \Rightarrow[F(a): F]<\infty$. However, K alg. $/ F \Rightarrow[K: F]<\infty$.

For example, let $K=\{x \in \mathbb{R} \mid x$ is algebraic over $\mathbb{Q}\}$. We will show later that K is a field, and by construction, K is alg. over \mathbb{Q}. But $[K: \mathbb{Q}]=\infty$.
2. Existence of elts. $x \in R$ s.t. x is transcendental over \mathbb{Q} is easily established by a counting argument, because we will see that $\{x \in \mathbb{R} \mid x$ is algebraic over $\mathbb{Q}\}$ is countable. However, showing that any particular elt. of \mathbb{R} is transcendental is not easy. eg. " π is transcendental" is true but nontrivial to prove.

Suppose a is algebraic over F. A polynomial $q(x) \in F[x]$ is called a minimum polynomial for a over F if $q(a)=0$ and $\nexists q^{\prime}(x)$ s.t. $q^{\prime}(a)=0$ with $\operatorname{deg} q^{\prime}<\operatorname{deg} q$.

Given a min. polynomial for a over F, dividing by the lead coeff. gives a monic min. polynomial for a over F. A monic min. poly. of a over F is unique.

Proof. Suppose $q(x), r(x)$ are two monic min. polys. of a. By minimality, their degrees are equal. But then $s(x)=q(x)-r(x)$ has smaller degree and $s(a)=0-0=0$.
\therefore We refer to "the min. polynomial of a ".
Lemma 3.2.8. The min. polynomial of a is irreducible.
Proof. Let $p(x)$ be the min. poly. of a. If $p(x)=q(x) r(x)$ with $\operatorname{deg} q<\operatorname{deg} p$ and $\operatorname{deg} r<\operatorname{deg} p$ then since $p(a)=0$, either $q(a)=0$ or $r(a)=0$. This is a contradiction. Hence $p(x)$ is irreducible.

Theorem 3.2.9. Suppose $F \subset K, a \in K$. Then a is algebraic over $F \Longleftrightarrow[F(a): F]<\infty$. More precisely, $[F(a): F]=$ degree of the min. poly. of a.

Proof.

\Rightarrow : Suppose $[F(a): F]=n<\infty$. Consider

$$
S=\left\{1, a, a^{2}, \ldots, a^{n}\right\}
$$

$|S|=n+1$. But $\operatorname{dim} F(a)=n$ as a v.s. $/ F$. So the elts. of S are linearly dependent. ie. \exists relation

$$
c_{0}+c_{1} a+c_{2} a^{2}+\cdots c_{n} a^{n}=0
$$

where $c_{j} \in F$ and not all c_{j} are 0 . Hence a satisfies $q(x)=0$ where

$$
q(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots c_{n} x^{n}
$$

$\therefore a$ is algebraic over F.
\Leftarrow : Suppose a is alg. over F. Let

$$
p(x)=p_{0}+p_{1} x+\cdots+x^{n}
$$

be the min. poly. of a over F.
Claim. $\quad B=\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ forms a basis for $F(a)$ over F.
Proof. If B were linearly dependent then (as above) there would be a polynomial of degree $n-1$ or less satisfied by a, contradicting defn. of $p(x)$.

Show B spans $F(a): p(a)=0$ so

$$
a^{n}=-p_{0}-p_{1} a-\cdots-p_{n-1} a^{n-1}
$$

and thus, $a_{n} \in \operatorname{span} B$.

$$
\begin{aligned}
& \quad \begin{aligned}
a^{n+1} & =a \cdot a^{n} \\
& =-p_{0} a-p_{1} a^{2}-\cdots-p_{n-2} a^{n-1}-p_{n-1} a^{n} \\
& =-p_{0} a-p_{1} a^{2}-\cdots-p_{n-2} a^{n-1}-p_{n-1}\left(-p_{0}-p_{1} a-\cdots-p_{n-1} a^{n-1}\right)
\end{aligned} \\
& \in \operatorname{span} B
\end{aligned}
$$

etc. ie. By induction, $a^{s} \in \operatorname{span} B \forall s$, so $F[a] \subset \operatorname{span} B$.
So to finish the proof, it suffices to show:
Lemma 3.2.10. $F(a)=F[a]$.
Proof. $F[a] \subset F(a)$ is trivial. Conversely, let $x \in F(a), x=\frac{q(a)}{r(a)}$ where $q(a), r(a) \in F[a]$ and $r(a) \neq 0$. $p(x) \nmid r(x)$ since $r(a) \neq 0$. Since $p(x)$ is irreducible, this implies $p(x), r(x)$ have no common factors, ie. $\operatorname{gcd}(p(x), r(x))=1$. So, \exists polynomials $s(x), t(x)$ s.t.

$$
s(x) p(x)+t(x) r(x)=1 .
$$

$\therefore 1=s(a) p(a)+t(a) r(a)=t(a) r(a)$.Thus, $\frac{1}{r(a)}=t(a)$ and

$$
x=\frac{q(a)}{r(a)}=q(a) t(a) \in F[a] .
$$

$\therefore F(a) \subset F[a]$.
Corollary 3.2.11. Suppose $F \subset K$. Suppose $a \in K$ is algebraic over F and let $q(a) \in F[x]$ be the min. poly. of a over F. Then

$$
F(a) \cong F[x] /(q(x))
$$

Proof. Let $\phi: F[x] \mapsto F(a)$ be given by

$$
\phi(p(x))=p(a) .
$$

Since $F(a)=F[a], \phi$ is onto.
Claim. $\operatorname{ker} \phi=(q(x))$.

Proof. Let $\operatorname{ker} \phi=\left(q^{\prime}(x)\right)$ where q^{\prime} is monic. Then since $q(a)=0, q^{\prime}(x) \mid q(x)$. But $q(x)$ is irreducible, so either $q^{\prime}(x)=1$ or $q^{\prime}(x)=q(x)$. Since $q^{\prime}(a)=0, q^{\prime}(x) \neq 1$ so $q^{\prime}(x)=q(x)$.

Thus, by $1^{\text {st }}$ isomorphism theorem,

$$
F(a)=\mathfrak{J} \phi \cong F[x] / \operatorname{ker} \phi=F[x] /(q(x) .
$$

Theorem 3.2.12. Suppose $F \subset K$ are fields. Let

$$
M=\{x \in K \mid x \text { is algebraic over } F\}
$$

Then M is a field.
Proof. Let $a, b \in M$. Must show $a \pm b, a b, a / b \in M$. Suppose $[F(a): F]=m$ and $[F(b): F]=n$. So b satisfies a degree n poly. $p(x)$ with coeffs in $F \subset F(a) . p(x)$ can be thought of as a polynomial in $F(a)[x]$, giving

$$
[F(a)(b): F(a)] \leq n .
$$

Hence

$$
[F(a)(b): F] \leq n m
$$

Since $a+b \in F(a)(b)$,

$$
F \subset F(a+b) \subset F(a)(b)
$$

$\therefore[F(a+b): F] \leq n m$, and so $a+b$ is algebraic over F. Similarly, $a-b, a b, a / b \in F(a)(b)$ so the same argument applies.

Notation: $F(a, b)=F(a)(b)$. Observe that $F(a, b)=F(b, a)$ is the smallest subfield of K containing F, a, b.

Corollary 3.2.13. Suppose $F \subset K \subset L$. If K is algebraic over F and L is algebraic over K then L is algebraic over F.

Proof. Let $z \in L$. L algebraic over $K \Rightarrow z$ satisfies $p(z)=0$ where

$$
p(x)=x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x+c_{n}
$$

has coeffs. in K. So $F \subset F\left(c_{1}, \ldots, c_{n}\right) \subset K \subset L$. Since K is algebraic over F, each c_{j} is algebraic over F.

If m_{j} is the degree of the min. poly. of c_{j} over F then, as above,

$$
\left[F\left(c_{1}, \ldots, c_{n}\right): F\right] \leq m_{1} \cdots m_{n}<\infty
$$

Since z satisfies the polynomial $p(x)$ whose coeffs. lie in $F\left(c_{1}, \ldots, c_{n}\right)$,

$$
\left[F\left(c_{1}, \ldots, c_{n}, z\right): F\left(c_{1}, \ldots, c_{n}\right)\right]<\infty .
$$

$\therefore\left[F\left(c_{1}, \ldots, c_{n}, z\right): F\right]<\infty$. But $F \subset F(z) \subset F\left(c_{1}, \ldots, c_{n}, z\right)$ so $[F(z): F]<\infty$. Thus, z is algebraic over F.

This is true for all $z \in L$, so L is algebraic over F.

Example 3.2.14. Let

$$
M=\{x \in \mathbb{C} \mid x \text { is algebraic over } \mathbb{Q}\} .
$$

Our theorems show that M is a field, and by construction, it is algebraic over \mathbb{Q}. However, in $\mathbb{Q}[x]$, there are irreducible polynomials of arbitrarily large degree, and by definition, the roots of these polynomials are in M. So $[M: \mathbb{Q}]$ is unbounded.

3.3 Roots

Let F be a field and let $p(x) \in F[x] . p$ might have no roots in F.
Question. Given $p(x) \in F[x]$, can we always find an extension field $K \supset F$ in which $p(x)$ has a root?
Theorem 3.3.1 (Remainder Theorem). Let K be a field. Let $p(x) \in K[x]$ and let $b \in K$. Then $\exists q(x)$ s.t. $p(x)=(x-b) q(x)+p(b)$, and $\operatorname{deg} q(x)=(\operatorname{deg} p(x))-1$.

Proof. By division algorithm, $p(x)=(x-b) q(x)+r(x)$ where $\operatorname{deg} r<\operatorname{deg}(x-b)=1$. ie. $r(x)=r \in K$.
Setting $x=b$,

$$
p(b)=(b-b) q(b)+r=r .
$$

Comparing degrees of LHS and RHS, $\operatorname{deg} q(x)=(\operatorname{deg} p(x))-1$.
Corollary 3.3.2 (Factor Theorem). a is a root of $p(x) \Longleftrightarrow(x-a) \mid p(x)$.
Proof. $p(x)=(x-a) q(x)+p(a)$. If $p(a)=0$ then $p(x)=(x-a) q(x)$ so $(x-a) \mid p(x)$. Conversely, if $p(x)$ is a multiple of $x-a$ then $p(a)=0$.
Definition 3.3.3. The multiplicity of a root a of $p(x)$ is the largest power of $(x-a)$ which divides $p(x)$.
Corollary 3.3.4. A polynomial of degree n over a field K can have at most n roots (counted with multiplicity).
Proof. A polynomial of degree 1 has exactly one root, so the result follows from the Factor Thm. by induction.
Theorem 3.3.5. Let $p(x) \in F[x]$ be a poly of degree n where F is a field. Then \exists an extension field K of F with $[K: F] \leq n$ in which $p(x)$ has a root.
Proof. Let $q(x)$ be an irred. factor of $p(x)$. Since any root of $q(x)$ is a root of $p(x)$ we will find an extension field in which $q(x)$ has a root. Let

$$
K=F[x] /(q(x))
$$

$q(x)$ irreducible $\Rightarrow K$ is a field. $F \hookrightarrow K$ by $c \mapsto[c]$, so K is an extension field of F.
In $K, q([x])=[q(x)]=0$. So $a=[x]$ is a root of $q(x)$. Since $q(x)$ is irreducible over $F, q(x)$ is the min. poly. of a over F.
$\therefore K=F(a)$ and

$$
\begin{aligned}
{[K: F] } & =[F(a): F] \\
& =\operatorname{deg}(\min . \text { poly of } a) \\
& =\operatorname{deg} q \\
& \leq \operatorname{deg} p=n .
\end{aligned}
$$

Example 3.3.6. Let $F=\mathbb{F}_{2} \cong \mathbb{Z} / 2 \mathbb{Z}$. $\left(x^{2}+x+1\right)$ is irred. in $\mathbb{F}_{2}[x]$. Let

$$
K=\frac{\mathbb{F}_{2}[x]}{\left(x^{2}+x+1\right)} .
$$

Let $w=[x] \in K$, so $w^{2}+w+1=\left[x^{2}+x+1\right]=0$.
In K we have four elements: $0,1, w, w+1$. Multiplication is as follows:
Mult. by 0 and 1 is obvious.

$$
\begin{aligned}
w^{2} & =-w-1=w+1 \\
w(w-1) & =w^{2}+1=w+1+w=1 \\
(w-1)^{2} & =w^{2}+2 w+1=w+1+1=w
\end{aligned}
$$

Note $\frac{1}{w}=w-1$ and $\frac{1}{w-1}=w$ (every nonzero elt. has an inverse).

$$
K=\mathbb{F}_{4}
$$

(finite field with 4 elements).
By induction on the previous result, we get
Corollary 3.3.7. Let $p(x) \in F[x]$ be a poly. of degree $n(F$ a field). Then \exists an extension field K of F with $[K: F] \leq n!$ in which $p(x)$ has n roots. ie. In K we can factor $p(x)$ completely as

$$
p(x)=\lambda\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right) .
$$

Example 3.3.8.

1. $F=\mathbb{Q}, p(x)=x^{3}-2$ Let $E_{1}=F\left(2^{\frac{1}{3}}\right)$ Then $\left[E_{1}: F\right]=3$. In E_{1},

$$
p(x)=\left(x-2^{\frac{1}{3}}\right)\left(x^{2}+2^{\frac{1}{3}} x+2^{\frac{2}{3}}\right)
$$

Let $K=E_{1}(\sqrt{3} i)$. Then $\left[K: E_{1}\right]=2$ so $[K: F]=3 \cdot 2=6$. In K,

$$
p(x)=\left(x-2^{\frac{1}{3}}\right)\left(x+\frac{2^{\frac{1}{3}}(1-\sqrt{3} i)}{2}\right)\left(x+\frac{2^{\frac{1}{3}}(1+\sqrt{3} i)}{2}\right) .
$$

2. $F=\mathbb{Q}, p(x)=x^{3}-12 x+8$. Let $M=-4+4 \sqrt{3}$. Let $z=M^{\frac{1}{3}}$ (that is, z is any one of the three elts. s.t. $\left.z^{3}=-4+4 \sqrt{3} i\right)$. Let $a=z+\bar{z}$.
So $\bar{z}^{3}=\bar{M}$ and

$$
z \bar{z}=(M \bar{M})^{\frac{1}{3}}=(16+48)^{\frac{1}{3}}=64^{\frac{1}{3}}=4 .
$$

Thus

$$
\begin{aligned}
a^{3} & =(z+\bar{z})^{3} \\
& =M+\bar{M}+3 z^{2} \bar{z}+3 z \bar{z}^{2} \\
& =M+\bar{M}+3(z \bar{z})(z+\bar{z}) \\
& =M+\bar{M}+3 z \bar{z} a \\
& =-8+3 \cdot 4 \cdot a \\
& =-8+12 a
\end{aligned}
$$

$\therefore a^{3}-12 a+8=0$. Let $E_{1}=\mathbb{Q}(a)$, so $[E: F]=3$. Let $b=\frac{a^{2}-8}{2} \in E_{1}$. Then

$$
\begin{aligned}
b^{3} & =\frac{a^{6}-12 a^{4}+3 \cdot 64 a^{2}-8^{3}}{8} \\
& =\frac{(12 a-8)^{2}-24 a(12 a-8)+3 \cdot 64 a^{2}-8^{3}}{8} \\
& =\frac{16\left(9 a^{2}-12 a+4\right)-24\left(12 a^{2}-8 a\right)+3 \cdot 64 a^{2}-8^{3}}{8} \\
& =18 a^{2}-24 a+8-36 a^{2}+24 a+24 a^{2}-64=6 a^{2}-56 \\
12 b-8 & =12\left(\frac{a^{2}-8}{2}\right)-8 \\
& =6\left(a^{2}-8\right)-8 \\
& =6 a^{2}-48-8 \\
& =6 a^{2}-56
\end{aligned}
$$

$\therefore b^{3}-12 b+8=0$. Note that this second root is already in E_{1}. Let c be the third root. Then

$$
a+b+c=\text { coeff. of } x^{2} \text { in } p(x)=0 \text {. }
$$

$\therefore c=-a-b \in E_{1}$. So all 3 roots lie in E_{1}. In $E_{1}, x^{3}-12 x+8$ factors as $(x-a)(x-b)(x-c)$.
Definition 3.3.9. Let $p(x) \in F[x]$. An extension field K of F is called a splitting field for $p(x)$ over F if $p(x)$ factors completely in K into linear factors

$$
p(x)=\lambda\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

and $p(x)$ does not factor completely in any proper subfield of K.
ie. K is a minimal extension of F containing all roots of $p(x)$. By an earlier theorem, a poly. of degree n in $F[x]$ has a splitting field K s.t. $[K: F] \leq n$!.

Proposition 3.3.10. Suppose $F \subset M \subset K$. Let $p(x) \in F[x]$ and suppose that K is a splitting field of $f(x)$ over F. Then regarding $p(x)$ as an elt. of $M[x], K$ is also a splitting field of $p(x)$ over M.

Proof. Trivial.
Example 3.3.11.

1. $p(x)=x^{3}-2, F=\mathbb{Q}$. $2^{\frac{1}{3}}$ is a root of $p(x)$ but $\mathbb{Q}\left(2^{\frac{1}{3}}\right)$ is not a splitting field for $p(x) . K=$ $\mathbb{Q}\left(2^{\frac{1}{3}}, \sqrt{3} i\right)$ is a splitting field for $p(x)$, and $[K: \mathbb{Q}]=6$.
2. $p(x)=x^{3}-12 x+8, F=\mathbb{Q}$. $a=z+\bar{z}$ where $z^{3}=-4+4 \sqrt{3}$ i. a is a root of $p(x)$ and $K=\mathbb{Q}(a)$ is a splitting field for $p(x)$. In this case, $[K: \mathbb{Q}]=3$.

Proposition 3.3.12. Let $K \supset F$ be a splitting field for $p(x) \in F[x]$. Suppose that in K,

$$
p(x)=\lambda\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right),
$$

where $\lambda \in K$. Then

$$
K=F\left(a_{1}, \ldots, a_{n}\right) .
$$

Proof. By defn of a_{1}, \ldots, a_{n} they lie in K so $F\left(a_{1}, \ldots, a_{n}\right) \subset K$. However, if all of a_{1}, \ldots, a_{n} lay in some proper subfield of K then the factorization

$$
p(x)=\lambda\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

would be valid in that subfield, contradicting the minimality of K.
Recall that if $a \in K$ is a root of an irreducible poly. $p(x) \in F[x]$ then

$$
F(a) \cong F[x] /(p(x))
$$

where the isomorphism $\psi: F[x] /(p(x)) \stackrel{\cong}{\longmapsto} F(a)$ is given by $\psi(x)=a$. Suppose $\tau: F \stackrel{\cong}{\longmapsto} F^{\prime} . \tau$ extends to

$$
\begin{aligned}
\tilde{\tau}: F[x] & \stackrel{\cong}{\longmapsto} F^{\prime}[x] \\
x & \longmapsto x \\
f & \longmapsto \tau(f) \quad \forall f \in F .
\end{aligned}
$$

Theorem 3.3.13. Let $p(x) \in F[x]$ be irreducible. Let $p^{\prime}=\tilde{\tau}(p) \in F^{\prime}[x]$. Let a, a^{\prime} be roots of $p(x), p^{\prime}(x)$ lying in extension fields of F, F^{\prime} respectively. Then τ can be extended to an isomorphism

$$
\phi: F(a) \stackrel{\cong}{\longmapsto} F\left(a^{\prime}\right)
$$

s.t. $\phi(a)=a^{\prime}$.

Proof. We have

$$
F(a) \stackrel{\cong}{\leftrightarrows} \psi \frac{F[x]}{(p(x))} \stackrel{\cong}{\cong} \frac{F^{\prime}[x]}{\left(p^{\prime}(x)\right)} \stackrel{\cong}{\cong} \psi^{\prime} F^{\prime}\left(a^{\prime}\right)
$$

Let $\phi=\psi^{\prime} \circ \tilde{\tau} \circ \psi^{-1}$.
Example 3.3.14. $F=F^{\prime}=\mathbb{Q}, \tau=1_{\mathbb{Q}}, p(x)=p^{\prime}(x)=x^{3}-2 . a=2^{\frac{1}{3}}, a^{\prime}=2^{\frac{1}{3}}\left(\frac{1-\sqrt{3} i}{2}\right)$. Using $a^{3}=2$, elts. of $\mathbb{Q}(a)$ can be expressed in the form $\alpha+\beta a+\gamma a^{2}, \alpha, \beta, \gamma \in \mathbb{Q} . \phi: \mathbb{Q}(a) \stackrel{\cong}{\longmapsto} \mathbb{Q}\left(a^{\prime}\right)$ is given by

$$
\phi\left(\alpha+\beta a+\gamma a^{2}\right)=\alpha+\beta a^{\prime}+\gamma\left(a^{\prime}\right)^{2} .
$$

Theorem 3.3.15. Let $p(x) \in F[x]$. Let $p^{\prime}=\tilde{\tau}(p) \in F^{\prime}[x]$. Let E, E^{\prime} be splitting fields of $p(x), p^{\prime}(x)$ respectively. Then τ can be extended to an isomorphism $\phi: E \stackrel{\cong}{\longmapsto} E^{\prime}$.

In particular, letting $F^{\prime}=F$ and $\tau=1_{F}$ shows that any two splitting fields of $p(x)$ are isomorphic, by an isomorphism which fixes F.

Proof. Use induction on $[E: F]$. If $[E: F]=1$ then $E=F$ so $p(x)$ splits into linear factors in F. But then $p^{\prime}(x)$ splits into linear factors in F^{\prime} so $E^{\prime}=F^{\prime}$, and use $\phi=\tau$.

Now let $[E: F]=n>1$. Assume by induction that the theorem holds whenever $[E: F]<n$. More precisely, assume that the following statement holds: let $q(x) \in M[x]$ be a poly. over a field M, $\sigma: M \stackrel{\cong}{\longmapsto} M^{\prime}, q^{\prime}=\tilde{\sigma}(q)$. Let N, N^{\prime} be splitting fields of q, q^{\prime} respectively. If $[N: M]<n$ then σ can be extended to an iso. $\phi: N \stackrel{\cong}{\longmapsto} N^{\prime}$.

Let $s(x)$ be a non-linear irreducible factor of $p(x)$ in $F[x]$. Let $\operatorname{deg} s(x)=r>1$. Let $v \in E$ be a root of $s(x)$. Let $w \in E^{\prime}$ be a root of $\tilde{\tau}(s)$. By prev. thm. \exists iso. $\sigma: F(v) \stackrel{\cong}{\longmapsto} F^{\prime}(w)$ s.t. $\left.\sigma\right|_{F}=\tau$ and $\sigma(v)=w$. Since $\operatorname{deg} s(x)=r,[F(v): F]=r$, so

$$
[E: F(v)]=\frac{[E: F]}{[F(v): F]}=\frac{n}{r}<n .
$$

From an earlier proposition, E is a splitting field for $p(x)$ considered as a poly. in $F(v)[x]$, and likewise, E^{\prime} is a splitting field for $p^{\prime}(x)$ considered as a poly. in $F^{\prime}(w)[x]$. So by the induction hypothesis, \exists iso. $\phi: E \stackrel{\cong}{\longmapsto} E^{\prime}$ s.t. $\left.\phi\right|_{F(v)}=\sigma$. Thus $\left.\phi\right|_{F}=\left.\sigma\right|_{F}=\tau$ as required.

3.4 Characteristic

Theorem 3.4.1. Let R be an integral domain. Let H be the additive subgroup of R generated by 1. Then either $H \cong \mathbb{Z}$ or $H \cong \mathbb{Z} / p \mathbb{Z}$ for some prime p.

Proof. Define $\phi: \mathbb{Z} \mapsto F$ to be the group homomorphism determined by $\phi(1)=1$. Then

$$
H=\operatorname{Im} \phi \cong \mathbb{Z} / \operatorname{ker} \phi
$$

$\operatorname{ker} \phi$ is an ideal in \mathbb{Z} so $\operatorname{ker} \phi=(n)$ for some n. If $n=0$ then $H \cong \mathbb{Z}$. Otherwise, $H \cong \mathbb{Z} / n \mathbb{Z}$ (as groups), and by replacining n by $-n$ if necessary, we may assume $n>0$.

If $a, b \in \mathbb{Z}, a, b>0$ then in R,

$$
\phi(a) \phi(b)=\overbrace{(1+\cdots+1)}^{a \text { times }} \overbrace{(1+\cdots+1)}^{b \text { times }}=\overbrace{(1+\cdots+1)}^{a b \text { times }}=\phi(a b) .
$$

So $H \cong \mathbb{Z} / n Z$ as rings, and R is an integral domain, so p must be prime.
Definition 3.4.2. If the additive subgroup of an integral domain R generated by 1 is $\mathbb{Z} / p \mathbb{Z}$, we say that R has characteristic p, and denote char $R=p$. If this subgroup is \mathbb{Z}, we say char $R=0$.

If F is a field with char $F=p$, we can define

$$
\begin{aligned}
\theta: \mathbb{Z} / p \mathbb{Z} & \mapsto F \\
1 & \mapsto 1
\end{aligned}
$$

as an inclusion of fields. If char $F=0$, we can define

$$
\begin{aligned}
\theta: \mathbb{Q} & \mapsto F \\
1 & \mapsto 1 \\
\frac{s}{t} & \mapsto \overbrace{(1+\cdots+1)}^{s \text { times }} / \overbrace{(1+\cdots+1)}^{t \text { times }}
\end{aligned}
$$

The image of θ is a subfield of F (isomorphic to either $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$ or \mathbb{Q}), called the prime field of F.
Proposition 3.4.3. If char $F=p$ then in F,

$$
(a+b)^{p^{k}}=a^{p^{p^{k}}}+b^{p^{k}} .
$$

Proof.

$$
(a+b)^{p^{k}}=\sum_{i=0}^{p^{k}}\binom{p^{k}}{i} a^{i} b^{p^{k}-i}=a^{p^{k}}+b^{p^{k}}+\sum_{i=1}^{p^{k}-1}\binom{p^{k}}{i} a^{i} b^{p^{k}-i}
$$

If $1 \leq i \leq p^{k}-1$ then

$$
\begin{aligned}
\binom{p^{k}}{i} & =\frac{p^{k}!}{i!\left(p^{k}-i\right)!} \\
& =\frac{p^{k}\left(p^{k}-1\right) \cdots\left(p^{k}-i+1\right)}{1 \cdot 2 \cdot 3 \cdots i} \\
& =\left(\frac{p^{k}}{i}\right)\left(\frac{p^{k}-1}{1}\right)\left(\frac{p^{k}-2}{2}\right) \cdots\left(\frac{p^{k}-i+1}{i-1}\right) .
\end{aligned}
$$

For $1 \leq j<p^{k}$, the number of factors of p in $j=$ the number of factors of p in $p^{k}-j$. However, since $i<p^{k}, p^{k}$ has more factors of p than i does. Hence, the numerator has more factors of p than the denominator. ie. $p \left\lvert\,\binom{ p^{k}}{i}\right.$ for $0<i<p^{k}$. Since char $F=p$,

$$
\sum_{i=1}^{p^{k}-1}\binom{p^{k}}{i} a^{i} b^{p^{k}-i}=0
$$

3.5 Repeated Roots

Notation: For $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, set

$$
f^{\prime}(x):=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-1}+\cdots+a_{1} .
$$

$f^{\prime}(x)$ is called the derivative of $f(x)$.
Note: If char $F=p \neq 0$ then $f^{\prime}(x)=0 \Rightarrow f(x)$ is constant. For example, $f(x)=x^{p}$ has $f^{\prime}(x)=0$.
Theorem 3.5.1. $f(x)$ has a repeated root (in some extension field of F) $\Longleftrightarrow f(x), f^{\prime}(x)$ have a common factor.

Proof. Let K be the splitting field of f.
Note that $f(x), f^{\prime}(x)$ have a common factor $\Longleftrightarrow \operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$. Moreover, as seen before, the g.c.d. is the same whether taken in $F[x]$ or $K[x]$.
\Rightarrow : Suppose $f(x)$ has a repeated root. In $K[x], f(x)=(x-\alpha)^{2} q(x)$, so

$$
f^{\prime}(x)=2(x-\alpha) q(x)+(x-\alpha)^{2} q^{\prime}(x)=(x-\alpha)\left(2 q(x)+(x-\alpha) q^{\prime}(x)\right) .
$$

$\therefore \operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$ in K and thus in F.
\Leftarrow : Suppose $f(x), f^{\prime}(x)$ have a common factor. If $f(x)$ has no repeated root then by (WLOG) taking $f(x)$ to be monic, in $K[x]$,

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)
$$

where $\alpha_{j} \neq \alpha_{k}$ for $j \neq k$. So

$$
f^{\prime}(x)=\sum_{i=1}^{n}\left(x-\alpha_{1}\right) \cdots\left(\widehat{x-\alpha_{i}}\right) \cdots\left(x-\alpha_{r}\right)
$$

If $\left(x-\alpha_{j}\right)$ is also a factor of $f^{\prime}(x)$ then α_{j} would be a root of $f^{\prime}(x)$ giving

$$
0=\prod_{j \neq i}\left(\alpha_{j}-\alpha_{i}\right) .
$$

But then $\alpha_{j}-\alpha_{i}=0$ for some i, which is a contradiction. Thus, $f(x)$ has a repeated root.

Corollary 3.5.2. Let $f(x) \in F[x]$ be irreducible. Then

1. If char $F=0$ then $f(x)$ has no repeated roots.
2. If char $F=p>0$ then $f(x)$ has a repeated root $\Longleftrightarrow f(x)=g\left(x^{p}\right)$ for some g.

Proof. If $f(x)$ has a repeated root then $f(x), f^{\prime}(x)$ have a common factor. But $f(x)$ is irreducible and $\operatorname{deg} f^{\prime}(x)<\operatorname{deg} f(x)$. Thus $f^{\prime}(x)=0$.

If char $F=0$ then $f^{\prime}(x)=0 \Rightarrow f(x)$ is constant, in which case, $f(x)$ does not have a repeated root after all.

If $\operatorname{char} F=p$, let

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{p} x^{p}+a_{p+1} x^{p+1}+\cdots+a_{n} x^{n} .
$$

Since $f^{\prime}(x)=0, a_{k}=0$ for every k which is not a multiple of p. So

$$
f(x)=a_{p} x^{p}+a_{2 p} x^{2 p}+\cdots=g\left(x^{p}\right) .
$$

3.6 Finite Fields

Proposition 3.6.1. Let F be a field with q elements. Suppose $F \subset K$ is a finite extension with $[K: F]=n$. Then K has q^{n} elements.

Proof. As a vector space, $K \cong F^{n}$, so $|K|=|F|^{n}=q^{n}$.
Corollary 3.6.2. Let K be a finite field. Then K has p^{m} elements for some m where $p=\operatorname{char} F$.
Proof. Let F be the prime field of K. Since K is finite, F cannot be \mathbb{Q}, so char $F=p$, a prime. Hence K has p^{m} elements where $m=[K: F]$.

Corollary 3.6.3 (Fermat). Let F be a finite field with p^{m} elements. Then $a^{p^{m}}=a$ for all $a \in F$.
Proof. If $a=0$ then $a^{p^{m}}=0$. If $a \neq 0$ then $a \in F-\{0\}$, which forms a group under multiplication, and

$$
|F-\{0\}|=p^{m}-1
$$

By Lagrange, $a^{p^{m}-1}=1$, so $a^{p^{m}}=a$.
Theorem 3.6.4. Let F be a finite field with p^{n} elements. Then in $F[x], x^{p^{n}}-x$ factors as

$$
x^{p^{n}}-x=\prod_{\alpha \in F}(x-\alpha) .
$$

Proof. By the previous corollary, every elt. of F is a root of $x^{p^{n}}-x$. Since $\operatorname{deg}\left(x^{p^{n}}-x\right)=p^{n}$, and F has p^{n} elements, we have all the roots.

Corollary 3.6.5. If F has p^{n} elements then F is the splitting field of $x^{p^{n}}-x$ over \mathbb{F}_{p}.
Corollary 3.6.6. Any two finite fields with the same number of elts. are isomorphic.
Proof. Any two splitting fields of the same polynomial are isomorphic.
Theorem 3.6.7. For every prime p and every positive integer $n, \exists!$ a field with p^{n} elts.
Proof. We have already shown that \exists at most one field with p^{n} elts. So, show that one exists.
Let K be the splitting field of $f(x)=x^{p^{n}}-x$ over \mathbb{F}_{p}. Let

$$
F=\left\{a \in K \mid a^{p^{n}}=a\right\}
$$

$f^{\prime}(x)=-1$, which is relatively prime to $f(x)$. So the roots of $f(x)$ are distinct, ie. F has p^{n} elts., and it suffices to show that F is a field.

Suppose $a, b \in F$. Then

$$
(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}=a+b
$$

so $a+b \in F$. Similarly, $(a-b)^{p^{n}}=a-b$.

$$
(a b)^{p^{n}}=a^{p^{n}} b^{p^{n}}=a b
$$

and similarly, $\left(\frac{a}{b}\right)^{p^{n}}=\frac{a}{b}$. Hence F is a field.
Theorem 3.6.8. Let G be a finite abelian group s.t. $\forall n \in \mathbb{Z}$, there are at most n elts. of G satisfying $g^{n}=e$. Then G is a cyclic group.

Proof. By the structure theorem for finitely generated abelian groups, we can write

$$
G \cong G_{1} \times G_{2} \times \cdots \times G_{k}
$$

where $\left|G_{j}\right|=p_{j}^{t_{j}}$ for some p_{j} with $p_{j} \neq p_{j^{\prime}}$ if $j \neq j^{\prime}$. Since $C_{n} \times C_{m} \cong C_{n m}$ when $\operatorname{gcd}(n, m)=1$, it suffices to show that each G_{j} is a cyclic group.

Pick j and write p for p_{j} and t for t_{j}. Let $a \in G_{j}$ be an elt. whose order is maximal. Then

$$
|a|\left|\left|G_{j}\right|=p^{t}\right.
$$

so $|a|=p^{r}$ for some $r \leq t$. Within G_{j},

$$
S=\left\{a, a^{2}, \cdots, a^{p^{r}-1}, e\right\}
$$

are the distinct roots of $g^{p^{r}}=e$, by construction of a. Since there are p^{r} of them, by the hypothesis, $g^{p^{r}}$ has no other solutions in G, and in particular, no other solutions in G_{j}.

Now let $b \in G_{j}$. Then $|b|=p^{s}$ for some $s \leq r$.

$$
b^{p^{r}}=\left(b^{p^{s}}\right)^{p^{r-s}}=e^{p^{r-s}}=e .
$$

Thus, $b \in S$, ie. $b=a^{i}$ for some i.
Hence G_{j} is cyclic, so G is cyclic.
Corollary 3.6.9. Let F be a field. Then any finite subgroup of the multiplicative group of $F-\{0\}$ is cyclic.

Proof. Since F is a field, a polynomial of degree n in $F[x]$ has at most n roots in F.
Corollary 3.6.10. If F is a finite field then the multiplicative group $F-\{0\}$ is cyclic.

3.7 Separable Extensions

Definition 3.7.1. Suppose $F \subset K$ is a finite extension. Then $\alpha \in K$ is called separable over F if its irreducible polynomial over F has no repeated roots. K is called separable over F if α is separable over $F \forall \alpha \in K$.
Proposition 3.7.2. If char $F=0$ then every finite extension of F is separable over F.
Example 3.7.3. Let E be any field with char $E=p$. Let $F=E(z)$, the field of fractions of $E[z]$. Let $K=F\left(z^{\frac{1}{p}}\right)$, and let $a=z^{\frac{1}{p}} \in K$. Then the min. poly. of a over F is $x^{p}-z=(x-a)^{p}$. Hence, $z^{\frac{1}{p}}$ is not separable over F.
Theorem 3.7.4. Suppose $F \subset K$ is separable. Then $\exists \gamma \in K$ s.t. $K=F(\gamma)$.
Proof.
Case 1: F is finite.
Since $F \subset K$ is a finite extension, K is also a finite field. Let c be a generator for the cyclic group $K-\{0\}$.

$$
\text { ie. } \quad K-\{0\}=\left\{c, c^{2}, \cdots, c^{p^{m}-1}, e\right\} .
$$

\therefore Any field containing c contains all of $K-\{0\} . \therefore K=F(c)$.
Case 2: $|F|=\infty$.
Since $[K: F]<\infty$, let $K=F\left(a_{1}, \ldots, a_{n}\right)$ for some a_{1}, \ldots, a_{n}. Using induction, it suffices to consider the case $n=2$. ie. Suppose $K=F(a, b)$ and show that $\exists c$ s.t. $F(a, b)=F(c)$.
Let $f(x), g(x)$ be the min. polynomials of a, b respectively. Let M be the splitting field of $f(x) g(x)$. In M,

$$
\begin{aligned}
& f(x)=\left(x-a_{1}\right) \cdots\left(x-a_{m}\right) \quad \text { where } a_{1}=a \\
& g(x)=\left(x-b_{1}\right) \cdots\left(x-b_{n}\right) \quad \text { where } b_{1}=b .
\end{aligned}
$$

Since K is separable, $a_{i} \neq a_{j}$ for $i \neq j$ and $b_{i} \neq b_{j}$ for $i \neq j$. Consider the equation

$$
a_{i}+\lambda b_{j}=a_{1}+\lambda b_{1}
$$

where $j>1$ and $\lambda \in F$. The solution for λ is

$$
\lambda=\frac{a_{i}-a_{1}}{b_{1}-b_{j}}
$$

Since F is finite, choose $\gamma \in F$ s.t. $\gamma \neq \frac{a_{i}-a_{1}}{b_{1}-b_{j}}$ and $\gamma \neq \frac{b_{j}-b_{1}}{a_{1}-a_{j}}$ for any i and j. So $a_{i}+\gamma b_{j} \neq a+\gamma b$ unless $i=j=1$. Set $c:=a+\gamma b$.
Claim. $\quad F(a, b)=F(c)$.

Proof. $c \in F(a, b)$ so $F(c) \subset F(a, b)$. So show $F(a, b) \subset F(c)$, ie. show $a \in F(c)$ and $b \in F(c)$. Let $h(x)=f(c-\gamma x) \in F(c)[x]$. Then

$$
h(b)=f(c-\gamma b)=f(a)=0
$$

By construction, $c-\gamma b_{j} \neq a_{i}$ unless $i=j=1$. So if $j>1$ then $c-\gamma b_{j} \neq a_{i}$ for any i and so $c-\gamma b_{j}$ is not a root of $f(x)$.
\therefore If $j>1$ then $h\left(b_{j}\right)=f\left(c-\gamma b_{j}\right) \neq 0$. Hence $b=b_{1}$ is the only common root of $g(x)$ and $h(x)$. ie. In $K[x]$,

$$
\operatorname{gcd}(g(x), h(x))=x-b
$$

But $g(x) \in F[x] \subset F(c)[x]$ and $h(x) \in F(c)[x]$, so by an earlier proposition,

$$
x-b=\operatorname{gcd}(g(x), h(x)) \in F(c)[x] .
$$

In particular, $x-b \in F(c)[x]$; that is, its coefficients lie in $F(c)$. So $b \in F(c)$.
Similarly, using $\gamma \neq \frac{b_{j}-b_{1}}{a_{1}-a_{i}}$ for any i and j gives $a \in F(c)$. Thus $F(a, b) \subset F(c)$ as required.

3.8 Automorphism Groups

Definition 3.8.1. An isomorphism from a field to itself is called an automorphism. Explicitly, an automorphism $\sigma: F \stackrel{ }{\cong} F$ must satisfy:

1. σ is a bijection,
2. $\sigma(a+b)=\sigma(a)+\sigma(b)$, and
3. $\sigma(a b)=\sigma(a) \sigma(b)$.

Let $\operatorname{Aut}(F)$ denote the set of all automorphisms of F. This forms a group under composition.
Theorem 3.8.2. Let $\sigma_{1}, \ldots, \sigma_{n}$ be distinct automorphisms of F. Then $\sigma_{1}, \ldots, \sigma_{n}$ are linearly independent in the vector space hom $_{\text {abel. grps. }}(F, F)$.
ie. If $a_{1}, \ldots, a_{n} \in F$ such that

$$
a_{1} \sigma_{1}(u)+a_{2} \sigma_{2}(u)+\cdots+a_{n} \sigma_{n}(u)=0 \quad \forall u \in F
$$

then $a_{1}=a_{2}=\cdots=a_{n}=0$.
Note: This proof works equally well to show that distinct homomorphisms from a ring A to a field F are linearly independent in the F-vector space hom abel. grps. (A, F).
Proof. Suppose $\sigma_{1}, \ldots, \sigma_{n}$ are not linearly independent in $\operatorname{hom}_{\text {abel. grps. }}(F, F)$. Find a relation having as few terms as possible. Renumber the σ 's so that the terms appearing in the relation come first. So the relation is

$$
a_{1} \sigma_{1}+\cdots+a_{k} \sigma_{k}=0
$$

with $a_{j} \neq 0$ for $j=1, \ldots, k$, and no relation exists involving fewer than k terms. That is, for all $u \in F$,

$$
\begin{equation*}
a_{1} \sigma_{1}(u)+\cdots+a_{k} \sigma_{k}(u)=0 \tag{1}
\end{equation*}
$$

If $k=1$ then $a_{1} \sigma(u)=0 \forall u \in K$, so $a_{1}=0$ (since $\sigma_{1}(u) \neq 0$ unless $u=0$), which is a contradiction. Since $\sigma_{1} \neq \sigma_{k}, \exists c \in F$ s.t. $\sigma_{1}(c) \neq \sigma_{k}(c)$. Then for all $u \in F$,

$$
\begin{align*}
0 & =a_{1} \sigma_{1}(c u)+\cdots+a_{k} \sigma_{k}(c u) \\
& =a_{1} \sigma_{1}(c) \sigma_{1}(u)+\cdots+a_{k} \sigma_{k}(c) \sigma_{k}(u) \tag{2}
\end{align*}
$$

Combining (1) and (2), for all $u \in F$,

$$
a_{2}\left(\sigma_{2}(c)-\sigma_{1}(c)\right) \sigma_{2}(u)+\cdots+a_{k}\left(\sigma_{k}(c)-\sigma_{1}(c)\right) \sigma_{k}(u)=0
$$

$a_{k} \neq 0$ and $\sigma_{k}(c)-\sigma_{1}(c) \neq 0$ so the last coefficient is nonzero. So this is a relation among $\sigma_{1}, \ldots, \sigma_{n}$ having fewer than k terms, which is a contradiction. Thus, $\sigma_{1}, \ldots, \sigma_{k}$ are lin. indep.

Theorem 3.8.3. Let K be a field. Let $S=\left\{\sigma_{\alpha}\right\}$ be a set of automorphisms of K. Let

$$
F=\{x \in K \mid \sigma(x)=x \forall \sigma \in S\} .
$$

Then F is a field.
F is called the fixed field of S in K, written $F=K^{S}$.
Proof. Suppose $a, b \in F$. Then $\forall \sigma \in S$,

$$
\sigma(a+b)=\sigma(a)+\sigma(b)=a+b
$$

$\therefore a+b \in F$. Similarly, $a-b, a b \in F$ and if $b \neq 0, \frac{a}{b} \in F$.
Notation: Suppose $F \subset K$. Set

$$
G(K, F):=\{\sigma \in \operatorname{Aut}(K) \mid \sigma(\alpha)=\alpha \forall \alpha \in F\} .
$$

$G(K, F)$ forms a subgroup of $\operatorname{Aut}(K)$.
This gives us two functors:
Extension of fields $\leadsto \leadsto$ Subgroup of automorphisms of larger field

$$
F \subset K \leadsto G(K, F)
$$

and
Field, subgroup of its automorphisms $\leadsto \leadsto$ Extension of fields

$$
K, G \leadsto K^{G} \subset K
$$

Are these inverse processes? In general, no. Given $F \subset K$,

$$
G(K, F)=\{\sigma \in K \mid \sigma(x)=x \forall x \in F\}
$$

$\therefore K^{G(K, F)}=\{x \in K \mid \sigma(x)=x \forall \sigma \in G(K, F)\} \supset F$. But $K^{G(K, F)}$ can be strictly larger than F.

Example 3.8.4.

1. $K=\mathbb{C}, F=\mathbb{R}$. Let $\sigma \in G(\mathbb{C}, \mathbb{R})$. $\sigma(x)=x \forall x \in \mathbb{R}$. So σ is determined by $\sigma(i)$.

$$
\sigma(i)^{2}=\sigma\left(i^{2}\right)=\sigma(-1)=-1 .
$$

$\therefore \sigma(i)= \pm i$. So there are two elts. in $G(\mathbb{C}, \mathbb{R})$:

$$
\begin{array}{rll}
\sigma_{1}(i)=i & \Rightarrow \sigma_{1}(a+b i)=a+b i & \text { identity of } G(\mathbb{C}, \mathbb{R}) \\
\sigma_{2}(i)=-i & \Rightarrow \sigma_{2}(a+b i)=a-b i & \text { complex conjugation. }
\end{array}
$$

$\therefore G(\mathbb{C}, \mathbb{R}) \cong \mathbb{Z} / 2 \mathbb{Z}$.
Conversely,

$$
\begin{aligned}
\mathbb{C}^{G(\mathbb{C}, \mathbb{R})} & =\{z \in \mathbb{C} \mid \sigma(z)=z \forall \sigma \in G(\mathbb{C}, \mathbb{R})\} \\
& =\left\{z \in \mathbb{C} \mid z=\sigma_{1}(z)=z \text { and } \bar{z}=\sigma_{2}(z)=z\right\} \\
& =\mathbb{R}
\end{aligned}
$$

In this case, we get our starting field back.
2. $F=\mathbb{Q}, K=\mathbb{Q}(a)$ where $a=2^{\frac{1}{3}}$. Let $\sigma \in G(K, F)$. Since $\sigma(x)=x \forall x \in \mathbb{Q}, \sigma$ is determined by $\sigma(a)$.

$$
\sigma(a)^{3}=\sigma\left(a^{3}\right)=\sigma(2)=2,
$$

so $\sigma(a)$ is a cube root of 2 . Since $\mathbb{Q}(a)$ contains only real numbers, it contains only one cube root of 2 , namely a. So $\sigma(a)=a$ and σ is the identity. Thus,

$$
G\left(\mathbb{Q}\left(2^{\frac{1}{3}}\right), \mathbb{Q}\right)=1 .
$$

$\therefore \mathbb{Q}\left(2^{\frac{1}{3}}\right)^{G\left(\mathbb{Q}\left(2^{\frac{1}{3}}\right), \mathbb{Q}\right)}=\mathbb{Q}\left(2^{\frac{1}{3}}\right)$, which is strictly larger than \mathbb{Q}.
Let $f(x) \in F[x]$ and let $G=G(K, F)$ where K is the splitting field of $f(x)$. Let $\alpha_{1}, \ldots, \alpha_{n} \in K$ be the roots of

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \quad\left(c_{j} \in F\right)
$$

Let $\sigma \in G(K, F)$, so $\sigma\left(c_{j}\right)=c_{j}$. Then

$$
\begin{aligned}
f\left(\sigma\left(\alpha_{i}\right)\right) & =c_{0}+c_{1} \sigma\left(\alpha_{i}\right)+\cdots+c_{n}\left(\sigma\left(\alpha_{i}\right)\right)^{n} \\
& =\sigma\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right) \\
& =\sigma\left(f\left(\alpha_{i}\right)\right)=\sigma(0)=0 .
\end{aligned}
$$

$\therefore \sigma\left(\alpha_{i}\right)$ is also a root of $f(x)$, ie. $\sigma\left(\alpha_{i}\right)=\alpha_{i^{\prime}}$ for some $i^{\prime}=1, \ldots, n$. If $i \neq j$ then $\sigma\left(\alpha_{i}\right) \neq \sigma\left(\alpha_{j}\right)$, since σ is (1-1). So σ permutes the roots of $f(x)$. This map

$$
\left.\sigma \mapsto \sigma\right|_{\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}}
$$

is a group homomorphism $G \hookrightarrow S_{n}$.
Theorem 3.8.5. $|G(K, F)| \leq[K: F]$.

Proof. Let $[K: F]=n$ and let u_{1}, \ldots, u_{n} be a basis for K over F. Suppose $G(K, F)$ has $n+1$ elements $\sigma_{1}, \ldots, \sigma_{n+1}$. Consider the system of equations

$$
\begin{aligned}
\sigma_{1}\left(u_{1}\right) x_{1}+\sigma_{2}\left(u_{1}\right) x_{2}+\cdots+\sigma_{n+1}\left(u_{1}\right) x_{n+1} & =0 \\
\sigma_{1}\left(u_{2}\right) x_{1}+\sigma_{2}\left(u_{2}\right) x_{2}+\cdots+\sigma_{n+1}\left(u_{2}\right) x_{n+1} & =0 \\
& \vdots \\
\sigma_{1}\left(u_{n}\right) x_{1}+\sigma_{2}\left(u_{n}\right) x_{2}+\cdots+\sigma_{n+1}\left(u_{n}\right) x_{n+1} & =0 .
\end{aligned}
$$

This consists of n equations and $n+1$ variables, so \exists a solution

$$
x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{n+1}=a_{n+1}
$$

with not all $a_{j}=0$. So, for all $j=1, \ldots, n$,

$$
a_{1} \sigma_{1}\left(u_{j}\right)+a_{2} \sigma_{2}\left(u_{j}\right)+\cdots+a_{n+1} \sigma_{n+1}\left(u_{j}\right)=0
$$

Since u_{1}, \ldots, u_{n} form a basis,

$$
\left(a_{1} \sigma_{1}+\cdots+a_{n+1} \sigma_{n+1}\right)(t)=0 \quad \forall t \in K
$$

But then $\sigma_{1}, \ldots, \sigma_{n+1}$ are linearly dependent in hom abel. grps. (F, F), contradicting an earlier theorem.
Hence, $G(K, F)$ does not have $n+1$ elements, ie. $|G(K, F)| \leq[K: F]$.

3.9 Elementary Symmetric Polynomials

Let F be a field.

Notation:

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) & :=\text { field of fractions of } F\left[x_{1}, \ldots, x_{n}\right] \\
& =\left\{\left.\frac{p\left(x_{1}, \ldots, x_{n}\right)}{q\left(x_{1}, \ldots, x_{n}\right)} \right\rvert\, p, q \in F\left[x_{1}, \ldots, x_{n}\right], q \neq 0\right\}
\end{aligned}
$$

This is called the field of rational functions in n variables over F.
Let $K=F\left(x_{1}, \ldots, x_{n}\right)$. Given $\sigma \in S_{n}$, setting $\tilde{\sigma}\left(x_{j}\right)=x_{\sigma(j)}$ and $\tilde{\sigma}(a)=a \forall a \in F$ determines an automorphism of K s.t.

$$
\sigma \in G(K, F) \subset \operatorname{Aut}(K) .
$$

In this way, S_{n} becomes a subgroup of $\operatorname{Aut}(K)$.
Let $S=K^{S_{n}}$. S is called the field of symmetric rational functions in n variables over F, and $S \cap F\left[x_{1}, \ldots, x_{n}\right]$ is called the ring of symmetric polynomials in n variables over F.

Definition 3.9.1. Let

$$
s(t)=\left(t+x_{1}\right)\left(t+x_{2}\right) \cdots\left(t+x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right][t] .
$$

For $k=1, \ldots, n$, the coefficient of t^{n-k} in $s(t)$ is called the $k^{t h}$ elementary symmetric polynomial in n variables, denoted $s_{k}\left(x_{1}, \ldots, x_{n}\right)$.

For example:

$$
\begin{aligned}
& s_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n} \\
& s_{2}\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{1} x_{n}+x_{2} x_{3}+\cdots+x_{2} x_{n}+\cdots x_{n-1} x_{n} \\
& s_{3}\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} x_{3}+\cdots+x_{n-2} x_{n-1} x_{n} \\
& s_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n}
\end{aligned}
$$

In general,

$$
s_{k}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

Theorem 3.9.2.

1. $S=F\left(s_{1}, \ldots, s_{n}\right)$.
2. $\left[F\left(x_{1}, \ldots, x_{n}\right): S\right]=n!$.
3. $G\left(F\left(x_{1}, \ldots, x_{n}\right), S\right)=S_{n}$.
4. $F\left(x_{1}, \ldots, x_{n}\right)$ is the splitting field of $s(t)$ over S.

Proof. $\sigma\left(s_{k}\right)=s_{k} \forall \sigma \in S_{n}$, so $F\left(s_{1}, \ldots, s_{n}\right) \subset S$. Conversely, $S_{n} \subset G\left(F\left(x_{1}, \ldots, x_{n}\right)\right.$, S), so

$$
\left[F\left(x_{1}, \ldots, x_{n}\right): S\right] \geq\left|G\left(F\left(x_{1}, \ldots, x_{n}\right), S\right)\right| \geq\left|S_{n}\right|=n!
$$

\therefore To show 1,2 and 3 , it suffices to show

$$
\left[F\left(x_{1}, \ldots, x_{n}\right): F\left(s_{1}, \ldots s_{n}\right)\right] \leq n!
$$

since this simultaneously shows

$$
\left[S: F\left(s_{1}, \ldots s_{n}\right)\right]=1 \Rightarrow 1
$$

and

$$
\left[F\left(x_{1}, \ldots, x_{n}\right): S\right]=n!\Rightarrow 2
$$

and

$$
\left|G\left(F\left(x_{1}, \ldots, x_{n}\right), S\right)\right|=n!\Rightarrow 3 .
$$

The polynomial

$$
s(t)=\left(t+x_{1}\right)\left(t+x_{2}\right) \cdots\left(t+x_{n}\right)
$$

factors linearly as shown in $F\left(x_{1}, \ldots, x_{n}\right)$. But its coefficients are s_{1}, \ldots, s_{n}, which lie in $S . s(t)$ cannot split in any proper subfield of $F\left(x_{1}, \ldots, x_{n}\right)$ since its roots are $-x_{1}, \ldots,-x_{n}$.

So $F\left(x_{1}, \ldots, x_{n}\right)$ is the splitting field of $s(t)$ over $F\left(s_{1}, \ldots, s_{n}\right)$. By an earlier corollary, the degree fo a splitting field extension of a polynomial of degree n is at most $n!$. Hence,

$$
\left[F\left(x_{1}, \ldots, x_{n}\right): F\left(s_{1}, \ldots, s_{n}\right)\right] \leq n!.
$$

3.10 The Galois Group

Let $F \subset K$ be a separable finite extension of fields. We observed earlier that $F \subset K^{G(K, F)}$.
Definition 3.10.1. K is called a normal extension (or Galois extension) of F if $F=K^{G(K, F)}$.
eg. $\mathbb{R} \subset \mathbb{C}$ is normal, $\mathbb{Q} \subset \mathbb{Q}\left(2^{\frac{1}{3}}\right)$ is not.
Theorem 3.10.2. Let $F \subset K$ be a normal extension and let H be a subgroup of $G(K, F)$. Then

1. $\left[K: K^{H}\right]=|H|$.
2. $H=G\left(K, K^{H}\right)$.

Corollary 3.10.3. If $F \subset K$ is normal then $[K: F]=|G(K, F)|$.
Proof of corollary. Let $H=G(K, F)$. Then

$$
[K: F]=\left[K: K^{G(K, F)}\right]=|G(K, F)| .
$$

Proof of theorem. $\forall \sigma \in H, x \in K^{H}, \sigma(x)=x$. So $H \subset G\left(K, K^{H}\right)$. Thus

$$
\left[K: K^{H}\right] \geq\left|G\left(K, K^{H}\right)\right| \geq|H| .
$$

Since $F \subset K$ is separable, so is $K^{H} \subset K$. Hence, $\exists a \in K$ s.t. $K=K^{H}(a)$.
By an earlier theorem, the min. poly. of a has degree $\left[K: K^{H}\right.$]. Let

$$
H=\left\{\sigma_{1}, \ldots, \sigma_{h}\right\}
$$

where $\sigma_{1}=1$. Let

$$
s_{1}\left(x_{1}, \ldots, x_{h}\right), \ldots, s_{h}\left(x_{1}, \ldots, x_{h}\right)
$$

be the elementary symmetric polynomials in h variables. Let

$$
\alpha_{j}=s_{j}\left(\sigma_{1}(a), \sigma_{2}(a), \ldots, \sigma_{h}(a)\right) \in K
$$

Let

$$
p(x)=\left(x-\sigma_{1}(a)\right)\left(x-\sigma_{2}(a)\right) \ldots\left(x-\sigma_{h}(a)\right)=x^{h}-\alpha_{1} x^{h-1}+\alpha_{2} x^{h-2}+\cdots+(-1)^{h} \alpha_{h} \in K[x] .
$$

In any group, left multiplication by any element permutes the elements of the group. By construction, each α_{j} is invariant under permutations of the σ 's. So for all $j, \sigma\left(\alpha_{j}\right)=\alpha_{j} \forall \sigma \in H$, so $\alpha_{j} \in K^{H}$. Hence $p(x) \in K^{H}[x]$. Since $a=\sigma_{1}(a)$ is a root of $p(x)$,

$$
|H|=h=\operatorname{deg} p(x) \geq \operatorname{deg}\left(\text { min. poly. of } a \text { over } K^{H}\right)=\left[K: K^{H}\right] .
$$

$\therefore|H|=\left|G\left(K, K^{H}\right)\right|=\left[K: K^{H}\right]$, showing 1, and also $H \subset G\left(K, K^{H}\right)$, showing 2.

Theorem 3.10.4. Suppose K is separable over F. Then $F \subset K$ is a normal extension $\Longleftrightarrow K$ is the splitting field of some polynomial in F.

Proof.

\Rightarrow : Suppose $F \subset K$ is a normal extension. $K=F(a)$ for some $a \in K$. Let

$$
G(K, F)=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}
$$

where $\sigma_{1}=1$. Let

$$
\begin{aligned}
p(x) & =\left(x-\sigma_{1}(a)\right)\left(x-\sigma_{2}(a)\right) \cdots\left(x-\sigma_{n}(a)\right) \\
& =x^{n}-\alpha_{1} x^{n-1}+\alpha_{2} x^{n-2}+\cdots+(-1)^{n} \alpha_{n},
\end{aligned}
$$

where $\alpha_{j}=s_{j}\left(\sigma_{1}(a), \ldots, \sigma_{n}(j)\right) \in K$. As in the preceding proof, $\sigma\left(\alpha_{j}\right)=\alpha_{j} \forall \sigma \in G(K, F)$, so

$$
\alpha_{j} \in K^{G(K, F)}=F,
$$

by normality.
So $p(x) \in F[x]$ and $p(x)$ splits in $K . a=\sigma_{1}(a)$ is a root of $p(x)$. By defn. of $F(a), a$ lies in no proper subfield of $K=F(a)$ which contains F. So $p(x)$ does not split in any subfield of K. Thus, K is the splitting field of $p(x)$.
\Leftarrow : Let K be the splitting field of some $f(x) \in F[x]$.
Lemma 3.10.5. Let $p(x) \in F[x]$ be an irreducible factor of $f(x)$ and let $\alpha_{1}, \ldots, \alpha_{r} \in K$ be the roots of $p(x)$. Then $\forall j=1, \ldots, r, \exists \sigma_{j} \in G(K, F)$ s.t. $\sigma_{j}\left(\alpha_{1}\right)=\alpha_{j}$.

Proof of lemma. By Theorem 3.3.13, ヨ an isomorphism

$$
\tau_{j}: F\left(\alpha_{1}\right) \stackrel{ }{\longmapsto} F\left(\alpha_{j}\right)
$$

s.t. $\tau_{j}\left(\alpha_{1}\right)=\alpha_{j}$ and $\tau_{j}(z)=z \forall z \in F$. Hence, $\tau_{j}(f(x))=f(x)$.
K can be regarded as the splitting field of $f(x)$ over both $F\left(\alpha_{1}\right)$ and $F\left(\alpha_{j}\right)$. So by Theorem 3.3.15, τ_{j} can be extended to

$$
\sigma_{j}: K \stackrel{\cong}{\longmapsto} K .
$$

Since σ_{j} extends $\tau_{j}, \sigma_{j} \in G(K, F)$ and $\sigma_{j}\left(\alpha_{1}\right)=\alpha_{j}$, as required.

Proof of theorem (continued). Assume by induction that if K_{1} is the splitting field of some polynomial $f_{1} \in F_{1}[x]$ and $\left[K_{1}: F_{1}\right]<[K: F]$ then K_{1} is normal over F_{1}. If $\left[K_{1}: F_{1}\right]=1$ then $K_{1}=F_{1}$ is normal over F_{1}, to start induction.

So suppose $[K: F]>1$. Then $f(x)$ has a non-linear irreducible factor $p(x)$. Let

$$
\operatorname{deg} p(x)=r>1 .
$$

Let $\alpha_{1}, \ldots, \alpha_{r} \in K$ be the roots of $p(x)$. Regarding K as the splitting field of $f(x)$ over $F\left(\alpha_{1}\right)$, induction implies that K is a normal extension of $F\left(\alpha_{1}\right)$. Show $K^{G(K, F)}=F$.
$F \subset F\left(\alpha_{1}\right)$, so $G\left(K, F\left(\alpha_{1}\right)\right) \subset G(K, F)$. ie. $\sigma \in G\left(K, F\left(\alpha_{1}\right)\right) \Rightarrow \sigma(z)=z \forall z \in F\left(\alpha_{1}\right)$, and in particular, $\sigma(z)=z \forall z \in F$. Thus,

$$
K^{G(K, F)} \subset K^{G\left(K, F\left(\alpha_{1}\right)\right)}=F\left(\alpha_{1}\right),
$$

because $F\left(\alpha_{1}\right) \in K$ is normal.
Let $z \in K^{G(K, F)}$. We must show $z \in F$. Since $z \in F\left(\alpha_{1}\right)$,

$$
z=\lambda_{0}+\lambda_{1} \alpha_{1}+\cdots+\lambda_{r-1} \alpha^{r-1}
$$

for some $\lambda_{0}, \ldots, \lambda_{r-1} \in F$. For $j=1, \ldots, r$, choose $\sigma_{j} \in G(K, F)$ s.t. $\sigma\left(\alpha_{1}\right)=\alpha_{j}$. Then

$$
z=\sigma_{j}(z)=\lambda_{0}+\lambda_{1} \alpha_{j}+\cdots+\lambda_{r-1} \alpha_{j}^{r-1}
$$

Let

$$
q(x)=\lambda_{r-1} x^{r-1}+\cdots+\lambda_{1} x+\left(\lambda_{0}-z\right) \in K[x]
$$

Then α_{j} is a root of $q(x) \forall j=1, \ldots, r$. But $\operatorname{deg} q(x) \leq r-1$ and $\alpha_{1}, \ldots, \alpha_{r}$ are distinct. This is a contradiction unless all coefficients of $q(x)$ are zero. In particular, $z=\lambda_{0} \in F$.

Definition 3.10.6. Let $f(x) \in F[x]$. Let K be the splitting field of f over F and suppose that K is separable over F. The Galois group of $f(x)$ over F is $G(K, F)$. This will sometimes be denoted $\operatorname{Gal}(f(x))$.

Theorem 3.10.7 (Fundamental Theorem of Galois Theory). Let $f(x) \in F$. Let $K \supset F$ be the splitting field of $f(x)$ over F. Suppose K is separable over F and let $G=G(K, F)$ be the Galois group of $f(x)$ over F. Then the associations

$$
\begin{aligned}
& M \leadsto G(K, M) \\
& K^{H} \leadsto \sim H
\end{aligned}
$$

set up a bijection between fields M s.t. $F \subset M \subset K$ and subgroups of G. It has the following properties:

1. $M=K^{G(K, M)}$.
2. $H=G\left(K, K^{H}\right)$.
3. $[K: M]=|G(K, M)|$, and $[M: F]=G: G(K, M)$ (the index of the subgroup $G(K, M)$ in $G)$.
4. M is a normal extension of $F \Longleftrightarrow G(K, M)$ is a normal subgroup of G.
5. If M is a normal extension of F then $G(M, F) \cong G / G(K, M)$.

Proof.

1. K is the splitting field of $f(x)$ over F, so F can be regarded as the splitting field of $f(x)$ over M. So $M \subset K$ is normal, ie. $M=K^{G(K, M)}$.
2. This is just Theorem 3.10.2. 1 and 2 say that the associations are inverse bijections.
3.

$$
\begin{aligned}
|G(K, M)| & =\left[K: K^{G(K, M)}\right] \quad \text { by Theorem 3.10.2 } \\
& =[K: M] \quad \text { by } 1 .
\end{aligned}
$$

and

$$
[M: F]=\frac{[K: F]}{[K: M]}=\frac{|G(K, F)|}{|G(K, M)|}=G: G(K, M) .
$$

4.

Lemma 3.10.8. M is normal $\Longleftrightarrow \sigma(M) \subset M \forall \sigma \in G$.
Proof of lemma.
\Rightarrow : Suppose M is normal. Let $\sigma \in G$. Let $q(x) \in F[x]$ be a polynomial whose splitting field is M. So in M,

$$
q(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{r}\right)
$$

By an earlier proposition, $M=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$. Since $\sigma \in G$,

$$
q\left(\sigma\left(\alpha_{j}\right)\right)=\sigma\left(q\left(\alpha_{j}\right)\right)=\sigma(0)=0
$$

$\therefore \sigma\left(\alpha_{j}\right)$ is a root of $q(x)$. But M contains the full set of roots of $q(x)$, so $\sigma\left(\alpha_{j}\right) \in M$. Thus, $\sigma(M) \subset M$.
$\Leftarrow:$ Suppose $\sigma(M) \subset M \forall \sigma \in G$. Let $z \in M^{G(M, F)}$, and check that $z \in F$. Let $\sigma \in G$. Since $\sigma(M) \subset M,\left.\sigma\right|_{M} \in G(M, F)$. So,

$$
\sigma(z)=\left.\sigma\right|_{M}(z)=z
$$

since $z \in M^{G(M, F)}$. So $z \in M^{G} \subset K^{G}=F$.

Proof of 4.

\Rightarrow : Suppose M is a normal extension of F. Let $\sigma \in G, \tau \in G(K, M)$. Then $\forall m \in M$,

$$
\begin{aligned}
\sigma^{-1} \tau \sigma(m) & =\sigma^{-1} \tau(\sigma(m)) \\
& =\sigma^{-1} \sigma(m), \quad \text { since } \sigma(m) \in M \text { and }\left.\tau\right|_{M}=\mathrm{id} \\
& =m
\end{aligned}
$$

$\therefore \sigma^{-1} \tau \sigma \in G(K, M)$. Hence $G(K, M)$ is a normal subgroup of G.
\Leftarrow : Suppose $G(K, M)$ is a normal subgroup of G. Let $\sigma \in G, z \in M$. Then $\forall \tau \in G(K, M)$, $\sigma^{-1} \tau \sigma \in G(K, M)$, so

$$
\sigma^{-1} \tau \sigma(z)=z .
$$

$\therefore \tau \sigma(z)=\sigma(z)$. Thus $\sigma(z) \in K^{G(K, M)}=M$ (by 1). So $\sigma(M) \subset M$ and M is normal over F by the lemma.
5. Suppose M is normal over F. Given $\sigma \in G(K, F)$, define $\psi(\sigma)=\left.\sigma\right|_{M}$. By the lemma,

$$
\sigma(M) \subset M,
$$

so $\psi(\sigma) \in G(M, F)$. If $\sigma \in \operatorname{ker} \psi$ then $\left.\sigma\right|_{M}=\operatorname{id}_{M}$, ie. $\sigma \in G(K, M)$. Hence, $\operatorname{ker} \psi=G(K, M)$. So by $1^{\text {st }}$ isomorphism theorem,

$$
G / G(K, M)=G / \operatorname{ker} \psi \cong \operatorname{Im} \psi \subset G(M, F)
$$

But $|G / G(K, M)|=[M: F]=|G(M, F)|$, so

$$
G / G(K, M) \cong G(M, F)
$$

Theorem 3.10.9. Let $F \subset K$ be an extension field. Let $f(x) \in F[x]$. Then the Galois group of $f(x)$ over K is isomorphic to a subgroup of the Galois group of $f(x)$ over F.

Proof. Let L be the splitting field of $f(x)$ over K and E the splitting field of $f(x)$ over F. Since $f(x)$ splits in $L, E \subset L$. Let $r_{1}, \ldots, r_{n} \in E$ be the roots of $f(x)$.

For $\sigma \in G(L, K), \sigma$ is determined by its action on r_{1}, \ldots, r_{k}. Define $\psi: G(L, K) \mapsto G(E, F)$ by $\psi(\sigma)=\left.\sigma\right|_{E}$. If $\psi(\sigma)=\psi(\tau)$ then $\left.\sigma\right|_{E}=\left.\tau\right|_{E}$, so

$$
\sigma\left(r_{j}\right)=\tau\left(r_{j}\right) \quad \forall j .
$$

$\therefore \sigma=\tau$. Hence ψ is a monomorphism.
Example 3.10.10. Let E be the finite field with p^{n} elements, which was shown to be the splitting field of $x^{p^{n}}-x$ over \mathbb{F}_{p}. Define $\phi \in \operatorname{Aut}(E)$ by

$$
\phi(x)=x^{p} .
$$

Then it is clear that the automorphisms $\phi, \phi^{2}, \ldots, \phi^{n}=\mathrm{id}$ are distinct. But $\left|G\left(E, \mathbb{F}_{p}\right)\right|=\left[E: \mathbb{F}_{p}\right]=n$, and thus,

$$
G\left(E, \mathbb{F}_{p}\right)=\left\{\phi, \phi^{2}, \ldots, \phi^{n}\right\} .
$$

In particular, this shows that $G\left(E, \mathbb{F}_{p}\right)$ is cyclic.

3.11 Constructions with Ruler and Compass

Let $S \subset \mathbb{C} \cong \mathbb{R}^{2}$ be a finite subset. Let

$$
S^{\prime}:=\{z \in \mathbb{C} \mid z \text { can be constructed from the points of } S \text { using a ruler and compass }\} .
$$

More precisely:
Let $S_{0}=S$. Using a ruler and compass, we can join pts. in S_{0} with lines or can construct circles centred at a point in S_{0} and passing through another point in S_{0}. Let \tilde{S}_{0} be the set of points which are the intersections of these lines and circles.
Let $S_{1}=S_{0} \cup \tilde{S}_{0}, S_{2}=S_{1} \cup \tilde{S}_{1}, \ldots, S_{n}=S_{n-1} \cup \tilde{S}_{n-1}$. Then let

$$
S^{\prime}=\bigcup_{n} S_{n}
$$

Let $P_{0}=0=(0,0), P_{1}=1=(1,0)$. Let $F=\left\{P_{0}, P_{1}\right\}^{\prime}$. We say z is constructible if $z \in F$. Show F is a field.

Proposition 3.11.1. If $z_{1}, z_{2} \in S^{\prime}$ then $\frac{z_{1}+z_{2}}{2} \in S^{\prime}$.
Proof.

Let $c_{1}:=C_{z_{1}}\left(z_{2}\right)$, the circle centred at z_{1} through z_{2}, and let $c_{2}:=C_{z_{2}}\left(z_{1}\right)$. Let A, B be the two intersection points of c_{1} and c_{2}. Then $L(A, B)$, the line through A and B, intersects $L\left(z_{1}, z_{2}\right)$ at $\frac{z_{1}+z_{2}}{2}$.

Proposition 3.11.2. If $z_{1}, z_{2} \in F$ then $z_{1}+z_{2} \in F$.
Proof. $C_{\frac{z_{1}+z_{2}}{2}}(0)$ meets $L\left(0, \frac{z_{1}+z_{2}}{2}\right)$ at $z_{1}+z_{2}$ (and 0$)$.
Proposition 3.11.3. If $z \in F$ then $-z \in F$.

Proof. Intersect $L(0, z)$ with $C_{0}(z)$.
Proposition 3.11.4. $z=(x, y) \in F \Longleftrightarrow(x, 0) \in F$ and $(0, y) \in F$.

Proof.

\Rightarrow : Suppose $z=(x, y) \in F . C_{z}(0)$ meets $L\left(0, P_{1}\right)$ at $(2 x, 0)$, so $(2 x, 0) \in F$. By Prop. 3.11.1, $(x, 0) \in F$. Hence also,

$$
(0, y)=(x, y)-(x, 0) \in F
$$

$\Leftarrow:$ If $(x, 0),(0, y) \in F$ then by Prop. 3.11.2,

$$
(x, y)=(x, 0)+(0, y) \in F .
$$

Let

$$
\mathcal{L}:=\{\text { lines joining two points in } F\} .
$$

Proposition 3.11.5. Let $L \in \mathcal{L}, A \in F$. Then the line parallel to L through A lies in \mathcal{L}.
Proof. Let $P, Q \in F$ be distinct points lying on L. Let

$$
R=P-Q+A \in F .
$$

Then the line parallel to L through A is $L(A, R)$.
Proposition 3.11.6. Let $L \in \mathcal{L}, A \in F$. Then the line through A perpendicular to L lies in \mathcal{L}.
Proof.
Case 1: $A \notin L$. Let C be the other point where $C_{A}(B)$ meets L and let $D=\frac{B+C}{2}$. (If $C_{A}(B)$ happens to be tangent to L at B then let $D=B$).

Then $D \in F$ and $L(A, D)$ is the line perependicular to $B C$ through A.
Case 2: $A \in L$. Since L has at least two points of F, let $A \neq B \in L$. Let C be the other point where $C_{A}(B)$ meets L.

Then $A=\frac{B+C}{2}$ and the construction of Prop. 3.11.1 produces the line through A perpendicular to L.

Proposition 3.11.7. Let $z=r e^{i \theta}$. Then $z \in F \Longleftrightarrow r \in F$ and $e^{i \theta} \in F$.

Proof.

\Rightarrow : Suppose $z \in F . C_{0}(z)$ meets $L\left(0, P_{1}\right)$ at $(r, 0)$, ie. $r \in F . e^{i \theta}$ is the point where $L\left(0, r e^{i \theta}\right)$ crosses $C_{0}\left(P_{1}\right)$. Hence $e^{i \theta} \in F$.
$\Leftarrow:$ Let $r \in F$ and $e^{i \theta} \in F$. Then $r e^{i \theta}$ is the point where $L\left(0, e^{i \theta}\right)$ meets the circle centred at 0 through $(r, 0)$.

Proposition 3.11.8. $\exists P, Q, R \in F$ s.t. $\angle P Q R=\theta \Longleftrightarrow e^{i \theta} \in F$.
Proof.
\Rightarrow : Suppose $P, Q, R \in F$ s.t. $\angle P Q R=\theta$. Let

Let A be the point where $C_{0}\left(P_{1}\right)$ meets $L\left(0, R^{\prime}\right)$. Let B be the point where the perpendicular to $L\left(0, P^{\prime}\right)$ through A meets $L\left(O, P^{\prime}\right)$. Then

$$
\cos \theta=|0 B| \in F .
$$

Also, letting $z=A-B$,

$$
\sin \theta=|A B|=|z| \in F
$$

Then the y-axis is in \mathcal{L} by Prop. 3.11.6, and $i \sin \theta$ is the point where $C_{0}(\sin \theta)$ meets the y-axis, whence $i \sin \theta \in F$. So

$$
e^{i \theta}=\cos \theta+i \sin \theta \in F .
$$

$\Leftarrow:$ Suppose $e^{i \theta} \in F$. Let

$$
P=(0,1), \quad Q=0, \quad R=e^{i \theta}=(\cos \theta, \sin \theta) .
$$

Then $\angle P Q R=\theta$.

Proposition 3.11.9. Let $(\cos \theta, \sin \theta) \in F$ and $(\cos \tau, \sin \tau) \in F$. Then $(\cos (\theta+\tau), \sin (\theta+\tau)) \in F$.
Proof.

Let $P=(\cos \theta, \sin \theta)$, so $(\cos \theta, 0) \in F$. Let $Q=(2 \cos \theta, 0) \in F$. Let R be the point where $L(Q, P)$ meets the line joining 0 to $(\cos \tau, \sin \tau)$. Let $S=2 R$. Then $Q, R, S \in F$ and $\angle Q R S=\theta+\tau$. So

$$
(\cos (\theta+\tau), \sin (\theta+\tau)) \in F
$$

Proposition 3.11.10. If $z_{1}, z_{2} \in F$ then $z_{1} z_{2} \in F$.
Proof. Let $z_{1}=r_{1} e^{i \theta_{1}}, z_{2} r_{2} e^{i \theta_{2}}$. Then $z_{1} \in F \Rightarrow\left(r_{1}, 0\right) \in F$ and $z_{2} \in F \Rightarrow\left(r_{2}, 0\right) \in F$.

The line joining $\left(r_{1}, 0\right)$ to $\left(0, r_{1} r_{2}\right)$ is parallel to that joining $(1,0)$ to $\left(0, r_{2}\right)$, so it lies in \mathcal{L}. Hence, its intersection with the y-axis lies in F, ie. $\left(0, r_{1} r_{2}\right) \in F$.
$z_{1} \in F \Rightarrow\left(\cos \theta_{1}, \sin \theta_{1}\right) \in F$ and $z_{2} \in F \Rightarrow\left(\cos \theta_{2}, \sin \theta_{2}\right) \in F$ by Prop. 3.11.7. So by Prop. 3.11.9,

$$
P=\left(\cos \left(\theta_{1}+\theta_{2}\right), \sin \left(\theta_{1}+\theta_{2}\right)\right) \in F .
$$

$L(0, P)$ meets the circle centred at 0 through $\left(0, r_{1} r_{2}\right)$ at $z_{1} z_{2}$.
Proposition 3.11.11. If $z \in F$ then $\frac{1}{z} \in F$.
Proof. Let $z=r e^{i \theta}$.

As above, $z \in F \Rightarrow(0, r) \in F \Rightarrow$ the line joining $(1,0)$ to $(0, r)$ lies in \mathcal{L}. So the line joining $\left(\frac{1}{r}, 0\right)$ to $(0,1)$ lies in \mathcal{L}, and thus, $\left(\frac{1}{r}, 0\right) \in F$.
$e^{i \theta} \in F$, so by Props. 3.11.3 and 3.11.4, $e^{-i \theta} \in F$. By Prop. 3.11.10,

$$
\frac{1}{z}=\frac{1}{r} e^{-i \theta} \in F
$$

Thus, F is a field.
Proposition 3.11.12. If $z^{2} \in F$ then $z \in F$.
Proof. $z=\left(\frac{z+1}{2}\right)^{2}-\left(\frac{z-1}{2}\right)^{2}$.

Let $z=r e^{i \tau}$, so $z^{2}=r^{2} e^{i 2 \tau} \in F$. Then $\left(r^{2}, 0\right) \in F^{2}$ so $A=\left(r^{2}, 0\right)+(1,0) \in F$. Let $B=\frac{A}{2} \in F$. Let C be the point where $C_{B}(A)$ meets the perpendicular to $L(0, A)$ through $(1,0)$. By Pythagoras,

$$
\left|P_{1} C\right|^{2}=|B C|^{2}-\left|P_{1} B\right|^{2}=\left(\frac{r+1}{2}\right)^{2}-\left(\frac{r-1}{2}\right)^{2} .
$$

$\therefore C=(1, r)$ so $r \in F$.
Let $\theta=2 \tau . r^{2} e^{2 i \tau} \in F \Rightarrow e^{i 2 \tau} \in F$, ie. $Q=(\cos \theta, \sin \theta) \in F$. Let

$$
\begin{aligned}
S & =Q-P_{1} \\
& =(\cos 2 \tau-1, \sin 2 \tau) \\
& =\left(2 \cos ^{2} \tau, 2 \cos \tau \sin \tau\right) \\
& =2 \cos \tau(\cos \tau, \sin \tau) .
\end{aligned}
$$

So, if $\cos \tau \neq 0$ then $\angle P_{1} 0 S=\tau$, ie. $L(0, S)$ bisects $\angle P_{1} 0 Q$. If $\cos \tau=0$ then $\tau= \pm \frac{\pi}{2}$ and it is obvious that a line with angle τ is in \mathcal{L}. The circle centred at 0 passing through ($r, 0$) meets this line at $r e^{i \tau} \in F$.

Theorem 3.11.13. F is the smallest subfield of \mathbb{C} which is closed under square roots and complex conjugation.
Proof. By earlier propositions, F is closed under square roots and complex conjugation. Conversely, let K be a subfield of \mathbb{C} closed under square roots and complex conjugation. Since $S_{0}=\{0,1\} \in K$, if we can show that $K^{\prime}=K$, it will follow that $F \subset K$.

Lemma 3.11.14. The equation of a line joining two points in K can be written in the form

$$
a x+b y=c
$$

where $a, b, c \in K \cap \mathbb{R}$.
Proof. Let L join $P=\left(p_{1}, p_{2}\right)$ to $Q=\left(q_{1}, q_{2}\right)$, where $p_{1}, p_{2}, q_{1}, q_{2} \in K \cap \mathbb{R}$. (Since K is closed under complex conjugation, it is clear that this can be done for any elements $P, Q \in K$). Then L has the equation

$$
\left(q_{1}-p_{1}\right)\left(y-p_{2}\right)=\left(q_{2}-p_{2}\right)\left(x-p_{1}\right)
$$

which has the desired form.
Lemma 3.11.15. The equation for a circle centred at a point of K passing through another point of K can be written in the form

$$
x^{2}+y^{2}+a x+b y+c=0
$$

where $a, b, c \in K \cap \mathbb{R}$.
Proof. Let C be the circle centered at $P=\left(p_{1}, p_{2}\right)$ passing through $Q=\left(q_{1}, q_{2}\right)$., where $p_{1}, p_{2}, q_{1}, q_{2} \in$ $K \cap \mathbb{R}$. Then the radius of C is

$$
r=\sqrt{\left(q_{2}-p_{q}\right)^{2}+\left(q_{1}-p_{1}\right)^{2}} \in K \cap \mathbb{R}
$$

So C has the equation

$$
\left(x-p_{1}\right)^{2}+\left(y-p_{2}\right)^{2}=r^{2},
$$

which has the desired form.
Proof of Theorem (continued).

1. The intersection of $a x+b y=c, a^{\prime} x+b^{\prime} y=c^{\prime}$ is the solution of the simultaneous equations, which is given by a quotient of determinants involving $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. So the intersection is $z=(p, q)$ where $p, q \in K \cap \mathbb{R}$. Hence $z=p+i q \in K$.
2. The intersection(s) of $a x+b y=c$ and $x^{2}+y^{2}+a^{\prime} x+b^{\prime} y+c^{\prime}=0$:

$$
x^{2}+\left(\frac{c-a x}{b}\right)^{2}+a^{\prime} x+b^{\prime}\left(\frac{c-a x}{b}\right)+c^{\prime}=0
$$

(consider $b=0$ separately: exercise). This is a quadratic, so if there is a solution then by quadratic formula, it lies in $K \cap \mathbb{R}$. Similarly, the solution for y lies in $K \cap \mathbb{R}$.
3. Intersection(s) of $x^{2}+y^{2}+a x+b y+c=0$ and $x^{2}+y^{2}+a^{\prime} x+b^{\prime} y+c^{\prime}=0$:

By subtracting the equations, get

$$
\left(a-a^{\prime}\right) x+\left(b-b^{\prime}\right) y+c-c^{\prime}=0
$$

so the intersection pts. are the same as that of the line $\left(a-a^{\prime}\right) x+\left(b-b^{\prime}\right) y+c-c^{\prime}=0$ and the circle $x^{2}+y^{2}+a x+b y+c=0$, which transposes into case 2 .

Theorem 3.11.16. If $z \in F$ then z is algebraic over \mathbb{Q} and $[\mathbb{Q}(z): \mathbb{Q}]$ is a power of 2 .
Proof. By the last theorem, if $z \in F$ then we can create a field K s.t. $z \in K$ by a finite number of extensions, each of which adjoins the square root of some element. That is,

$$
\mathbb{Q} \subset \mathbb{Q}(z) \subset K
$$

where $\mathbb{Q} \subset K$ is a composition of some sequence of degree 2 extensions. So

$$
[K: \mathbb{Q}]=2^{t}
$$

for some t, and $[\mathbb{Q}(z): \mathbb{Q}]$ divides 2^{t}, so it is a power of 2 .
Example 3.11.17. It is impossible by ruler and compass to trisect 60°.
Proof. Using earlier techniques, we can construct equilateral triangles and thus $\cos 60^{\circ}, \sin 60^{\circ} \in F$. If 60° could be trisected, then $\alpha=\cos 20^{\circ}$ would be in F.

In general,

$$
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta
$$

For $\theta=20^{\circ}, \cos 3 \theta=\cos 60=\frac{1}{2}$. So

$$
\frac{1}{2}=4 \alpha^{3}-3 \alpha
$$

or

$$
8 \alpha^{3}-6 \alpha-1=0
$$

But $8 x^{3}-6 x-1$ is irreducible over \mathbb{Q}, so

$$
[\mathbb{Q}(\alpha): \mathbb{Q}]=3,
$$

which is not a power of 2 . Hence $\alpha \notin F$. So 60° cannot be trisected using ruler and compass.
Example 3.11.18. It is impossible by ruler and compass to "double" the cube (ie. to construct a cube whose volume is twice that of a given cube). (Historically, this was called "duplicating" the cube).
Proof. Suppose the volume of the original cube is 1 . Then the length of the edge of the new cube is $2^{\frac{1}{3}}$, whose min. poly. is $x^{3}-2$. Since 3 is not a power of $2,2^{\frac{1}{3}}$ is not constructible, so we cannot duplicate the cube.

3.12 Solvability by Radicals

$g(x)=x^{2}+b x+c \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}$. So if $b, c \in \mathbb{Q}$, then we can form the splitting field of $f(x)$ by adjoining to \mathbb{Q} the square root of some elt. of \mathbb{Q}.
$g(x)=x^{3}+a x^{2}+b x+c$. We shall see, \exists a formula where, by successively adding roots (cube roots and square roots) to our field, we can produce the splitting field of $g(x)$. \exists a similar formula for quartics.

Given a field F and a polynomial $p(x) \in F[x]$, we say that $p(x)$ is solvable by radicals over F if we can find a sequence of fields satisfying:

$$
\begin{aligned}
F_{0} & =F \\
F_{1} & =F_{0}\left(w_{1}\right) \quad \text { where } w_{1}^{r_{1}} \in F_{0} \text { for some } r_{1} \\
F_{2} & =F_{1}\left(w_{2}\right) \quad \text { where } w_{2}^{r_{2}} \in F_{1} \text { for some } r_{2} \\
& \vdots \\
F_{n} & =F_{n-1}\left(w_{n}\right) \quad \text { where } w_{n}^{r_{n}} \in F_{n-1} \text { for some } r_{n}
\end{aligned}
$$

such that $p(x)$ splits in F_{n}. (We do not require that F_{n} be the splitting field of $p(x)$; it could be larger. Thus, F_{n} might not be normal.)

Let $F=K\left(a_{1}, \ldots, a_{n}\right)$ be the field of fractions in n variables. The general polynomial of degree n over K,

$$
p(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}
$$

can be regarded as an elements of $F[x]$. Finding a "formula" involving roots for the general polynomial of degree n over K means showing that $p(x) \in F[x]$ is solvable by radicals. We shall show that that this is not true if $n \geq 5$.
Note: This does not mean that it is impossible for some specific $5^{\text {th }}$ degree polys. in $K[x]$ to be solvable by radicals.
Theorem 3.12.1. Suppose char $F=0$. Let $p(x)=x^{n}-1 \in F[x]$. Then $F\left(e^{\frac{2 \pi i}{n}}\right)$ is the splitting field of $p(x)$ over F, and the Galois group of $p(x)$ over F is abelian.

Proof. Let $w=e^{\frac{2 \pi i}{n}}$. Then all roots of $p(x)$ are powers of w, so $F(w)$ is the splitting field for $p(x)$ over F.

Let $\sigma, \tau \in G=G(F(w), F) . \sigma$ is determined by $\sigma(w)$, since $\sigma(f)=f \forall f \in F . \sigma(w)$ is a root of $x^{n}-1$, so let

$$
\sigma(w)=w^{j}, \quad \text { for some } j
$$

Similarly,

$$
\tau(w)=w^{k}, \quad \text { for some } k .
$$

So

$$
\sigma \tau(w)=\sigma\left(w^{k}\right)=(\sigma(w))^{k}=\left(w^{j}\right)^{k}=w^{j k}=\tau \sigma(w) .
$$

ie. $\sigma \tau=\tau \sigma$. So G is abelian.
Theorem 3.12.2. Suppose char $F=0$ and suppose $w=e^{\frac{2 \pi i}{n}} \in F$. Let u be a root of $p(x)=x^{n}-a$ lying in an extension field of F. Then $F(u)$ is the splitting field of $p(x)$ over F and the Galois group of $x^{n}-a$ over F is cyclic, with order dividing n.

Proof. Let $F \subset K$ be an extension s.t. $u \in K$. Then the n roots of $x^{n}-a$ are

$$
u, w u, w^{2} u, \ldots, w^{n-1} u
$$

which all lie in $F(u)$. So $F(u)$ is the splitting field of $p(x)$ over F.
Let $G=G(F(u), F)$. Let $\sigma \in G$. Then $\sigma(u)$ is a root of $p(x)$, so $\sigma(u)=w^{j} u$ for some j, and σ is determined by $\sigma(u)$. Define $\psi: G \mapsto \mathbb{Z} / n \mathbb{Z}$ by

$$
\psi(\sigma)=j \quad \text { where } \sigma(u)=w^{j} u
$$

If $\psi(\tau)=k$ then

$$
\sigma \tau(u)=\sigma\left(w^{k} u\right)=\sigma\left(w^{k}\right) \sigma(u)=w^{k} w^{j} u=w^{j+k} u .
$$

$\therefore \psi(\sigma \tau)=j+k=\psi(\sigma)+\psi(\tau)$, so ψ is a group homomorphism. If $\psi(\sigma)=\psi(\tau)$ then $\sigma(u)=\sigma(\tau)$ and thus $\sigma=\tau$. Hence ψ is a monomorphism. Thus,

$$
G \cong \text { subgroup of a cyclic group of order } n,
$$

so G is cyclic with order dividing n.
Theorem 3.12.3. Let p be prime. Suppose $\exists p$ distinct elts. $z_{1}, \ldots, z_{n} \in F$ s.t.

$$
z_{j}^{p}=1 \quad \forall j .
$$

Let $F \subset E$ be normal s.t. $G=G(E, F)$ is cyclic of order p. Then $E=F(u)$ where $u^{p} \in F$.
Proof. Let $c \in E-F$. Since $[E: F]=|G|=p$, there are no fields lying strictly between F and E, so $E=F(c)$. Let σ be a generator of G. Let

$$
c_{1}=c, c_{2}=\sigma(c), c_{3}=\sigma\left(c_{2}\right), \ldots, c_{j}=\sigma\left(c_{j-1}\right)
$$

Let

$$
a_{j}=c_{1}+c_{2} z_{j}+c_{3} z_{j}^{2}+\cdots+c_{p} z_{j}^{p-1}
$$

Then, using the fact that $z_{j}^{p}=1$,

$$
\sigma\left(a_{j}\right)=c_{2}+c_{3} z_{j}+\cdots+c_{p} z_{j}^{p-2}+c_{1} z_{j}^{p-1}=\frac{a_{j}}{z_{j}}
$$

So $\sigma\left(a_{j}^{p}\right)=\left(\sigma\left(a_{j}\right)\right)^{p}=\frac{a_{j}^{p}}{z_{j}^{p}}=a_{j}^{p}$. Thus, $g\left(a_{j}^{p}\right)=a_{j}^{p} \forall g \in G$, ie. $a_{j}^{p} \in F$. Letting

$$
M=\left(\begin{array}{ccccc}
1 & z_{1} & z_{1}^{2} & \cdots & z_{1}^{p-1} \\
1 & z_{2} & z_{2}^{2} & \cdots & z_{2}^{p-1} \\
& & \vdots & & \\
1 & z_{p} & z_{p}^{2} & \cdots & z_{p}^{p-1}
\end{array}\right) \text {, }
$$

we have

$$
M\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{p}
\end{array}\right)
$$

Since M has entries in F and

$$
\operatorname{det} M=\prod_{i<j}\left(z_{i}-z_{j}\right) \neq 0,
$$

we can write $c=c_{1}$ as an F-linear combination of a_{1}, \ldots, a_{p}. Since $c \notin F$, not all a_{j} are in F.
Let $u=a_{j}$ s.t. $a_{j} \notin F$. Then $E=F(u)$ (by the same reasoning that showed $E=F(c)$) and $u^{p}=a_{j}^{p} \in F$.

Theorem 3.12.4. Let $p(x) \in F[x]$ be solvable by radicals over F, where char $F=0$. Then $\exists a$ sequence of field extensions

$$
F=L_{0} \subset L_{1} \subset \cdots \subset L_{k}=L
$$

where $L_{\lambda}=L_{\lambda-1}\left(\alpha_{\lambda}\right)$, s.t. $\quad \alpha_{\lambda}^{s_{\lambda}} \in L_{\lambda-1}$ for some s_{λ} and L is normal over F and contains the splitting field of $p(x)$.

Proof. By definition, \exists a sequence

$$
F=K_{0} \subset K_{1} \subset \cdots \subset K_{m}=K
$$

where $K_{j}=K_{j-1}\left(w_{j}\right)$ with $w_{j}^{r_{j}} \in K_{j-1}$ for some r_{j}, and $p(x)$ splits in K.
Write $K=F(a)$ and let L be the splitting field of the min. poly. of a over F. Thus L is normal over F. Let

$$
G=G(L, F)=\left\{\sigma_{0}, \ldots, \sigma_{t-1}\right\}, \quad \text { where }|G|=t .
$$

Since $K=F\left(w_{1}, w_{2}, \ldots, w_{m}\right)$,

$$
L=F\left(\sigma_{0} w_{1}, \sigma_{1} w_{1}, \ldots, \sigma_{t-1} w_{1}, \sigma_{0} w_{2}, \ldots, \sigma_{t-1} w_{2}, \ldots, \sigma_{0} w_{m}, \ldots, \sigma_{t-1} w_{m}\right)
$$

Label these generators α_{λ}, ie. let $\alpha_{\lambda}=\sigma_{i} w_{j+1}$ where

$$
\lambda-1=i+t j, \quad 0 \leq i \leq t-1, \quad 0 \leq j \leq m-1 .
$$

Inductively define $L_{0}:=F, L_{\lambda}=L_{\lambda-1}\left(\alpha_{\lambda}\right)$ for $1 \leq \lambda \leq t$.
Given λ, write $\lambda-1=i+t j$ where $0 \leq i \leq t-1,0 \leq j \leq m-1$. Then

$$
\alpha_{\lambda}^{r_{j+1}}=\left(\sigma_{i} w_{j+1}\right)^{r_{j+1}}=\sigma_{i}\left(w_{j+1}^{r_{j+1}}\right) \in \sigma_{i}\left(K_{j}\right)=F\left(\sigma_{i} w_{1}, \ldots, \sigma_{i} w_{j}\right) \subset L_{\lambda-1} .
$$

Thus, setting $s_{\lambda}=r_{j+1}$ satisfies the statement of the theorem.
Theorem 3.12.5. Let F be a field with char $F=0$ and let $f(x) \in F[x]$. Then $f(x)$ is solvable by radicals \Longleftrightarrow the Galois group of $f(x)$ over F is a solvable group.

Proof.
\Rightarrow : Suppose $f(x)$ is solvable by radicals. Then \exists a sequence of field extensions

$$
F=L_{0} \subset L_{1} \subset \cdots \subset L_{k}=L
$$

where $L_{j}=L_{j-1}\left(\alpha_{j}\right)$, s.t. $\alpha_{j}^{r_{j}} \in L_{j-1}$ and L is normal over F and $f(x)$ splits in L. Since L is normal, L is the splitting field of some $g(x) \in F[x]$. Let $n=\operatorname{lcm}\left\{r_{1}, \ldots, r_{j}\right\}$ and let

$$
w=e^{\frac{2 \pi i}{n}} .
$$

Let $G=G(L, F)$ and $H=G(L(w), F)$. L is normal over F, so by the Fund. Thm. (part 5),

$$
G \cong H / G(L(w), L) .
$$

$G(L(w), L)$ is abelian, so to show G is solvable, it suffices to show that H is solvable.
Let

$$
H_{0}=G(L(w), F)
$$

and for $i \geq 1$,

$$
H_{i}=G\left(L(w), L_{i-1}(w)\right)
$$

Then $H_{0}=H$ and $H_{k+1}=\{e\} . F(w)$ is normal over F, and by Theorem 3.12.2, $L_{i}(w)$ is normal over $L_{i-1}(w)$ for each i. So by the Fund. Thm. (parts 4 and 5), $H_{i+1} \triangleleft H_{i}$ and

$$
H_{i} / H_{i+1} \cong G\left(L_{i}(w), L_{i-1}(w)\right),
$$

for $i \geq 1$, whereas

$$
H_{0} / H_{1} \cong G(F(w), F) .
$$

By Theorem 3.12.2, $G\left(L_{i}(w), L_{i-1}(w)\right)$ is cyclic and thus abelian. $G(F(w), F)$ is also abelian. Hence, H is solvable, and so G is solvable.
\Leftarrow : Suppose that the Galois group of $f(x)$ over F is a solvable group. Let E be the splitting field of $f(x)$ over F. Let $G=G(E, F)$ and let $n=|G|$. Let $F_{0}=F$ and $F_{1}=F_{0}(w)$ where $w=e^{\frac{2 \pi i}{n}}$. Let $K=E(w)$. By the Fund. Thm. (part 5),

$$
G(K, F) / G \cong G(E(w), E),
$$

which is abelian, so $G(K, F)$ is solvable. By Theorem 3.10.9, $G\left(K, F_{1}\right)$ is isomorphic to a subgroup H of $G(K, F)$, so it too is solvable.
So \exists subgroups

$$
\{e\}=H_{r+1} \triangleleft H_{r} \triangleleft \cdots \triangleleft H_{2} \triangleleft H_{1}=H
$$

s.t. H_{j} / H_{j+1} is cyclic of prime order.

By the Fund. Thm., corresponding to this is a sequence of fields

$$
F_{1} \subset F_{2} \subset \cdots \subset F_{r+1}
$$

where $F_{j}=K^{H_{j}}$, so that $H_{j}=G\left(K, F_{j}\right) . \quad F_{j}$ is normal over F_{j+1} with cyclic Galois group of prime order p_{j}. Since $p_{j}| | G \mid=n$ and $e^{\frac{2 \pi i}{n}} \in F_{j}, F_{j}$ contains all the $p_{j}^{\text {th }}$ roots of 1 . By Theorem 3.12.3, this implies that

$$
F_{j+1}=F_{j}\left(\alpha_{j}\right)
$$

where $\alpha_{j}^{p_{j}} \in F_{j}$. Since $F_{r+1}=K$ contains the splitting field of $f(x), f(x)$ is solvable by radicals over F.

Theorem 3.12.6. The Galois group of $p(x)=x^{n}+a_{1} x^{n+1}+\cdots+a_{n-1} x+a_{n}$ over $K\left(a_{1}, \ldots, a_{n}\right)[x]$ is S_{n}.

Proof. Let r_{1}, \ldots, r_{n} be the roots of $p(x)$ in some extension field M of $K\left(a_{1}, \ldots, a_{n}\right)$. Then the splitting field of $p(x)$ is $K\left(r_{1}, \ldots, r_{n}\right)$, and

$$
a_{j}= \pm s_{j}\left(r_{1}, \ldots, r_{n}\right) \quad(\text { the } j \text { th } \text { symmetric poly. }) .
$$

\therefore The Galois group of $p(x)$ is S_{n} by Theorem 3.9.2.
Corollary 3.12.7. The general $n^{\text {th }}$ order polynomial is not solvable by radicals if $n \geq 5$.

3.13 Calculation of Galois Groups: Cubics and Quartics

Let $f(x) \in F[x]$. Let E be the splitting field of $f(x)$ over F. Suppose E is separable over F. Let $G=G(E, F)$ be the Galois group of $f(x)$ over F and let $\alpha_{1}, \ldots, \alpha_{n} \in E$ be the roots of $f(x)$.

As noted earlier, each $\sigma \in G$ permutes $\alpha_{1}, \ldots, \alpha_{n}$, and this association yields a homo.

$$
G \subset S_{n} .
$$

What properties must this subgroup have?
Definition 3.13.1. A subgroup $G \subset S_{n}$ is called transitive if $\forall i, j \exists \sigma \in G$ s.t. $\sigma(i)=j$.
Example 3.13.2. $\left\{e,(1234),(13)(24),\left(\begin{array}{ll}1 & 4 \\ 3\end{array}\right)\right\} \subset S_{4}$ is transitive.
$\{e,(12),(34),(12)(34)\} \subset S_{4}$ is not transitive.
If $k<n$ then $S_{k} \subset S_{n}$ cannot be transitive. So, to have a chance for G to be transitive in $S_{\operatorname{deg} f(x)}$, $f(x)$ must have distinct roots.

Theorem 3.13.3. Let $n=\operatorname{deg} f(x)$. Then $G \subset S_{n}$ is transitive $\Longleftrightarrow f(x)$ is irreducible in $F[x]$.

Proof.

$\Leftarrow:$ Suppose $f(x)$ is irreducible. Then by Theorem 3.3.15, for any pair of roots α, β of $f(x), \exists \sigma \in G$ s.t. $\sigma(\alpha)=\beta$. So G is transitive.
\Rightarrow : Suppose G is transitive. If $f(x)$ is reducible, write

$$
f(x)=g(x) h(x)
$$

where $g(x)$ is irreducible. Let α be a root of $g(x)$. If β is any root of $f(x)$, then find $\sigma \in G$ s.t. $\sigma(\alpha)=\beta$. Since $g \in F[x]$ and σ fixes F, this means that β is also a root of $g(x)$. This shows that every root of $f(x)$ is a root of $g(x)$. But G transitive \Rightarrow the roots of $f(x)$ are distinct, so roots of $h(x)$ are not roots of $g(x)$, which is a contradiction. Hence $f(x)$ is irreducible.

Let $h\left(y_{1}, \ldots, y_{n}\right) \in F\left[y_{1}, \ldots, y_{n}\right]$. Let

$$
H=\left\{\sigma \in S_{n} \mid \sigma h=h\right\}
$$

where σ acts by permuting the variables, ie.

$$
h \cdot \sigma=\left(\sigma^{-1} h\right)\left(y_{1}, \ldots, y_{n}\right):=h\left(y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right) .
$$

$H \leq S_{n}$ is called the isotropy subgroup of h.

Example 3.13.4. $n=4, h=y_{1}+y_{2}$. Then $H=\{e,(12),(34),(12)(34)\}$.
Let $\delta=h\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in E$. If $\sigma \in G \cap H$ then $\sigma(\delta)=\delta$, so

$$
\sigma \in G(E, F(\delta)) .
$$

When is $G(E, F(\delta))=G \cap H$?

Example 3.13.5.

1. $n=3$,

$$
h\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)\left(y_{2}-y_{3}\right) .
$$

Then $H=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}=A_{3}$. Let $f(x)$ be an irreducible cubic over F with roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Assume char $F \neq 2$. Let

$$
\Delta=h\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) .
$$

For $\sigma \in G$, if $\sigma \in H$ then $\sigma(\Delta)=\Delta$. If $\sigma \notin H$ then $\sigma(\Delta)=-\Delta \neq \Delta$. So

$$
\sigma(\Delta)=\Delta \Longleftrightarrow \sigma \in G \cap H .
$$

$\therefore G \cap H=G(E, F(\Delta))$.
2. $n=4, h=y_{1}+y_{4}$. Let $f(x)=x^{4}-x^{2}+1$ over $F=\mathbb{Q}$. Then

$$
H=\{e,(14),(23),(14)(23)\}
$$

Also,
$f(x)=x^{4}-x^{2}+1=\left(x^{2}+1\right)^{2}-3 x^{2}=\left(x^{2}+1+\sqrt{3} x\right)\left(x^{2}+1-\sqrt{3} x\right)=\left(x^{2}+\sqrt{3} x+1\right)\left(x^{2}-\sqrt{3} x+1\right)$.
So the roots are

$$
\frac{-\sqrt{3} \pm \sqrt{3-4}}{2}, \quad \frac{\sqrt{3} \pm \sqrt{3-4}}{2}
$$

Let

$$
\alpha_{1}=\frac{-\sqrt{3}+i}{2}, \alpha_{2}=\frac{-\sqrt{3}-i}{2}, \alpha_{3}=\frac{\sqrt{3}+i}{2}, \alpha_{4}=\frac{\sqrt{3}-i}{2}
$$

and with this numbering of the roots, $H \subset G$. So

$$
\delta=h\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\alpha_{1}+\alpha_{4}=0 .
$$

Consider complex conjugation $\sigma . \sigma \in G$ and acts on the roots as $\sigma=(12)(34)$, so $\sigma \notin H$. But $\sigma(0)=0$. So in this case,

$$
H=G \cap H \varsubsetneqq G(E, F(\delta))=G(E, F(0))=G(E, F) .
$$

More generally, suppose

$$
\delta_{j}=h_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in E
$$

for $j=1, \ldots, k$, where $h_{j} \in F\left[y_{1}, \ldots, y_{n}\right]$. Define the isotropy subgroup by

$$
H=\left\{\sigma \in S_{n} \mid \sigma h_{j}=h_{j} \forall j=1, \ldots, k\right\} .
$$

In general:
Theorem 3.13.6. Let

$$
\delta_{j}=h_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in E
$$

where $h_{j}\left(y_{1}, \ldots, y_{n}\right) \in F\left[y_{1}, \ldots, y_{n}\right]$. Let $H \subset S_{n}$ be the isotropy subgroup of $\left\{h_{j}\right\}$. Suppose that for all $\sigma \in G-H, \exists j$ s.t. $\sigma\left(\delta_{j}\right) \neq \delta_{j}$. Then

$$
G\left(E, F\left(\delta_{1}, \ldots, \delta_{n}\right)\right)=G \cap H .
$$

Proof. $G \cap H \subset G\left(E, F\left(\delta_{1}, \ldots, \delta_{n}\right)\right)$ in general. Suppose $\sigma \in G\left(E, F\left(\delta_{1}, \ldots, \delta_{n}\right)\right) \subset G(E, F)=G$. Then $\sigma\left(\delta_{j}\right)=\delta_{j} \forall j$ so $\sigma \in H$, since if $\sigma \notin H$ then $\exists j$ s.t. $\sigma\left(\delta_{j}\right) \neq \delta_{j}$.

Note: It is often not so easy to check whether or not the condition $\sigma(\delta) \neq \delta \forall \sigma \in G-H$ is satisfied.

3.14 Cubics

3.14.1 Galois Theory of Cubics

Let

$$
k(z)=z^{3}+a z^{2}+b z+c
$$

be irreducible, $a, b, c \in F$. Assume char $F \neq 2$, 3 . Let $z=x-\frac{a}{3}$ to get

$$
f(x)=x^{3}+p x+q
$$

where $p=\frac{3 b-a^{2}}{3}, q=\frac{2 a^{3}-9 a b+27 c}{27}$. This adds $\frac{a}{3}$ to each root, but does not affect the Galois group since $\frac{a}{3} \in F$.

Let E be the splitting field of f and let $G=G(E, F)$ be the Galois group of f. Since $G \subset S_{3}$, and G is transitive, there are only 2 possibilities: $G=S_{3}$ or $G=A_{3}$.

ie. Depending on a, b, c, either $F\left(\alpha_{1}\right)$ already contains α_{2} and α_{3} so that $E=F\left(\alpha_{1}\right)$ and $G=A_{3}$ or it does not and we have a further degree 2 extension. How do we tell which?

Let

$$
\Delta=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right) .
$$

$f(x)$ is irreducible and char $F \neq 3 \Rightarrow$ the roots are distinct $\Rightarrow \Delta \neq 0$.

$$
H=\left\{e,\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\}=A_{3} \subset G .
$$

If $\sigma \notin H$ then $\sigma(\Delta)=-\Delta \neq \Delta$.. The theorem implies $G(E, F(\Delta))=G \cap H=A_{3}$. So in either case we have:

If $\Delta \in F$ then $F(\Delta)=F$ so

$$
G(E, F)=G(E, F(\Delta))=A_{3} .
$$

If $\Delta \notin F$ then $[F(\Delta): F]>1$ so $[E: F]>3$, so $G=S_{3}$.
Note: $\sigma(\Delta)= \pm \Delta \forall \sigma \in G$ so

$$
\sigma\left(\Delta^{2}\right)=\Delta^{2} \forall \sigma \in G
$$

$\therefore \Delta^{2} \in F$ in any case. (This also shows that if $\Delta \notin F$ then $[F(\Delta): F]=2$, confirming what we already know from above).
$\mathrm{G}=\mathrm{A}_{3} \quad \mathrm{G}=\mathrm{S}_{3}$

So, how to tell if $\Delta \in F$? For a general polynomial $f(x) \in F[x]$, let it factor in its splitting field as

$$
f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)
$$

Let

$$
\Delta=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right) .
$$

The sign of Δ depends on our choice of the order of the roots. Set $D=\Delta^{2}$. Then D is fixed by all permutations of $\left\{\alpha_{j}\right\}$, (since for each permutation $\sigma, \sigma(\Delta)= \pm \Delta$). So $D \in F$. D is called the discriminant of $f(x)$.
$n=2: f(x)=x^{2}+b x+c ;$

$$
\alpha_{1}=\frac{-b+\sqrt{b^{2}-4 c}}{2}, \quad \alpha_{2}=\frac{-b-\sqrt{b^{2}-4 c}}{2} .
$$

$\therefore \Delta=\alpha_{1}-\alpha_{2}=\sqrt{b^{2}-4 c}$ and $D=b^{2}-4 c$.
$n=3: f(x)=x^{3}+a x^{2}+b x+c$. As before, let $x=y-\frac{a}{3}$ to get

$$
g(y)=y^{3}+p y+q
$$

where $p=\frac{1}{3}\left(3 b-a^{2}\right)$ and $q=\frac{1}{27}\left(2 a^{3}-9 a b+27 c\right)$.

$$
g(y)=(y-\alpha)(y-\beta)(y-\gamma)
$$

in an extension field.

$$
\begin{aligned}
& s_{1}=\alpha+\beta+\gamma=0, \\
& s_{2}=\alpha \beta+\beta \gamma+\alpha \gamma=p, \\
& s_{3}=\alpha \beta \gamma=-q .
\end{aligned}
$$

Then

$$
\begin{aligned}
3 y^{2}+p & =g^{\prime}(y) \\
& =(y-\alpha)(y-\beta)+(y-\alpha)(y-\gamma)+(y-\beta)(y-\gamma) \\
\therefore g^{\prime}(\alpha) & =(\alpha-\beta)(\alpha-\gamma) \\
g^{\prime}(\beta) & =(\beta-\alpha)(\beta-\gamma) \\
g^{\prime}(\gamma) & =(\gamma-\alpha)(\gamma-\beta) \\
\therefore D=-g^{\prime}(\alpha) g^{\prime}(\beta) g^{\prime}(\gamma) & .
\end{aligned}
$$

That is,

$$
\begin{aligned}
D & =-\left(3 \alpha^{2}+p\right)\left(3 \beta^{2}+p\right)\left(3 \gamma^{2}+p\right) \\
& =-27 \alpha^{2} \beta^{2} \gamma^{2}-9 p\left(\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}\right)-3 p^{2}\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-p^{3} \\
& =-27 s_{3}^{2}-9 p\left(s_{2}^{2}-2 s_{1} s_{3}\right)-3 p^{2}\left(s_{1}^{2}-2 s_{2}\right)-p^{3} \\
& =-27 q^{2}-9 p\left(p^{2}-0\right)-3 p^{2}(-2 p)-p^{3} \\
& =-4 p^{3}-27 q^{2} \\
& =-4 a^{3} c+a^{2} b^{2}+18 a b c-4 b^{3}-27 c^{2} .
\end{aligned}
$$

3.14.2 Solution of Cubics

$$
0=x^{3}+p x+q=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) .
$$

That is,

$$
\begin{aligned}
\alpha_{1}+\alpha_{2}+\alpha_{3} & =0 \\
\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3} & =p \\
\alpha_{1} \alpha_{2} \alpha_{3} & =-q
\end{aligned}
$$

Find $\alpha_{1}, \alpha_{2}, \alpha_{3}$.
Let

$$
\Delta=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right)=\sqrt{-4 p^{3}-27 q^{2}} .
$$

Let $\omega=e^{\frac{2 \pi i}{3}}$ so that $\omega^{3}=e^{2 \pi i}=1$, ie. ω satisfies

$$
0=\omega^{3}-1=(\omega-1)\left(\omega^{2}+\omega+1\right)
$$

Explicitly,

$$
\omega=\frac{-1+\sqrt{-3}}{2} .
$$

Let

$$
\begin{aligned}
& z_{1}=\alpha_{1}+\omega \alpha_{2}+\omega^{2} \alpha_{3} \\
& z_{2}=\alpha_{1}+\omega^{2} \alpha_{2}+\omega \alpha_{3} \\
& z_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}=0
\end{aligned}
$$

ie.

$$
\left(\begin{array}{c}
z_{1} \\
z_{2} \\
0
\end{array}\right)=A\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right) \quad \text { where } A=\left(\begin{array}{ccc}
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega \\
1 & 1 & 1
\end{array}\right)
$$

If we can find z_{1}, z_{2} then $\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right)=A^{-1}\left(\begin{array}{c}z_{1} \\ z_{2} \\ 0\end{array}\right)$. Explicitly,

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{3}\left(z_{1}+z_{2}\right) \\
& \alpha_{2}=\frac{1}{3}\left(\omega^{2} z_{1}+\omega z_{2}\right) \\
& \alpha_{3}=\frac{1}{3}\left(\omega z_{1}+\omega^{2} z_{2}\right) .
\end{aligned}
$$

To find z_{1}, z_{2} :

$$
\begin{aligned}
z_{1}^{3}= & \alpha_{1}^{3}+\omega^{3} \alpha_{2}^{3}+\omega^{6} \alpha_{3}^{3}+3 \omega \alpha_{1} \alpha_{2}+3 \alpha_{1} \omega^{2} \alpha_{2}^{2} \\
& +3 \omega^{2} \alpha_{1}^{2} \alpha_{3}+3 \omega^{4} \alpha_{1} \alpha_{3}^{2}+3 \omega^{4} \alpha_{2}^{2} \alpha_{3}+3 \omega^{5} \alpha_{2} \alpha_{3}^{2}+6 \omega^{3} \alpha_{1} \alpha_{2} \alpha_{3} .
\end{aligned}
$$

Using the facts that $\alpha_{j}^{3}=-p \alpha_{j}-q, \omega^{3}=1$, and $\omega^{2}=-\omega-1$, this becomes

$$
\begin{aligned}
z_{1}^{3}= & -p \alpha_{1}-q-p \alpha_{2}-q-p \alpha_{3}-q \\
& +3 \omega\left(\alpha_{1}^{2} \alpha_{2}+\alpha_{1} \alpha_{3}^{2}+\alpha_{2}^{2} \alpha_{3}\right)+3 \omega^{2}\left(\alpha_{1} \alpha_{2}^{2}+\alpha_{1}^{2} \alpha_{3}+\alpha_{2} \alpha_{3}^{2}\right)+6 \alpha_{1} \alpha_{2} \alpha_{3} \\
= & -p\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)-3 q-3 \omega\left(\alpha_{1}^{2}+\alpha_{1} \alpha_{3}^{2}+\alpha_{2}^{2} \alpha_{3}\right)+3 \omega^{2}\left(\alpha_{1} \alpha_{2}^{2}+\alpha_{1}^{2} \alpha_{3}+\alpha_{2} \alpha_{3}^{2}\right)-6 q \\
= & -9 q+3 \omega u+3 \omega^{2} v
\end{aligned}
$$

where

$$
\begin{aligned}
& u=\alpha_{1}^{2} \alpha_{2}+\alpha_{1} \alpha_{3}^{2}+\alpha_{2}^{2} \alpha_{3} \quad \text { and } \\
& v=\alpha_{1} \alpha_{2}^{2}+\alpha_{1}^{2} \alpha_{3}+\alpha_{2} \alpha_{3}^{2} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
0 & =\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{3} \\
& =\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}+3 \alpha_{1}^{2} \alpha_{2}+3 \alpha_{1}^{2} \alpha_{3}+3 \alpha_{2}^{2} \alpha_{3}+3 \alpha_{1} \alpha_{2}^{2}+3 \alpha_{1} \alpha_{3}^{2}+3 \alpha_{2} \alpha_{3}^{2}+6 \alpha_{1} \alpha_{2} \alpha_{3} \\
& =-p \alpha_{1}-q-p \alpha_{2}-q-p \alpha_{3}-q+3 u+3 v-6 q \\
& =-9 q+3 u+3 v .
\end{aligned}
$$

$\therefore u+v=3 q$. Also,

$$
\begin{aligned}
\Delta & =\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right) \\
& =\alpha_{1}^{2} \alpha_{2}-\alpha_{1}^{2} \alpha_{3}-\alpha_{1} \alpha_{2}^{2}+\alpha_{1} \alpha_{3}^{2}+\alpha_{2}^{2} \alpha_{3}-\alpha_{2} \alpha_{3}^{2} \\
& =u-v
\end{aligned}
$$

Using the equations $u+v=3 q$ and $u-v=\Delta$, get

$$
\begin{aligned}
& u=\frac{3}{2} q+\frac{\Delta}{2} \\
& v=\frac{3}{2} q-\frac{\Delta}{2} .
\end{aligned}
$$

So

$$
\begin{aligned}
z_{1}^{3} & =-9 q+3 \omega u+3 \omega^{2} v \\
& =-9 q+\omega \frac{9}{2} q+\omega \frac{3}{2} \Delta+\omega^{2} \frac{9}{2} q-\omega^{2} \frac{3}{2} \Delta \\
& =-9 q+\omega \frac{9}{2} q+\omega \frac{3}{2} \Delta-\omega \frac{9}{2} q-\frac{9}{2} q-\omega \frac{3}{2} \Delta+\frac{3}{2} \Delta \\
& =-\frac{27 q}{2}+3 \omega \Delta+\frac{3}{2} \Delta \\
& =-\frac{27 q}{2}+\frac{3}{2} \Delta(2 \omega+1) \\
& =-\frac{27 q}{2}+\frac{3 \sqrt{3} i}{2} \Delta .
\end{aligned}
$$

Similarly, we find

$$
z_{2}^{3}={\overline{z_{1}}}^{3}=-\frac{27 q}{2}-\frac{3 \sqrt{3} i}{2} \Delta
$$

$\therefore z_{1}=\left(-\frac{27 q}{2}+\frac{3 \sqrt{3} i}{2} \Delta\right)^{\frac{1}{3}}$ and $z_{2}=\left(-\frac{27 q}{2}-\frac{3 \sqrt{3} i}{2} \Delta\right)^{\frac{1}{3}}$. This determines $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in terms of p and q.
To illustrate the Galois theory, we now find a formula for α_{2} in terms of α_{1}, that makes is obvious that $\alpha_{2} \in F\left(\alpha_{1}\right) \Longleftrightarrow \Delta \in F$.

$$
\begin{aligned}
\Delta & =\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right) \\
& =\left(\alpha_{1}-\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right)\left(\alpha_{1}+2 \alpha_{2}\right), \quad \text { since } \alpha_{1}+\alpha_{2}+\alpha_{3}=0 \\
& =2 \alpha_{1}^{3}+5 \alpha_{1}^{2} \alpha_{2}+2 \alpha_{1} \alpha_{2}^{2}-2 \alpha_{1}^{2} \alpha_{2}-5 \alpha_{1} \alpha_{2}^{2}-2 \alpha_{2}^{3} \\
& =-2 \alpha_{1} p-2 q+3 \alpha_{1}^{2} \alpha_{2}-3 \alpha_{1} \alpha_{2}^{2}+2 \alpha_{2} p+2 q \\
& =-2 \alpha_{1} p+3 \alpha_{1}^{2} \alpha_{2}-3 \alpha_{1} \alpha_{2}^{2}+2 \alpha_{2} p .
\end{aligned}
$$

Also,

$$
q=-\alpha_{1} \alpha_{2} \alpha_{3}=\alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)=\alpha_{1}^{2} \alpha_{2}+\alpha_{1} \alpha_{2}^{2} \Rightarrow \alpha_{1} \alpha_{2}^{2}=q-\alpha_{1}^{2} \alpha_{2} .
$$

So,

$$
\begin{aligned}
\Delta & =-2 \alpha_{1} p+3 \alpha_{1}^{2} \alpha_{2}-3 q+3 \alpha_{1}^{2} \alpha_{2}+2 \alpha_{2} p \\
& =-2 \alpha_{1} p+6 \alpha_{1}^{2} \alpha_{2}-3 q+2 \alpha_{2} p
\end{aligned}
$$

$\therefore 6 \alpha_{1}^{2} \alpha_{2}+2 \alpha_{2} p=\Delta+2 \alpha_{1} p+3 q$. This gives

$$
\begin{equation*}
\alpha_{2}=\frac{\Delta+2 \alpha_{1} p+3 q}{2\left(3 \alpha_{1}^{2}+p\right)} . \tag{*}
\end{equation*}
$$

Thus, if $\Delta \in F$ then $\alpha_{2} \in F\left(\alpha_{1}\right)$. Conversely, if $\alpha_{2} \in F\left(\alpha_{1}\right)$ then $(*) \Rightarrow \Delta \in F\left(\alpha_{1}\right)$. But

$$
\left[F\left(\alpha_{1}\right): F\right]=3
$$

and $\Delta^{2} \in F$, so this implies that $\Delta \in F$.

3.15 Quartics

3.15.1 Solution of Quartics

We want to solve

$$
z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=0 .
$$

Let $z=x-\frac{a}{4}$ to get the form

$$
x^{4}+p x^{2}+q x+r=0 .
$$

Let the roots be $r_{1}, r_{2}, r_{3}, r_{4}$, so

$$
\begin{aligned}
& s_{1}=r_{1}+r_{2}+r_{3}+r_{4}=0 \\
& s_{2}=r_{1} r_{2}+r_{1} r_{3}+r_{1} r_{4}+r_{2} r_{3}+r_{2} r_{4}+r_{3} r_{4}=p \\
& s_{3}=r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+r_{1} r_{3} r_{4}+r_{2} r_{3} r_{4}=-q \\
& s_{4}=r_{1} r_{2} r_{3} r_{4}=r .
\end{aligned}
$$

Suppose we can determine

$$
\begin{aligned}
& \left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)=\theta_{1} \\
& \left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)=\theta_{2} \\
& \left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right)=\theta_{3} .
\end{aligned}
$$

Then letting $a=r_{1}+r_{2}, b=r_{3}+r_{4}$, get $a b=\theta_{1}$ and $a+b=0$. So $-a^{2}=a b=\theta_{1}$, so

$$
a=\sqrt{-\theta_{1}}, \quad b=-\sqrt{-\theta_{1}},
$$

where $\sqrt{-\theta_{1}}$ is one of the square roots of $-\theta_{1}$ in \mathbb{C}.
Similarly,

$$
\begin{array}{ll}
r_{1}+r_{3}=\sqrt{-\theta_{2}}, & r_{2}+r_{4}=-\sqrt{-\theta_{2}}, \\
r_{1}+r_{4}=\sqrt{-\theta_{3}}, & r_{2}+r_{3}=-\sqrt{-\theta_{3}},
\end{array}
$$

for choices of $\sqrt{-\theta_{2}}, \sqrt{-\theta_{3}}$. So

$$
\begin{aligned}
\sqrt{-\theta_{1}}+\sqrt{-\theta_{2}}+\sqrt{-\theta_{3}} & =r_{1}+r_{2}+r_{1}+r_{3}+r_{1}+r_{4} \\
& =2 r_{1}+r_{1}+r_{2}+r_{3}+r_{4} \\
& =2 r_{1} . \\
\therefore r_{1} & =\frac{\sqrt{-\theta_{1}}+\sqrt{-\theta_{2}}+\sqrt{-\theta_{3}}}{2} .
\end{aligned}
$$

Similarly, we can solve for r_{2}, r_{3}, r_{4} if we know $\theta_{1}, \theta_{2}, \theta_{3}$. So it suffices to find $\theta_{1}, \theta_{2}, \theta_{3}$.
Consider the cubic equation

$$
f(x)=\left(x-\theta_{1}\right)\left(x-\theta_{2}\right)\left(x-\theta_{3}\right)=0 .
$$

If we can write the coefficients of this eqn. in terms of p, q, r, then we can use the soln. of cubics to determine $\theta_{1}, \theta_{2}, \theta_{3}$ in terms of p, q, r and thus write $r_{1}, r_{2}, r_{3}, r_{4}$ in terms of p, q, r.

Consider the action of S_{4} as permutations of $r_{1}, r_{2}, r_{3}, r_{4}$. Consider first the transposition σ which interchanges r_{1} and r_{2} :

$$
\sigma\left(\theta_{1}\right)=\theta_{1} \quad \sigma\left(\theta_{2}\right)=\theta_{3} \quad \sigma\left(\theta_{3}\right)=\theta_{2} .
$$

$\therefore \sigma(f(x))=f(x)$.
Similarly, $\sigma(f(x))=f(x)$ for every transposition in S_{4}. Since S_{4} is generated by transpositions, $\sigma(f(x))=f(x) \forall \sigma \in S_{4}$. That is, the coeffs. of $f(x)$ are left fixed by all permutations of $r_{1}, r_{2}, r_{3}, r_{4}$. So the coeffs. of $f(x)$ are symmetric polynomials in $r_{1}, r_{2}, r_{3}, r_{4}$, and so can be expressed in terms of p, q, r. This gives:

Theorem 3.15.1. The coefficients of $f(x)$ are polynomials in p, q, r.
To find the coefficients:
Method 1: Expand

$$
\begin{aligned}
f(x) & =\left(x-\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)\right)\left(x-\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)\right)\left(x-\left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right)\right) \\
& =\text { big mess } \\
& =\text { poly. in } p, q, r, x .
\end{aligned}
$$

Or
Method 2: Geometric method using conics.

3.15.2 Conics (over \mathbb{R})

Definition 3.15.2. A conic is a polynomial of degree ≤ 2 in two variables (over \mathbb{R}),

$$
q(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f .
$$

To conic $q(x, y)$, associate the 3-variable quadratic form:

$$
Q(X, Y, Z)=a X^{2}+b X Y+c Y^{2}+d X Z+c Y Z+f Z^{2}
$$

ie. $Q(X, Y, Z)=Z^{2} q\left(\frac{X}{Z}, \frac{Y}{Z}\right)$. The associated matrix to q is

$$
M_{q}=\left(\begin{array}{ccc}
a & \frac{b}{2} & \frac{d}{2} \\
\frac{b}{2} & c & \frac{e}{2} \\
\frac{d}{2} & \frac{e}{2} & f
\end{array}\right)
$$

and this gives

$$
Q(X, Y, Z)=\left(\begin{array}{lll}
X & Y & Z
\end{array}\right) M_{q}\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

M_{q} is symmetric, so it is diagonalizable. ie. $\exists U$ s.t.

$$
U^{-1} M_{q} U=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

This corresponds to change of variables

$$
\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=U\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)
$$

In the new basis,

$$
Q^{\prime}\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)=\lambda_{1} X^{\prime 2}+\lambda_{2} Y^{\prime 2}+\lambda_{3} Z^{\prime 2}
$$

$\operatorname{det} M_{q}=\lambda_{1} \lambda_{2} \lambda_{3}$. If $\operatorname{det} M_{q}=0$ then $Q=0$ degenerates into a product of lines.
e.g. Suppose $\lambda_{3}=0$. If λ_{1}, λ_{2} have the same sign then $Q^{\prime}=0 \Longleftrightarrow X^{\prime}=0, Y^{\prime}=0$, giving one line. If λ_{1}, λ_{2} have different signs then

$$
0=Q^{\prime}=\lambda_{1} X^{\prime 2}+\lambda_{2} Y^{\prime 2}
$$

factors into linear factors, giving two planes. So $q(x, y)$ degenerates when $\operatorname{det} M_{q}=0$.

Conversely, if $q(x, y)$ factors as a product

$$
q(x, y)=(\alpha x+\beta y+\gamma)(\delta x+\epsilon y+\varphi)
$$

then Q factors as

$$
(\alpha X+\beta Y+\gamma Z)(\delta X+\epsilon Y+\varphi Z)
$$

and by inspection, this can only happen when one of the λ_{i} 's is 0 . So $q(x, y)$ is degenerate \Longleftrightarrow $\operatorname{det} M_{q}=0$.

Consider the quartic

$$
x^{4}+p x^{2}+q x+r=0
$$

Let $y=x^{2}$. Then solving $x^{4}+p x^{2}+q x+r=0$ is equivalent to solving the system

$$
\begin{aligned}
& q_{1}=y^{2}+p y+q x+r=0, \\
& q_{2}=y-x^{2}=0 .
\end{aligned}
$$

\therefore Look for the intersection of 2 conics.

Let the intersection points be

$$
P_{1}=\left(r_{1}, r_{1}^{2}\right), \quad P_{2}=\left(r_{2}, r_{2}^{2}\right), \quad P_{3}=\left(r_{3}, r_{3}^{2}\right), \quad P_{4}=\left(r_{4}, r_{4}^{2}\right) .
$$

Consider the family of conics $q_{t}=q_{1}-t q_{2}$. Then $q_{t}\left(P_{j}\right)=0$ regardless of t. Since $M_{q_{t}}$ is a 3×3 matrix, $\operatorname{det} M_{q_{t}}=0$ is a cubic eqn. in t. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the roots of $\operatorname{det} M_{q_{t}}$. We will show that $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are $\theta_{1}, \theta_{2}, \theta_{3}$.

For $j=1,2,3$, $\operatorname{det} M_{q_{\alpha_{j}}}=0$, so $q_{\alpha_{j}}$ is a product of lines. We know that $P_{1}, P_{2}, P_{3}, P_{4}$ satisfy $q_{t}=0 \forall t$ so they must lie on the lines. So the lines have to be those joining the points P_{j}. Let $L_{i j}=0$ be the line joining P_{i} to P_{j}. Then (upon renumbering if necessary),

$$
q_{\alpha_{1}}=L_{12} L_{34}, \quad q_{\alpha_{2}}=L_{13} L_{24}, \quad q_{\alpha_{3}}=L_{14} L_{23} .
$$

L_{12} is

$$
y-r_{1}^{2}=\left(\frac{r_{2}^{2}-r_{1}^{2}}{r_{2}-r_{1}}\right)\left(x-r_{1}\right)=\left(r_{2}+r_{1}\right)\left(x-r_{1}\right)=\left(r_{1}+r_{2}\right) x-r_{1} r_{2}-r_{1}^{2}
$$

That is, L_{12} is $y-\left(r_{1}+r_{2}\right) x+r_{1} r_{2}=0$. Similarly, L_{34} is $y-\left(r_{3}+r_{4}\right) x+r_{3} r_{4}=0$.
To show $\alpha_{1}=\theta_{1}$:

$$
\begin{aligned}
q_{1}-\alpha_{1} q_{2}= & q_{\alpha_{1}} \\
= & \left(y-\left(r_{1}+r_{2}\right) x+r_{1} r_{2}\right)\left(y-\left(r_{3}+r_{4}\right) x+r_{3} r_{4}\right) \\
= & y^{2}-\left(r_{1}+r_{2}+r_{3}+r_{4}\right) x y+\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right) x^{2}-\left(r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+r_{1} r_{3} r_{4}+r_{2} r_{3} r_{4}\right) x \\
& +\left(r_{1} r_{2}+r_{3} r_{4}\right) y+r_{1} r_{2} r_{3} r_{4} \\
= & y^{2}+\theta_{1} x^{2}+q x+\left(p-r_{1} r_{3}-r_{1} r_{4}-r_{2} r_{3}-r_{2} r_{4}\right) y+r \\
= & y^{2}+\theta_{1} x^{2}+q x+p y-\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right) y+r \\
= & y^{2}+\theta_{1} x^{2}+q x+p y-\theta_{1} y+r \\
= & q_{1}-\theta_{1} q_{2} .
\end{aligned}
$$

$\therefore \alpha_{1}=\theta_{1}$. Similarly, $\alpha_{2}=\theta_{2}$ and $\alpha_{3}=\theta_{3}$. So to find $\theta_{1}, \theta_{2}, \theta_{3}$, we must solve $\operatorname{det} M_{q_{t}}=0$

$$
q_{t}=q_{1}-t q_{2}=y^{2}+p y+q x+r-t\left(y-x^{2}\right)=y^{2}+t x^{2}+q x+(p-t) y+r .
$$

So

$$
\begin{aligned}
\operatorname{det} M_{q_{t}} & =\left|\begin{array}{ccc}
t & 0 & \frac{q}{2} \\
0 & 1 & \frac{p-t}{2} \\
\frac{q}{2} & \frac{p-t}{2} & r
\end{array}\right| \\
& =t r-\frac{q^{2}}{4}-\left(\frac{p-t}{2}\right)^{2} t \\
& =t r-\frac{q^{2}}{4}-\frac{p^{2} t}{4}+\frac{2 p t^{2}}{4}-\frac{t^{3}}{4} \\
& =\frac{1}{4}\left(t^{3}-2 p t^{2}+\left(p^{2}-4 r\right) t+q^{2}\right)
\end{aligned}
$$

So $\operatorname{det} M_{q_{t}}=0 \Longleftrightarrow t^{3}-2 p t^{2}+\left(p^{2}-4 r\right) t+q^{2}=0$.
Summary: To solve

$$
z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=0
$$

1. Let $z=x-\frac{a}{4}$ to get the form

$$
x^{4}+p x^{2}+q x+r=0
$$

2. Solve the cubic

$$
t^{3}-2 p t^{2}+\left(p^{2}-4 r\right) t+q^{2}=0
$$

to get $\theta_{1}, \theta_{2}, \theta_{3}$.
3. $r_{1}=\frac{\sqrt{-\theta_{1}}+\sqrt{-\theta_{2}}+\sqrt{-\theta_{3}}}{2}$ for some choice of square roots of $-\theta_{1},-\theta_{2},-\theta_{3}$, and similar formulae for the other roots.

Notice that

$$
\begin{aligned}
\theta_{1}-\theta_{2} & =\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)-\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right) \\
& =r_{1} r_{3}+r_{1} r_{4}+r_{2} r_{3}+r_{2} r_{4}-r_{1} r_{2}-r_{1} r_{4}-r_{2} r_{3}-r_{3} r_{4} \\
& =-\left(r_{1}-r_{4}\right)\left(r_{2}-r_{3}\right) .
\end{aligned}
$$

Similarly, $\theta_{1}-\theta_{3}=-\left(r_{1}-r_{3}\right)\left(r_{2}-r_{4}\right)$ and $\theta_{2}-\theta_{3}=-\left(r_{1}-r_{2}\right)\left(r_{3}-r_{4}\right)$. So

$$
D_{\text {cubic }}=\prod_{i \neq j}\left(\theta_{i}-\theta_{j}\right)=\prod_{i \neq j}\left(r_{i}-r_{j}\right)=D_{\text {original quartic }}
$$

Thus

$$
\begin{aligned}
D= & -4(-2 p)^{3} q^{2}+(-2 p)^{2}\left(p^{2}-4 r\right)^{2}+18(-2 p)\left(p^{2}-4 r\right) q^{2}-4\left(p^{2}-4 r\right)^{3}-27\left(q^{2}\right)^{2} \\
= & 32 p^{3} q^{2}+4 p^{4}-32 p^{4} r+64 p^{2} r^{2}-36 p^{3} q^{2}+144 p q^{2} r-4 p^{6}+48 p^{4} r-192 p^{2} r^{2}+256 r^{3}-27 q^{4} \\
= & 16 p^{4} r-4 p^{3} q^{2}-128 p^{2} r+144 p q^{2} r-27 q^{4}+256 r^{3} \\
= & -128 b^{2} d^{2}-4 a^{3} g^{3}+16 x^{4} d-4 b^{3} c^{2}-27 a^{4} d^{2}+18 a b c^{3}+144 a^{2} b d^{2}-192 a c d^{2}+a^{2} b^{2} c^{2}-4 a^{2} b^{3} d \\
& -6 a^{2} c^{2} d+144 b c^{2} d+256 d^{3}-27 c^{4}-80 a b^{2} c d+18 a^{3} b c d .
\end{aligned}
$$

3.15.3 Galois Theory of Quartics

Let

$$
f(x)=x^{4}+p x^{2}+q x+r
$$

be irreducible, char $F \neq 2,3$. Let E be the splitting field of $f(x)$ over F. Let $G=G(E, F)$ be the Galois group.
$G \subset S_{4}$ is transitive. The transitive subgroups of S_{4} are:

1. S_{4}.
2. A_{4}.
3. The Sylow 2-subgroups, isomorphic to D_{8} :

$$
\begin{aligned}
& \{e,(1234),(13)(24),(1432),(13),(24),(12)(34),(14)(23)\}, \\
& \{e,(1324),(12)(34),(1423),(12),(34),(13)(24),(14)(23)\} \text {, } \\
& \{e,(1243),(14)(23),(1342),(14),(23),(12)(34),(13)(24)\} \text {. }
\end{aligned}
$$

4. Groups isomorphic to C_{3} :

$$
\{e,(1234),(13)(24),(1432)\},\{e,(1324),(12)(34),(1423)\},\{e,(1243),(14)(23),(1342)\} .
$$

5. $\{e,(12)(34),(13)(24),(14)(23)\} \cong C_{2} \times C_{2}=V$.

Let

$$
g(x)=\left(x-\theta_{1}\right)\left(x-\theta_{2}\right)\left(x-\theta_{3}\right)=x^{3}-2 p x^{2}+\left(p^{2}-4 r\right) x+q^{2},
$$

where

$$
\begin{aligned}
& \theta_{1}=\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right), \\
& \theta_{2}=\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right), \\
& \theta_{3}=\left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right) .
\end{aligned}
$$

Let

$$
\Delta=\prod_{i<j}\left(r_{i}-r_{j}\right)=-\left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}-\theta_{3}\right)\left(\theta_{2}-\theta_{3}\right) .
$$

char $F \neq 2$ and f irreducible \Rightarrow roots are distinct, so $\Delta \neq 0$. The discriminant is

$$
D=\Delta^{2} \in F
$$

Let $K=F\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ be the splitting field of $g(x) . \theta_{j} \in E$ for $j=1,2,3$ so $K \subset E$. Notice that $V \cong C_{2} \times C_{2}$ is the isotropy group of

$$
\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}
$$

ie. If $\sigma \in V$ then $\sigma\left(\theta_{j}\right)=\theta_{j}$, but if $\sigma \in S_{4}-V$ then for some $j, \sigma\left(\theta_{j}\right) \neq \theta_{j}$. According to Theorem 3.13.6, this implies $G(E, K)=G \cap V$.

By the Fund. Thm.,

$$
G_{g}=G(K, F) \cong G /(G \cap V) .
$$

We can calculate G_{g} from the section on cubics. Will this determine G ? By inspection:

	G	$G /(G \cap V)$
1	S_{4}	S_{3}

$2 A_{4} \quad C_{3}$
$3 \quad D_{8} \quad C_{2}$
$4 C_{4} \quad C_{4}$
$5 \quad V \quad\{e\}$

So $G_{g}=G /(G \cap V)$ will tell us G unless $G_{g} \cong C_{2}$, in which case it cannot distinguish between D_{8} and C_{4}.

Study $G_{g}=C_{2}$ more closely to obtain a method of distinguishing. So assume $G_{g} \cong C_{2}$. Since $g(x)$ is a cubic and $\left|C_{2}\right|=2$, this means that one root of $g(x)$, say θ_{1}, already lies in F. ie. In $F, g(x)$ factors as

$$
g(x)=\left(x-\theta_{1}\right) g_{1}(x)
$$

where $g_{1}(x)$ is an irreducible quadratic (with roots θ_{2}, θ_{3}, which are not in F).
Suppose $G=C_{4}$.

Recall $\left(r_{1}+r_{2}\right)^{2}=-\theta_{1}$ so $\left[F\left(r_{1}+r_{2}\right): F\right] \leq 2$. If $r_{1}+r_{2} \in F$ then $r_{1}+r_{2}$ is fixed by all $\sigma \in G$. But $G=C_{4}$ contains a 4-cycle, and no 4-cycle fixes $r_{1}+r_{2}$. e.g. Say $\sigma=(1234)$. Then $\sigma\left(r_{1}+r_{2}\right)=r_{2}+r_{3}$.

Thus $r_{1}+r_{2} \notin F$, and so

$$
\left[F\left(r_{1}+r_{2}\right): F\right]=2 .
$$

C_{4} has a unique subgroup of index 2 , so E has a unique subfield of order 2 over F. So

$$
F\left(r_{1}+r_{2}\right)=E^{C_{2}}=F\left(\theta_{2}\right)=F(\Delta) .
$$

Hence $r_{1}+r_{2}=a+b \Delta$ for some $a, b \in F$.

$$
-\theta_{1}^{2}=\left(r_{1}+r_{2}\right)^{2}=a^{2}+2 a b \Delta+b^{2} \Delta^{2}=a^{2}+b^{2} D+2 a b \Delta
$$

where $D=\Delta^{2} \in F$. So

$$
2 a b \Delta=-\theta_{1}-a^{2}-b^{2} D \in F .
$$

But $\Delta \notin F$, so either $a=0$ or $b=0 . b \neq 0$, since $b=0$ puts $r_{1}+r_{2}=a \in F$, so $a=0$. Thus

$$
-\theta_{1}=b^{2} D
$$

$\therefore \frac{-\theta_{1}}{D}$ is a square in F.
In conclusion, $G=C_{4} \Rightarrow \frac{-\theta_{1}}{D}$ is a square in F.
Conversely, suppose $\frac{-\theta_{1}}{D}=b^{2}$ for some $b \in F$. Then

$$
\left(r_{1}+r_{2}\right)^{2}=b^{2} D=b^{2} \Delta^{2}
$$

so $r_{1}+r_{2}= \pm b \Delta \in F(\Delta)$.

Suppose that $G=D_{8}$. Then by inspection, G contains 2 disjoint transpositions. (12) $\notin G$, since this contradicts $r_{1}+r_{2}= \pm b \Delta$ (any transposition applied to Δ produces $-\Delta$). So, some other transposition, say (13) lies is G (since G contains 2 disjoint transpositions, one of them must include 1).

$$
r_{3}+r_{2}=\left(\begin{array}{ll}
1 & 3
\end{array}\right) \cdot\left(r_{1}+r_{2}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right)(\pm b \Delta)=\mp b \Delta \text {. }
$$

So

$$
-\theta_{3}=\left(r_{3}+r_{2}\right)^{2}=b^{2} \Delta^{2}=b^{2} D \in F .
$$

This is a contradiction, so $G \not \equiv D_{8}$, and thus, $G \cong C_{4}$. ie. $G \cong C_{4} \Longleftrightarrow-\frac{\theta_{1}}{D}$ is a square in F. Summary: To compute G,

1. Compute

$$
g(x)=x^{3}-2 p x^{2}+\left(p^{2}-4 r\right) x+q^{2} .
$$

2. Factor $g(x)$ in F :

Case I: $g(x)$ factors completely in F. Then $G_{g}=\{e\}$, so $G=V$.
Case II: $g(x)$ has one linear factor in F,

$$
g(x)=(x-\theta) g_{1}(x) .
$$

(a) The factorization determines $\theta \in F$.
(b) Compute $D \in F$, the discriminant of g, by earlier formula.
(c) If $-\frac{\theta}{D}$ is a square in G, then $G=C_{4}$; otherwise, $G=D_{8}$.

Case III: $g(x)$ is irreducible over F.
(a) Compute $D \in F$ as above.
(b) If D is a square in F then $G_{g}=C_{3}=A_{3}$, so $G=A_{4}$. Otherwise, $G_{g}=S_{3}$ so $G=S_{4}$.

For $G=S_{4}$:
$r_{1}+r_{2} \neq 0$, since $\theta_{1} \neq 0\left(g\right.$ is irreducible when $\left.G=S_{4}\right)$. Similarly, $r_{i}+r_{j} \neq 0 \forall i, j$. So

$$
r_{1}+r_{2} \neq r_{i}+r_{j}
$$

unless $i=1, j=2$ or $j=1, i=2$. Hence $\sigma\left(\theta_{j}\right) \neq \theta_{j}$ if $\sigma \in$ isotropy group of θ_{1}, which is D_{8}. Thus,

$$
G\left(E, F\left(\theta_{1}\right)\right) \cong D_{8} .
$$

Let

For $G=A_{4}$:
In this case,

$$
V=G\left(E, F\left(\theta_{1}\right)\right)=\text { isotropy group of } \theta_{1} .
$$

For $G=D_{8}$:

For $G=C_{4}$:

For $G=C_{2} \times C_{2}$:

3.16 Resultants and Discriminants

Let F be a field. Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ and $g(x)=b_{m} x^{m}+\cdots+b_{0}$ belong to $F[x]$.
Let $d(x)=\operatorname{gcd}(f(x), g(x))$. Suppose $\operatorname{deg} d(x)>0$. Write

$$
\begin{aligned}
& f(x)=b(x) d(x), \\
& g(x)=a(x) d(x),
\end{aligned}
$$

with $\operatorname{deg} b(x)<n, \operatorname{deg} a(x)<m$. Then

$$
a(x) f(x)=a(x) b(x) d(x)=b(x) g(x) .
$$

Conversely, suppose $\exists a(x), b(x)$ s.t. $\operatorname{deg} a(x)<m, \operatorname{deg} b(x)<n$. and

$$
a(x) f(x)=a(x) b(x) d(x)=b(x) g(x) .
$$

So $f(x) \mid b(x) g(x)$. If $\operatorname{gcd}(f(x), g(x))=1$ then $f(x) \mid b(x)$, contradicting $\operatorname{deg} b<\operatorname{deg} f$. Thus:
Proposition 3.16.1. $f(x), g(x)$ have a common factor $\Longleftrightarrow \exists a(x), b(x)$ s.t.

$$
a(x) f(x)=b(x) g(x),
$$

with $\operatorname{deg} a<\operatorname{deg} g$ and $\operatorname{deg} b<\operatorname{deg} f$.
Let $a(x) f(x)=b(x) g(x)$ with

$$
\begin{aligned}
& a(x)=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{m-1} x^{m-1} \\
& b(x)=\beta_{0}+\beta_{1} x+\cdots+\beta_{n-1} x^{n-1}
\end{aligned}
$$

(coeffs. $\alpha_{j}, \beta_{j} \in F$, possibly are 0). So

$$
\sum_{k=0}^{n+m-1}\left(\sum_{j=0}^{k} \alpha_{k-j} a_{j}\right) x^{k}=a(x) f(x)=b(x) g(x)=\sum_{k=0}^{n+m-1}\left(\sum_{j=0}^{k} \beta_{k-j} b_{j}\right) x^{k} .
$$

That is,

$$
\sum_{j=0}^{k} \alpha_{k-j} a_{j}-\sum_{j=0}^{k} \beta_{k-j} b_{j}=0 \quad \text { for } k=n+m-1, n+m-2, \ldots, 0
$$

Treat this as a system of $n+m$ equations in the $n+m$ variables $\left\{\alpha_{m-1}, \ldots, \alpha_{0}, \beta_{n-1}, \ldots, \beta_{0}\right\}$. Then the existence of a common factor of $f(x), g(x)$ is equivalent to the existence of a non-zero solution to this
system.
\therefore Common factor exists \Longleftrightarrow determinant of this system is zero.
The determinant of the system is

$$
\text { Det }=\left|\begin{array}{cccccccc}
a_{n} & 0 & \cdots & 0 & -b_{m} & 0 & \cdots & 0 \\
a_{n-1} & a_{n} & \ddots & \vdots & -b_{m-1} & -b_{m} & \ddots & \vdots \\
\vdots & & \ddots & 0 & \vdots & & \ddots & 0 \\
a_{0} & & & a_{n} & & & & \\
& & & & -b_{0} & & & -b_{m} \\
0 & \ddots & & \vdots & 0 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & a_{0} & 0 & \cdots & 0 & -b_{0}
\end{array}\right| .
$$

Multiply by $(-1)^{m}$ and transpose to get:
Proposition 3.16.2. $f(x), g(x)$ have a common factor \Longleftrightarrow

$$
R(f, g):=\left|\begin{array}{cccccccc}
a_{n} & a_{n-1} & \cdots & a_{0} & & & & \\
& a_{n} & & & a_{0} & & & \\
& & \ddots & & & \ddots & & \\
& & & a_{n} & \cdots & \cdots & & a_{0} \\
b_{m} & b_{m-1} & \cdots & & b_{0} & & & \\
& b_{m} & & & & b_{0} & & \\
& & \ddots & & & & \ddots & \\
& & & & b_{m} & \cdots & \cdots & b_{0}
\end{array}\right|=0 .
$$

$R(f, g)$ is called the resultant of f and g. Denote

$$
R=\left(\begin{array}{cccccccc}
a_{n} & a_{n-1} & \cdots & a_{0} & & & & \\
& a_{n} & & & a_{0} & & & \\
& & \ddots & & & \ddots & & \\
& & & a_{n} & \cdots & \cdots & & a_{0} \\
b_{m} & b_{m-1} & \cdots & & b_{0} & & & \\
& b_{m} & & & & b_{0} & & \\
& & \ddots & & & & \ddots & \\
& & & & b_{m} & \cdots & \cdots & b_{0}
\end{array}\right),
$$

so that $R(f, g)=\operatorname{det} R$.

$$
R\left(\begin{array}{c}
x^{n+m-1} \tag{*}\\
x^{n+m-2} \\
\vdots \\
x \\
1
\end{array}\right)=\left(\begin{array}{c}
a_{n} x^{n+m-1}+a_{n-1} x^{n+m-2}+\cdots+a_{0} x^{m-1} \\
a_{n} x^{n+m-2}+a_{n-1} x^{n+m-3}+\cdots+a_{0} x^{m-2} \\
\vdots \\
a_{n} x^{n}+\cdots+a_{0} \\
b_{m} x^{n+m-1}+\cdots+b_{0} x^{n-1} \\
\vdots \\
b_{m} x^{m}+\cdots+b_{0}
\end{array}\right)=\left(\begin{array}{c}
x^{m-1} f(x) \\
x^{m-2} f(x) \\
\vdots \\
f(x) \\
x^{n-1} g(x) \\
\vdots \\
g(x)
\end{array}\right) .
$$

Let \tilde{R} be the matrix of cofactors of R. That is,

$$
(\tilde{R})_{i j}=\operatorname{det}((n+m-1) \times(n+m-1) \text { matrix formed by deleting row } j \text { and column } i \text { from } R) .
$$

So $\tilde{R} R=R \tilde{R}=(\operatorname{det} R) I$. Apply \tilde{R} to $\left(^{*}\right)$ gives
$(\operatorname{det} R)\left(\begin{array}{c}x^{n+m-1} \\ x^{n+m-2} \\ \vdots \\ x \\ 1\end{array}\right)=\tilde{R}\left(\begin{array}{c}x^{m-1} f(x) \\ x^{m-2} f(x) \\ \vdots \\ f(x) \\ x^{n-1} g(x) \\ \vdots \\ g(x)\end{array}\right)=\left(\begin{array}{c}* \\ \vdots \\ * \\ \gamma_{1} x^{m-1} f(x)+\cdots+\gamma_{m} f(x)+\gamma_{m+1} x^{n-1} g(x)+\cdots+\gamma_{n+m} g(x)\end{array}\right)$,
where

$$
\tilde{R}=\left(\begin{array}{ccc}
* & \cdots & * \\
\vdots & & \vdots \\
* & \cdots & * \\
\gamma_{1} & \cdots & \gamma_{n+m}
\end{array}\right) .
$$

Equating the bottom row gives

$$
\operatorname{det} R=r(x) f(x)+s(x) g(x)
$$

for some polynomials $r(x), s(x)$.
Let r_{1}, \ldots, r_{n} be the roots of $f(x)$ and let t_{1}, \ldots, t_{m} be the roots of $g(x)$. If $r_{i}=t_{j}$ for any i and j then in an extension field, $f(x)$ and $g(x)$ have a common factor, so $\operatorname{det} R=0$. For all $i, j, r_{i}-t_{j}$ divides $\operatorname{det} R$ in the splitting field of $f(x) g(x)$. By comparing degrees, up to a scalar multiple λ,

$$
\operatorname{det} R=\lambda \prod_{i, j}\left(r_{i}-t_{j}\right) .
$$

By comparing the lead coefficient, find $\lambda=a_{n}^{m} b_{m}^{n}$. Thus:

Theorem 3.16.3. $R(f, g)=\operatorname{det} R=a_{n}^{m} b_{m}^{n} \prod_{i, j}\left(r_{i}-t_{j}\right)$.
Since $f(x)=a_{n} \prod_{i=1}^{n}\left(x-r_{i}\right)$ and $g(x)=b_{n} \prod_{j=1}^{m}\left(x-t_{j}\right)$, we get:

Corollary 3.16.4.

1. $R(f, g)=a_{n}^{m} b_{m}^{n} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(r_{i}-t_{j}\right)=a_{n}^{m} \prod_{i=1}^{n}\left(b_{m} \prod_{j=1}^{m}\left(r_{i}-t_{j}\right)\right)=a_{n}^{m} \prod_{i=1}^{n} g\left(r_{i}\right)$, and
2. $R(f, g)=(-1)^{n m} b_{m}^{n} \prod_{j=1}^{m}\left(a_{n} \prod_{i=1}^{n}\left(t_{j}-r_{i}\right)\right)=(-1)^{n m} b_{m}^{n} \prod_{j=1}^{m} f\left(t_{j}\right)$.

Let $f(x)$ be monic and let $g(x)=f^{\prime}(x)$.

$$
f^{\prime}(x)=\sum_{k=1}^{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(\widehat{x-r_{k}}\right) \cdots\left(x-r_{n}\right) .
$$

So

$$
f\left(r_{i}\right)=\prod_{\langle j| j \neq i\}}\left(r_{i}-r_{j}\right)
$$

Hence

$$
R\left(f, f^{\prime}\right)=\prod_{i=1}^{n} f^{\prime}\left(r_{i}\right)=\prod_{i} \prod_{\{j \mid j \neq i\}}\left(r_{i}-r_{j}\right)=(-1)^{\frac{n(n-1)}{2}} \prod_{(i, j) \mid i<j}\left(r_{i}-r_{j}\right)^{2}=(-1)^{\frac{n(n-1)}{2}} D,
$$

where D is the discriminant. So,

$$
D=(-1)^{\frac{n(n-1)}{2}} R\left(f, f^{\prime}\right)
$$

Example 3.16.5.

$n=2: f(x)=x^{2}+b x+c$.

$$
D=(-1)\left|\begin{array}{lll}
1 & b & c \\
2 & b & 0 \\
0 & 2 & b
\end{array}\right|=-\left(b^{2}+4 c-2 b^{2}\right)=b^{2}-4 c
$$

$$
\begin{aligned}
n=3: f(x)=x^{3}+p x+q . & \\
& D \\
& =(-1)\left|\begin{array}{ccccc}
1 & 0 & p & q & 0 \\
0 & 1 & 0 & p & q \\
3 & 0 & p & 0 & 0 \\
0 & 3 & 0 & p & 0 \\
0 & 0 & 3 & 0 & p
\end{array}\right| \\
& =-\left|\begin{array}{cccc}
1 & 0 & p & q \\
0 & p & 0 & 0 \\
3 & 0 & p & 0 \\
0 & 3 & 0 & p
\end{array}\right|-3\left|\begin{array}{llll}
0 & p & q & 0 \\
1 & 0 & p & q \\
3 & 0 & p & 0 \\
0 & 3 & 0 & p
\end{array}\right| \\
& =-p\left|\begin{array}{ccc}
1 & p & q \\
3 & p & 0 \\
0 & 0 & p
\end{array}\right|+3\left|\begin{array}{lll}
1 & p & q \\
3 & p & 0 \\
0 & 0 & p
\end{array}\right|-3 q\left|\begin{array}{lll}
1 & 0 & q \\
3 & 0 & 0 \\
0 & 3 & p
\end{array}\right| \\
& =2 p\left|\begin{array}{ccc}
1 & p & q \\
3 & p & 0 \\
0 & 0 & p
\end{array}\right|-3 q\left|\begin{array}{ccc}
1 & 0 & q \\
3 & 0 & 0 \\
0 & 3 & p
\end{array}\right| \\
& =2 p^{2}\left|\begin{array}{ll}
1 & p \\
3 & p
\end{array}\right|+9 q\left|\begin{array}{lll}
1 & q \\
3 & p
\end{array}\right| \\
& =2 p^{2}(-2 p)+9 q(-3 q) \\
& =-4 p^{3}-27 q^{2} .
\end{aligned}
$$

3.17 Reduction Mod p

Theorem 3.17.1. Let $f(x) \in \mathbb{Z}[x]$ be monic with $n=\operatorname{deg} f$. Let E be the splitting field of $f(x)$ over \mathbb{Q}. Let p be a prime not dividing the discriminant d of f. (In particular, $d \neq 0$ or no such p exists.) Let $f_{p}(x) \in \mathbb{F}_{p}[x]$ be the reduction of $f(x)$ modulo p. Let E_{p} be the splitting field of $f_{p}(x)$ over \mathbb{F}_{p}. Let R and R_{p} be the set of roots of $f(x), f_{p}(x)$ in E, E_{p} respectively. Let $D \subset E$ be the smallest subring of E containing R. Then

1. \exists a ring homo. $\psi: D \mapsto E_{p}$.
2. Any such ψ gives a bijection $R \stackrel{l-1}{\longmapsto} R_{p}$.
3. If ψ, ψ^{\prime} are two ring homos. satisfying 1 then $\exists \sigma \in G(E, \mathbb{Q})$ s.t. $\psi^{\prime}=\psi \sigma$.

Proof. 1. In E, write

$$
f(x)=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right)
$$

with $R=\left\{r_{1}, \ldots, r_{n}\right\}$. The r_{i} 's are distinct since $d \neq 0$. Let

$$
D=\mathbb{Z}\left[r_{1}, \ldots, r_{n}\right]=\mathbb{Z} \text {-linear span in } E \text { of elts. } r_{1}^{e_{1}} \cdots r_{n}^{e_{n}} .
$$

Since $f\left(r_{j}\right)=0, r_{j}^{n}$ can be expressed as a \mathbb{Z}-linear comb. of r_{j}^{m} with $m<n$; so we may use the span of elts. of the above form with $e_{j}<n \forall j$. D is torsion-free, since $D \subset E$, and so it is a f.g. torsion free \mathbb{Z}-module. So

$$
D=\mathbb{Z} u_{1} \oplus \cdots \oplus \mathbb{Z} u_{N},
$$

for some basis u_{1}, \ldots, u_{N}.
Claim. $\left\{u_{j}\right\}$ forms a basis for E over \mathbb{Q}.
Proof. Any relation over \mathbb{Q} among the u_{j} 's gives, after clearing denominators, a relation over \mathbb{Z}. Hence $\left\{u_{j}\right\}$ is linearly indep. over \mathbb{Q}.
Let

$$
S=\mathbb{Q} u_{1} \oplus \cdots \oplus \mathbb{Q} u_{N} .
$$

S is a subring of E containing \mathbb{Q}, and every elt. of S is algebraic over \mathbb{Q}. So the inverse of each elt. is a poly. in that elt. So S is a field. Since $r_{j} \in S \forall j, S=E$.
Proof of theorem (cont.) By the claim, $[E: \mathbb{Q}]=N$. Let

$$
p D=\mathbb{Z}\left(p u_{1}\right) \oplus \mathbb{Z}\left(p u_{2}\right) \oplus \cdots \oplus \mathbb{Z}\left(p u_{N}\right) \subset D
$$

so $p \in \operatorname{Ann}(D / p D) . p D$ is an ideal in D and $|D / p D|=p^{N}$. Let M be a maximal ideal of D containing $p D$. Then

$$
\frac{D / p D}{M / p D} \cong D / M
$$

so $|D / M|$ divides p^{N}, and $p \in \operatorname{Ann}(D / M)$. Thus the field D / M has characteristic p.

$$
\mathbb{Z}\left[r_{1}, \ldots, r_{n}\right]=D \quad \stackrel{\psi}{\longmapsto} D / M .
$$

So $D / M \cong(\mathbb{Z} / p)\left[\overline{r_{1}}, \ldots, \overline{r_{n}}\right]$, where $r_{j}:=\psi r_{j}$.

$$
\therefore \psi(f(x))=\left(x-\overline{r_{1}}\right) \cdots\left(x-\overline{r_{n}}\right)
$$

is a factorization of $f_{p}(x)$ in the extension field D / M of \mathbb{F}_{p}. Hence $D / M=E_{p}$.
Let $\psi: D \mapsto E_{p}$ be a homomorphism. $\left.\psi\right|_{\mathbb{Z}}$ is reduction $\bmod p$, so

$$
f_{p}(x)=\psi(f(x))=\left(x-\psi\left(r_{1}\right)\right) \cdots\left(x-\psi\left(r_{n}\right)\right)
$$

Hence $\left\{\psi\left(r_{j}\right)\right\}$ are the roots of $f_{p}(x)$. That is, $\left\{\psi\left(r_{j}\right)\right\}=R_{p}$, so $\psi: R \stackrel{1-1}{\longmapsto} R_{p}$.
Let $\psi: D \mapsto E_{p}$. Let $\sigma \in G=G(E, \mathbb{Q})$. σ permutes roots, so $\sigma: D \mapsto D$. If $\sigma \neq \sigma^{\prime}$ then σ, σ^{\prime} are different permutations of the roots, so since ψ is a bijection on roots, $\psi \sigma \neq \psi \sigma^{\prime}$.
Let

$$
G=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}
$$

Then $\psi_{1}=\psi \sigma_{1}, \ldots, \psi_{N}=\psi \sigma_{N}$ are N distinct ring homomorphisms. Suppose

$$
\psi^{\prime}: D \mapsto E_{p}
$$

is a ring homo distinct from $\psi_{1}, \ldots, \psi_{N}$. Then $\left\{\psi_{1}, \ldots, \psi_{N}, \psi^{\prime}\right\}$ are linearly independent in hom $\mathbb{Z}_{\mathbb{Z}}\left(D, E_{p}\right)$ (by Theorem 3.8.2).

However,

$$
x_{1} \psi_{1}\left(u_{j}\right)+x_{2} \psi_{2}\left(u_{j}\right)+\cdots+x_{N} \psi_{N}\left(u_{j}\right)+x_{N+1} \psi^{\prime}\left(u_{j}\right)=0 \quad 1 \leq j \leq N
$$

forms a system of N equations in $N+1$ variables in E_{p}, so it has a nontrivial solution $\left(a_{1}, \ldots, a_{N+1}\right)$ in E_{p}. For an arbitrary element $y=\eta_{1} u_{1}+\eta_{2} u_{2}+\cdots+\eta_{N} u_{N} \in D$,

$$
\psi_{i}(y)=\overline{\eta_{1}} \psi_{i} u_{1}+\overline{\eta_{2}} \psi_{i} u_{2}+\cdots+\overline{\eta_{N}} \psi_{i} u_{N}
$$

$$
\begin{gathered}
\therefore a_{1} \psi_{1}(y)+a_{2} \psi_{2}(y)+\cdots+a_{N} \psi_{N}(y)+a_{n+1} \psi^{\prime}(y)=\sum_{j} \sum_{i} \eta_{j} a_{i} \psi_{i}\left(u_{j}\right)=\sum_{j} \eta_{j} \cdot 0=0 . \text { Hence, } \\
a_{1} \psi_{1}+a_{2} \psi_{2}+\cdots+a_{N} \psi_{N}+a_{N+1} \psi^{\prime}=0
\end{gathered}
$$

in $\operatorname{hom}_{\mathbb{Z}}\left(D, E_{p}\right)$, contradicting the linear independence of $\left\{\psi_{1}, \ldots, \psi_{N}, \psi^{\prime}\right\}$.
So $\psi_{1}, \ldots, \psi_{N}$ is the complete list of ring homos. from D to E_{p}. ie. Any ring homo. $\psi^{\prime}: D \mapsto E_{p}$ equals $\psi \sigma$ for some $\sigma \in G$.

Theorem 3.17.2. Let $f(x) \in \mathbb{Z}[x]$ be monic. Let p be prime s.t. $p \nmid$ discriminant of $f(x)$. Suppose that in $(\mathbb{Z} / p)[x], f_{p}(x)$ factors as

$$
f_{p}(x)=g_{1} g_{2} \cdots g_{r}
$$

where g_{j} is irreducible. Let $n_{j}=\operatorname{deg} g_{j}$, so $n=\operatorname{deg} f=n_{1}+\cdots+n_{r}$. Then in $G=\operatorname{Gal}(f(x)) \subset S_{n}$, there is a permutation whose cycle decomposition (after suitably ordering the roots) is
$\left(12 \cdots n_{1}\right)\left(n_{1}+1 \cdots n_{1}+n_{2}\right)\left(n_{1}+n_{2}+1 \cdots n_{1}+n_{2}+n_{3}\right) \cdots\left(n_{1}+\cdots+n_{r-1}+1 \cdots n_{1}+\cdots+n_{r}\right)$.
Example 3.17.3.

1. Let $f(x)=x^{3}-2$. For $p=5$,

$$
f_{5}(x)=(2+x)\left(4+3 x+x^{2}\right)
$$

$\therefore G$ contains (using some ordering of the roots) the permutation (1)(2 3), usually written just (2 3). ie. G contains a transposition.
For $p=7, f_{7}(x)=x^{3}+5$, which is irreducible. So G contains (using some ordering of the roots, not necessarily the same one as before) the cycle (123). ie. G contains a 3-cycle.
This identifies G as S_{3} since no proper subgroup of S_{3} contains both a 3-cycle and a transposition.
2. Let $f(x)=x^{3}-12 x+8$. For all primes, either $f(x)$ is irreducible $\bmod p$ (yielding a 3-cycle (123) 2) or $f(x)$ splits linearly (corresponding to the identity in G). For no prime does it factor as an irreducible quadratic and a linear factor.

Proof. Let $\phi: E_{p} \mapsto E_{p}$ be the Frobenius automorphism $\phi(x)=x^{p}$, as seen in Example 3.10.10. Let $\psi: D \mapsto E_{p}$ be a ring homomorphism. Then so is $\phi \psi$. By the preceding theorem, $\exists \sigma \in G$ s.t. $\phi \psi=\psi \sigma$.

Restricted to $R=\{$ roots $\}, \psi$ has an inverse, so we get

$$
\sigma=\psi^{-1} \phi \psi
$$

when restricted to R. ie. The action of ϕ as a permutation on R corresponds to that of ϕ on R_{p} under the bijection ψ. So the cycle decompositions are the same. ϕ maps one root of each g_{j} to another root of the same g_{j} (and its restriction to those roots is transitive, since ϕ generates $\operatorname{Gal}\left(E_{p}, \mathbb{F}_{p}\right)$). ie. The cycle decomposition of ϕ is as shown, and therefore so is that of σ.

Example 3.17.4. Let $f(x)=x^{5}-5 x+12$. Since f is irreducible, G contains a 5-cycle.

$$
f_{3}(x)=x\left(2+x+x^{2}\right)\left(2+2 x+x^{2}\right) .
$$

$\therefore G$ contains a product of 2 -cycles, (12)(34) (in some ordering).
We can search for other primes which might give other decompositions, but we don't find any (except for complete factorizations into linear pieces, corresponding to $e \in G$). How do we know when to stop? According to Chebotorev Density Theorem, every decomposition that appears must appear at least once for some prime $\leq 70(\log d)^{2}$, where d is the discriminant. In this case, $70(\log d)^{2} \approx 22616$, which by the Prime Number Thm. includes approximately the first $2256 \approx \log (22616)$ primes. In fact, the $2526^{\text {th }}$ prime is $22619>22616$. So if we haven't found any other cycle decompositions in the first 2525 primes then there aren't any others. Since the only subgroups of S_{5} containing only the 5-cycles, products of two 2-cycles, and the identity are the copies of $D_{5}, G=D_{5}$ for

$$
f(x)=x^{5}-5 x+12
$$

Chapter 4

Representations of Groups

4.1 Definitions and Elementary Properties

Let G be a group and K a commutative ring.
A (linear) representation of G consists of a K-module V and an action $G \times V \mapsto V$ satisfying

$$
g \cdot(a v+b w)=a g \cdot v+b g \cdot w \quad \forall g \in G, a, b \in K, v, w \in W .
$$

Equivalently, a rep. is a group homomorphism $G \mapsto \operatorname{Aut}_{K}(V)$.
Another formulation: Define a ring $K[G]$, called the group ring, as follows. As an abelian group,

$$
K[G]=\{\text { free } K \text {-module with basis } G\} .
$$

Multiplication is determined by $g \cdot h=g h$ (the left defines multiplication in $K[G]$; the right is multiplication in G). Then a rep. of G on V is a ring homomorphism $K[G] \mapsto \operatorname{End}_{K}(V)$. This makes V a left $K[G]$-module.

Note that as rings,

$$
K[G \times H]=K[G] \otimes_{\mathbb{Z}} K[H] .
$$

$K[G]$ is commutative $\Longleftrightarrow G$ is abelian.
Let G be finite. For a conjugacy class C, let

$$
N_{C}:=\sum_{x \in C} x \in K[G] .
$$

Definition 4.1.1. Let R be a ring. The center of R is

$$
\mathrm{Z}(R)=\{a \in R \mid a x=x a \forall x \in R\} .
$$

Proposition 4.1.2. If G is finite then $\mathrm{Z}(K[G])$ is the free K-module

$$
K N_{C_{1}} \oplus \cdots \oplus K N_{C_{k}}
$$

where C_{1}, \ldots, C_{k} are the conjugacy classes of G.
Proof. For $g \in G$, and $C=C_{j}$,

$$
g^{-1} N_{C} g=\sum_{x \in C} g^{-1} x g=\sum_{y \in g^{-1} C g} y=N_{C},
$$

since $g^{-1} C g=C$. Thus,

$$
\bigoplus_{j=1}^{k} K N_{j} \subset \mathrm{Z}(K[G]) .
$$

Conversely, let

$$
x=\sum_{g \in G} a_{g} g \in \mathrm{Z}(K[G]) .
$$

Then for all $h \in G$,

$$
\begin{aligned}
\sum_{g \in G} a_{g} g & =x \\
& =h^{-1} x h \\
& =\sum_{g \in G} a_{g} h^{-1} g h \\
& =\sum_{t \in G} a_{h t h^{-1}} t .
\end{aligned}
$$

$\therefore a_{g}=a_{h g h^{-1}} \forall h, g$. ie. All elements of a given conjugacy class have the same coefficient in x. Thus,

$$
x=\sum a_{j} N_{C_{j}}
$$

where $a_{j}=a_{g}$ for any $g \in C_{j}$. So $x \in \bigoplus_{j=1}^{k} K N_{C_{j}}$.

4.1.1 New Representations from Old

1. Direct sum of reps.

Given reps.

$$
G \times V \mapsto V \quad G \times W \mapsto W,
$$

form rep. of G on $V \oplus W$ by

$$
g \cdot(v, w)=(g \cdot v, g \cdot w)
$$

eg. If K is a field, $n=\operatorname{dim} V, m=\operatorname{dim} W$, then for $g \in G, \rho(g) \in G L_{n}(K), \tau(g) \in G L_{m}(K)$. The direct sum action is given by

$$
\left(\begin{array}{cc}
\rho(g) & 0 \\
0 & \tau(g)
\end{array}\right) .
$$

Note: Sometimes write $k V$ for $\overbrace{V \oplus \cdots \oplus V}^{k \text { times }}$.
2. Tensor product of reps.

Given reps.

$$
G \times V \mapsto V \quad G \times W \mapsto W,
$$

form rep of G on $V \otimes_{K} W$ determined by

$$
g \cdot(v \otimes w)=(g \cdot v) \otimes(g \cdot w)
$$

This is the tensor product of V and W in the Hopf alg. sense. ie. The action is

$$
K[G] \otimes V \otimes W \stackrel{\psi}{\longmapsto} K[G] \otimes K[G] \otimes V \otimes W \mapsto K[G] \otimes V \otimes K[G] \otimes W \stackrel{\mu_{\nu} \otimes \mu_{W}}{\longmapsto} V \otimes W,
$$

where $\psi(g)=g \otimes g$ is induced by the diagonal map $G \mapsto G \times G$.
Let R be a ring. Recall that an R-module V is simple if it has no proper R-submodules except 0 . In this context, such modules will often be called irreducible.

Definition 4.1.3. An R-module $V \neq 0$ is called indecomposable if $\nexists R$-modules $V_{1} \neq 0, V_{2} \neq 0$ s.t. $V \cong V_{1} \oplus V_{2}$.

When $R=K[G]$, we talk of "indecomposable reps." and "irreducible" (or "simple") reps.
Clearly, irreducible \Rightarrow indecomposable. The reverse is not true. eg. Suppose K is a field. If the action of each elt. g of G has the form

$$
\left(\begin{array}{cc}
P(g) & Q(g) \\
0 & R(g)
\end{array}\right)
$$

(where $P(g)$ is $n \times n, Q(g)$ is $n \times m, R(g)$ is $m \times m$), then \exists an n-dim. subrepresentation $g \mapsto P(g)$, so not irreducible. But it might still be indecomposable if $Q(g) \neq 0$. In particular, take $G=\mathbb{Z}, n=m=1$, let $P(k)=R(k)=1$ and $Q(k)=k$ for all $k \in \mathbb{Z}$.
Goal: Let G be finite, K a field.

1. Show that there is (up to iso.) a finite list V_{1}, \ldots, V_{k} of indecomposable $K[G]$-modules and find them.
2. Given a rep. V of G, show that the decomposition

$$
V \cong V_{1}^{n_{1}} \oplus V_{2}^{n_{2}} \oplus \cdots \oplus V_{k}^{n_{k}}
$$

into irreducible is unique, and give a method of determining the mult. n_{k} of each V_{k}.
3. In particular, find the decomposition

$$
K[G] \cong V_{1}^{n_{1}} \oplus V_{2}^{n_{2}} \oplus \cdots \oplus V_{k}^{n_{k}} .
$$

Question. Given G, to what extent does this answer change with K ? Does it depend on more that just char K ?

4.2 Semisimple Rings

Note: Unless otherwise noted, module means left module.
Definition 4.2.1. An R-module V is called semisimple if it is a direct sum of simple modules. R is called a semisimple ring if R is semisimple as a (left) R-module.

Proposition 4.2.2. If V is a semisimple module and $U \subset V$ then $V \cong U \oplus W$ for some W.
Proof. Consider

$$
S=\left\{\text { submodules } U^{\prime} \subset V \text { s.t. } U \cap U^{\prime}=0\right\} .
$$

By Zorn's lemma, let $W \subset V$ be maximal s.t. $U \cap W=0$. If $U \oplus W \varsubsetneqq V$, choose $v \notin U \oplus W$. Write $v=v_{1}+\cdots+v_{n}$, where $v_{i} \in V_{i}$ and $V_{i} \subset V$ is simple. Then $v_{j} \notin U \oplus W$ for some j. So

$$
V_{j} \cap(U \oplus W) \varsubsetneqq V_{j}
$$

and since V_{j} is simple,

$$
V_{j} \cap(U \oplus W)=0 .
$$

But then $U \cap\left(W \oplus V_{j}\right)=0$, so W is not maximal. Thus, $V=U \oplus W$.
Definition 4.2.3. V is completely splittable if $U \subset V \Rightarrow V=U \oplus W$ for some W.
So V is semisimple $\Rightarrow V$ is completely splittable. Recalling Proposition 2.4.6, we see that V is completely splittable \Longleftrightarrow whenever $U \subset V$, if $i: U \hookrightarrow V$ is the inclusion then $\exists \sigma: V \mapsto U$ a homo. s.t. $\sigma i=1_{U} ; \sigma$ is called a splitting of i.

Example 4.2.4. Let K be a field, $R=M_{n \times n}(K)$,

$$
V=\left(\begin{array}{cccc}
* & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
* & 0 & \cdots & 0
\end{array}\right)
$$

Claim. V is a simple R-module.
Proof of claim. Suppose $0 \varsubsetneqq W \subset V$. Let

$$
0 \neq x=\left(\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
x_{n} & 0 & \cdots & 0
\end{array}\right) \in W,
$$

and suppose $x_{j} \neq 0$. Then W contains

$$
\left(\begin{array}{ccccc}
0 & \cdots & 1 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & & \cdots & & 0
\end{array}\right) x=\left(\begin{array}{cccc}
x_{j} & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & & \vdots \\
0 & & \cdots & 0
\end{array}\right)
$$

By dividing by x_{j}, W contains

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & & \vdots \\
0 & & \cdots & 0
\end{array}\right)
$$

Thus, W contains

$$
\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & & \\
1 & & \vdots \\
\vdots & & \\
0 & \cdots & 0
\end{array}\right)
$$

which is a basis of V. Hence $W=V$.
Now,

$$
R=\left(\begin{array}{cccc}
* & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
* & 0 & \cdots & 0
\end{array}\right) \oplus\left(\begin{array}{ccccc}
0 & * & 0 & \cdots & 0 \\
\vdots & \vdots & & & \vdots \\
0 & * & 0 & \cdots & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{cccc}
0 & \cdots & 0 & * \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & *
\end{array}\right) .
$$

So R is semisimple.
Proposition 4.2.5. $\mathrm{Z}\left(M_{n \times n}(K)\right)=K I$.
Proof. Exercise.
Let R be a ring, $x, y \in R$. The commutator of x and y is

$$
[x, y]:=x y-y x \in R .
$$

The commutator subspace is

$$
[R, R]=\{[x, y] \mid x, y \in R\} .
$$

Note: $\quad[R, R]$ is not an R-submodule of R, in general.

Example 4.2.6. Let $R=M_{n \times n}(K)$. Then

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & & \vdots \\
\vdots & & \ddots & \\
0 & \cdots & & 0
\end{array}\right)\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & & & \vdots \\
\vdots & & & \ddots & \\
0 & \cdots & & 0
\end{array}\right)-\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & & & \vdots \\
\vdots & & \ddots & \\
0 & \cdots & & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & \cdots \\
0 & 0 & \\
0 & & \\
\vdots & & \ddots
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & & & \vdots \\
\vdots & & & \ddots & \\
0 & \cdots & & & 0
\end{array}\right)-\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & & \vdots \\
\vdots & & \ddots & \\
0 & \cdots & & 0
\end{array}\right)
\end{aligned}
$$

Similarly, denoting by $e^{i j}$ the matrix with 1 in the $(i, j)^{\text {th }}$ position and 0 elsewhere,

$$
e^{i j} \in[R, R] \quad \forall i \neq j .
$$

Also,

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & & & \vdots \\
\vdots & & & \ddots & \\
0 & \cdots & & & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & & \vdots \\
0 & & & \\
\vdots & & \ddots & \\
0 & \cdots & & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & & \vdots \\
0 & & & \\
\vdots & & \ddots & \\
0 & \cdots & & 0
\end{array}\right)\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & & & \vdots \\
\vdots & & & \ddots & \\
0 & \cdots & & & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & & \vdots \\
\vdots & & \ddots & \\
0 & \cdots & & 0
\end{array}\right)
$$

Similarly,

$$
\left(\begin{array}{ccccccc}
1 & 0 & & & \cdots & & \\
0 & 0 & & & & & \\
\\
& & \ddots & & & & \\
\\
& & & 0 & & & \\
\vdots & & & & -1 & & \\
& & & & & 0 & \\
& & & & & \ddots & \\
0 & & & & \cdots & & \\
0
\end{array}\right) \in[R, R] .
$$

These matrices generate $\{M \mid \operatorname{Tr} M=0\}$ as a vector space. That is,

$$
[R, R]=\operatorname{ker} \operatorname{Tr}: R \mapsto K .
$$

In particular, $\operatorname{dim}[R, R]=n^{2}-1$ and $\operatorname{dim}(R /[R, R])=1$.
Lemma 4.2.7. If V is completely splittable and $U \subset V$ then U is completely splittable.
Proof. Let $T \subset U$. Then

Since V is completely splittable, $\exists \sigma$ s.t. $\sigma \circ j i=1_{T}$, as in the diagram. So $\sigma \circ j$ is a splitting of i.
Theorem 4.2.8. If V is completely splittable then every submodule of V is semisimple.
Corollary 4.2.9. V is semisimple $\Longleftrightarrow V$ is completely splittable.
Corollary 4.2.10. If V is semisimple then every submodule of V is semisimple.
Proof of Theorem. Let $U \subset V$. Consider sets $\left\{S_{i}\right\}_{i \in I}$ of simple U-submodules which are "linearly independent", ie.

$$
\left\langle S_{i}\right\rangle_{i \in I}=\bigoplus_{i \in I} S_{i}
$$

By Zorn's lemma, there is a maximal such set, $\left\{S_{i}\right\}_{i \in I}$. Let

$$
S=\bigoplus_{i \in I} S_{i} .
$$

By the lemma, S is completely splittable, so $\exists T$ s.t. $U=S \oplus T$. If $T \neq 0$, pick $0 \neq x \in T$. By Zorn's lemma,

$$
\left\{T^{\prime} \subset T \mid x \notin T^{\prime}\right\}
$$

has a maximal element, T_{0}. By the lemma, let T_{1} be s.t.

$$
T=T_{0} \oplus T_{1} .
$$

If T_{1} is not simple then let $T_{1}=A \oplus B . x$ can't be in both $T_{0} \oplus A$ and $T_{0} \oplus B$ since their intersection is T_{0}. This contradicts the maximality of T_{0}, so T_{1} is simple.

But T_{1} can be added to $\left\{S_{i}\right\}_{i \in I}$ to get a still-linearly independent set of simple submodules. This contradicts the maximality of $\left\{S_{i}\right\}_{i \in I}$.

So $T=0$ and $U=S=\bigoplus_{i \in I} S_{i}$ is semisimple.

Corollary 4.2.11. Let

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

be a short exact sequence of R-modules. If V is semisimple then U, W are semisimple.
Proof. $V \cong U \oplus W$, so $U \subset V$ and V has a submodule isomorphic to W. So by the theorem, U and W are semisimple.
Theorem 4.2.12 (Maschke). If K is a field, G a finite group s.t. char $K \dagger|G|$ then $K[G]$ is semisimple.
Proof. Write $V=K[G]$, as a module over itself. Suppose U is a $K[G]$-submodule, and show that there exists a K-module splitting $p: V \mapsto U$.

As vector spaces, $\exists U_{0}$ s.t. $V \cong U \oplus U_{0}$ (U_{0} is not necessarily a $K[G]$-module). This yields a linear map $p_{0}: V \mapsto U$ (p_{0} is not necessarily a $K[G]$-homomorphism).

Define $p: V \mapsto U$ by

$$
p(v)=\frac{1}{|G|} \sum_{g \in G} g^{-1} p_{0}(g v) .
$$

Then for $g^{\prime} \in G$,

$$
\begin{aligned}
p\left(g^{\prime} v\right) & =\frac{1}{|G|} \sum_{g \in G} g^{-1} p_{0}\left(g g^{\prime} v\right) \\
& =\frac{1}{|G|} \sum_{f \in G} g^{\prime} f^{-1} p_{0}(f v) \\
& =g^{\prime} \frac{1}{|G|} \sum_{f \in G} f^{-1} p_{0}(f v) \\
& =g^{\prime} p(v) .
\end{aligned}
$$

So p is a $K[G]$-homomorphism.
Also, if $u \in U$ then

$$
\begin{aligned}
p(u) & =\frac{1}{|G|} \sum_{g \in G} g^{-1} p_{0}(g u) \\
& =\frac{1}{|G|} \sum_{g \in G} g^{-1}(g u) \\
& =\frac{1}{|G|} \sum_{g \in G} u \\
& =u .
\end{aligned}
$$

$\therefore p$ is a splitting.

Note: If K is not a field then the same proof works, provided $|G|$ is invertible in R and \exists an R-module splitting $p_{0}: V \mapsto U$.

Let R be a semisimple ring,

$$
R \cong \bigoplus_{i \in I} V_{i}
$$

where each V_{i} is simple.
Proposition 4.2.13. Ever simple R-module appears (up to isomorphism) as V_{i} for some i.
Proof. Let W be a simple R-module and $0 \neq w \in W$. Then

$$
\begin{aligned}
R & \stackrel{\phi}{\longmapsto} W \\
1 & \longmapsto
\end{aligned}
$$

is not zero, so it is onto (since W is simple).
So W is a summand of R. Furthermore,

$$
0 \neq \phi \in \operatorname{hom}_{R}(R, W) \cong \bigoplus_{i \in I} \operatorname{hom}_{R}\left(V_{i}, W\right)
$$

so $\operatorname{hom}_{R}\left(V_{i}, W\right) \neq 0$ for some i. But any non-zero homo. between simple R-modules is an isomorphism, so W is isomorphic to some V_{i}.

Proposition 4.2.14. Let R be semisimple, $I \subset R$ a left ideal. Then \exists an idempotent $e \in R$ s.t. $I=R e$.
Note: If V is a simple R-module then $R v=V$, for any $v \in V$. Moreover, since R is semisimple, $R \mapsto R v$ splits, so V is isomorphic to a left ideal of R.

Proof. Since R is semisimple, $\exists J$ s.t. $R=I \oplus J$. Write $1=e+f$ where $e \in I, f \in J$.
$e \in I \Rightarrow R e \subset I$. Conversely, given $x \in I, x=x e+x f . x f=x-x e \in I$ and since $f \in J, x f \in J$. Thus

$$
x f \in I \cap J=0 \Rightarrow x=x e
$$

$\therefore I=R e$.
Now, $x=x e \forall x \in I$, and in particular, $e=e^{2}$.

4.3 Artinian Rings

Recall that an R-module V is Noetherian if for any chain

$$
V_{0} \subset V_{1} \subset \cdots \subset V_{n} \subset \cdots
$$

of submodules, $\exists N$ s.t. $V_{n}=V_{N} \forall n \geq N$. Likewise:
Definition 4.3.1. An R-module V is Artinian iffor any chain

$$
V_{0} \supset V_{1} \supset \cdots \supset V_{n} \supset \cdots
$$

of submodules, $\exists N$ s.t. $V_{n}=V_{N} \forall n \geq N . R$ is an Artinian ring if R is Artinian as a (left) R-module.
Example 4.3.2. \mathbb{Z} is Noetherian (in fact, it is a PID) but not Artinian, since we have:

$$
2 \mathbb{Z} \supset 4 \mathbb{Z} \supset 8 \mathbb{Z} \supset \cdots \supset 2^{n} \mathbb{Z} \supset \cdots
$$

When G is finite and K is a field, $K[G]$ is both Noetherian and Artinian (by counting dimensions, can't have a strictly increasing chain longer than $|G|+1$).

Proposition 4.3.3. Let

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

be a short exact sequence of R-modules. Then V is Noetherian (respectively Artinian) $\Longleftrightarrow U, W$ are Noetherian (resp. Artinian).

Corollary 4.3.4. If

$$
V=\bigoplus_{i=1}^{n} V_{i}
$$

then V is Noetherian (resp. Artinian) $\Longleftrightarrow V_{i}$ is Noetherian (resp. Artinian) $\forall i$.
Proposition 4.3.5. If

$$
V=\bigoplus_{i \in I} V_{i}
$$

with $V_{i} \neq 0$ and V is finitely generated then $|I|<\infty$.
Proof. Each generator has only finitely many non-zero components.
Corollary 4.3.6. If V is finitely generated and semisimple then V is both Noetherian and Artinian.

Proof. By the hypothesis,

$$
V=\bigoplus_{i=1}^{n} V_{i}
$$

where each V_{i} is simple. So for each i, the only chain is $0 \subset V_{i}$. Thus V_{i} is both Noetherian and Artinian.

Corollary 4.3.7. If R is semisimple then R is both Noetherian and Artinian.
Proof. As an R-module, R is generated by the single element 1 .
Proposition 4.3.8. Let G be finite, K Noetherian (resp. Artinian). Then $K[G]$ is Noetherian (resp. Artinian).

Proof. If K is Noetherian (or Artinian) then, as a K-module, so is $K^{|G|}$, which is isomorphic, as a K module, to $K[G]$. But every $K[G]$-submodule of $K[G]$ is a K-submodule, so if $K[G]$ is Noetherian (or Artinian) as a K-module then it has the same property as a $K[G]$-module.

Lemma 4.3.9 (Schur). Let V be a simple R-module. Then:

1. $\operatorname{End}_{R}(V)$ forms a division ring.
2. If R is a finite dimensional algebra (eg. $R=K[G]$ with G finite) over an algebraically closed field K then $\operatorname{End}_{R}(V) \cong K$.

Proof.

1. If $f: V \mapsto V$ is nonzero then $\operatorname{Im} f=V$ so V is onto. Also, since $f \neq 0$, $\operatorname{ker} f \neq V$, so $\operatorname{ker} f=0$. Hence f is an isomorphism, so it has an inverse. ie. $\operatorname{End}_{R}(V)$ is a division ring.
2. Let $f \in \operatorname{End}_{R}(V)$, and show $f=\lambda I$ for some $\lambda \in K$. For any $0 \neq x \in V, R x$ forms a finite dimensional subspace of V (its dimension is $\leq \operatorname{dim} R$). Since V is simple, $R x=V$, so V is finite dimensional.

So \exists an eigenvector $0 \neq v \in V$ for f, so that $f v=\lambda v$. Since V is simple, $R v=V$. Hence $\forall w \in V, w=r v$ so

$$
f(w)=r f(v)=\lambda r v=\lambda w .
$$

ie. $f=\lambda I$.

4.4 Wedderburn's Theorem

Let R be semisimple. Then

$$
R \cong n_{1} V_{1} \oplus n_{2} V_{2} \oplus \cdots \oplus n_{k} V_{k}
$$

where V_{1}, \ldots, V_{k} is the list of simple R-modules (one from each isomorphism class). (This is a finite decomposition by Proposition 4.3.5)

For a ring A,

$$
\begin{aligned}
A & \stackrel{\phi}{\longmapsto} \operatorname{End}_{A}(A) \\
A & \longmapsto \phi_{a} \\
\phi_{a}(b) & =b a
\end{aligned}
$$

is a bijection, since every endomorphism f is equal to $\phi_{f(1)}$. Then

$$
\phi_{a} \phi_{b}(1)=\phi_{a}(b)=b a=\phi_{b a}(1) .
$$

$\therefore \phi$ is a ring isomorphism

$$
\phi: A^{\mathrm{opp}} \mapsto \operatorname{End}_{A}(A),
$$

where A^{opp} is the ring with the same group structure as A but $a\left({ }^{\circ}{ }_{\mathrm{opp}}\right) b=b a$.
Set $D_{j}=\operatorname{End}_{R}\left(V_{j}\right)$, a division ring. Then

$$
\begin{aligned}
R & \cong\left(\operatorname{End}_{R}(R)\right)^{\mathrm{opp}} \\
& \cong \prod_{j=1}^{k}\left(\operatorname{End}_{R}\left(n_{j} V_{j}\right)\right)^{\mathrm{opp}} \\
& \cong \prod_{j=1}^{k}\left(M_{n_{j} \times n_{j}}\left(\operatorname{End}_{R}\left(V_{j}\right)\right)^{\mathrm{opp}}\right. \\
& \cong \prod_{j=1}^{k}\left(M_{n_{j} \times n_{j}}\left(D_{j}\right)\right)^{\mathrm{opp}} \\
& \cong \prod_{j=1}^{k} M_{n_{j} \times n_{j}}\left(D_{j}^{\mathrm{opp}}\right)
\end{aligned}
$$

where on the last line, the isomorphism is given by the transpose map.

Under this isomorphism, $V_{j} \subset n_{j} V_{j} \subset R$ corresponds to

$$
\operatorname{hom}_{R}\left(n_{j} V_{j}, V_{j}\right) \cong\left(\begin{array}{cccc}
* & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
* & 0 & \cdots & 0
\end{array}\right) \subset M_{n_{j} \times n_{j}}\left(D_{j}^{\mathrm{opp}}\right) .
$$

In particular, suppose R is an algebra over a field K and $D_{j} \cong K$ (eg. if K is algebraically closed). Then:

1. $\operatorname{dim} V_{j}=n_{j}$ for each j.
2. $\operatorname{dim} R=\sum_{j=1}^{k} n_{j}^{2}$.

Example 4.4.1.

1. $R=\mathbb{C}\left(S_{2}\right)$

By Maschke's Theorem, char $K=0 \Rightarrow K[G]$ is semisimple. Here,

$$
2=1^{2}+1^{2}
$$

and there are no other possibilities, so R has 2 indecomposable reps., each on a 1-dimensional space.
They are: Let $\operatorname{dim} V=1$ with basis v. $S_{2}=\{e, T\}$, with $T^{2}=e$. The trivial rep. is:

$$
\begin{aligned}
e \cdot v & =v, \\
T \cdot v & =v .
\end{aligned}
$$

The sign rep. is:

$$
\begin{aligned}
e \cdot v & =v, \\
T \cdot v & =-v .
\end{aligned}
$$

2. $R=\mathbb{C}\left(S_{3}\right)$

Either

$$
6=1^{2}+1^{2}+\cdots+1^{2} \quad \text { or } \quad 6=1^{2}+1^{2}+2^{2}
$$

Easy to see that the trivial rep. and the sign rep. $\left(\sigma \cdot v=(-1)^{\operatorname{sgn} \sigma} v\right.$, sgn is the homomorphism $\epsilon: S_{n} \mapsto\{1,-1\}$ used to define A_{n} in section 1.6.2) are the only possible reps. of R on a 1-dim. V. Hence R has 3 indecomposable reps.: trivial rep., sign rep., a 2-dim. rep.

The 2-dim. rep. is:

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 2
\end{array}\right) & \mapsto\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right), \\
\left(\begin{array}{lll}
1 & 3
\end{array}\right) & \mapsto\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \\
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right) & \mapsto\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

3. $R=\mathbb{C}\left(S_{4}\right)$

$$
24=1^{2}+1^{2}+(a)^{2}+\cdots+()^{2}, \quad a \geq 2
$$

Looking at congruence $\bmod 4$, need $3^{2}\left(2^{2}, 4^{2}\right.$ are divisible by 4 , but $24-1^{2}-1^{2}$ is not $)$. Hence, the only possibility is

$$
24=1^{2}+1^{2}+2^{2}+3^{2}+3^{2}
$$

ie. two 1-dim. reps., one 2-dim. rep., two 3-dim. reps.
Theorem 4.4.2. Let G be a finite group, K an algebraically closed field of characteristic 0 . Then the number of isomorphic simple $K[G]$-modules is equal to the number of conjugacy classes of G.

Proof. As seen earlier,

$$
\mathrm{Z}(K[G])=\text { Free } K \text {-module on }\left\{\sum_{g \in C} g \mid C \text { a conj. class }\right\} .
$$

So the number of conjugacy classes is equal to $\operatorname{dim} \mathrm{Z}(K[G])$. Also,

$$
K[G]=\prod_{j=1}^{k} M_{n_{j} \times n_{j}}(K) .
$$

Now, $\mathrm{Z}\left(M_{n \times n}(K)\right)=K I$, which has dimension 1. Thus,

$$
\operatorname{dim} \mathrm{Z}(K[G])=k=\# \text { nonisomorphic simple } K[G] \text {-modules. }
$$

4.5 Changing the Ground Ring

Example 4.5.1. Let $G=C_{3}=\left\{e, t, t^{2}\right\}, K=\mathbb{R}$. Then using $V=\mathbb{R}^{2}$,

$$
\begin{aligned}
\rho: K[G] & \mapsto M_{2}(\mathbb{R}) \\
t & \mapsto\left(\begin{array}{cc}
\cos \frac{2 \pi}{3} & -\sin \frac{2 \pi}{3} \\
\sin \frac{2 \pi}{3} & \cos \frac{2 \pi}{3}
\end{array}\right) .
\end{aligned}
$$

(ρ is rotation by $\frac{2 \pi}{3}$.) Then ρ is indecomposable. But if we use $K=\mathbb{C}$, and $\tilde{\rho}: \mathbb{C}[G] \mapsto M_{2}(\mathbb{C})$ induced by the same representation, then $\tilde{\rho}$ is decomposable since over \mathbb{C}, we can change basis and diagonalize:

$$
\tilde{\rho}(t)=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{\frac{4 \pi i}{3}}
\end{array}\right),
$$

in an appropriate basis.
Given $f: R \mapsto S$ a ring homomorphism, f induces a functor

$$
\begin{aligned}
\{(\text { left }) R \text {-mods. }\} & \mapsto\{(\text { left }) S \text {-mods. }\} \\
V & \mapsto V_{S}:=S \otimes_{R} V .
\end{aligned}
$$

The map f makes S a two-sided R-module (and in particular, a right module), so $S \otimes_{R} V$ makes sense. $S \otimes_{R} V$ is an S-module via the action

$$
s^{\prime}(s \otimes v)=\left(s^{\prime} s\right) \otimes v
$$

If

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

is a short exact sequence of left R-modules and M is a right R-module then

$$
M \otimes_{R} U \rightarrow M \otimes_{R} V \rightarrow M \otimes_{R} W \rightarrow 0
$$

is exact, although the first map may not be injective. However, if M is a free R-module, $M \cong R^{n}$ then $M \otimes_{R} N \cong N^{n}$, and so

$$
M \otimes_{R} U \hookrightarrow M \otimes_{R} V
$$

in this case.
In particular, if $f: R \hookrightarrow S$ makes S into a free R-module then when

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

is exact, so is

$$
0 \rightarrow U_{S} \rightarrow V_{S} \rightarrow W_{S} \rightarrow 0
$$

ie. $(V / U)_{S} \cong V_{S} / U_{S}$.
In particular, if $K \subset M$ is a field extension then M is a free K-module.
$f: K \mapsto M$ induces $K[G] \mapsto M[G]$, and thus

$$
\begin{aligned}
K[G] \text {-mods. } & \mapsto M[G] \text {-mods. } \\
V & \mapsto V_{M}
\end{aligned}
$$

ie. $(m g)\left(m^{\prime} \otimes v\right)=\left(m m^{\prime} \otimes g v\right)$, defines $M[G]$-action on V_{M}.
Note: If $v=k v^{\prime}$ then $m^{\prime} \otimes v=m^{\prime} f(k) \otimes v^{\prime}$, but then

$$
m g\left(m^{\prime} \otimes v\right)=m m^{\prime} \otimes g v=m m^{\prime} \otimes k g v^{\prime}=m m^{\prime} f(k) \otimes g v^{\prime}=m g\left(m^{\prime} f(k) \otimes v^{\prime}\right)
$$

so the action is well-defined. Also,

$$
g\left(m\left(m^{\prime} \otimes v\right)\right)=g\left(m m^{\prime} \otimes v\right)=m m^{\prime} \otimes g v=m\left(m^{\prime} \otimes g v\right)=m g\left(m^{\prime} \otimes v\right),
$$

so the action of g is M-linear.
If $K \subset M$ is a field extension and $n=\operatorname{dim} V<\infty$,

$$
\rho: K[G] \mapsto \operatorname{End}_{K}(V) \cong M_{n \times n}(K)
$$

then $\operatorname{dim} V_{M}=n$ and for the induced map

$$
\tilde{\rho}: M[G] \mapsto \operatorname{End}_{M}\left(V_{M}\right),
$$

the matrix $\tilde{\rho}(g)$ for the action of g is just $\rho(g)$, regarded as a matrix in M (whose entries happen to lie in K).

As we have seen, V simple $\nRightarrow V_{M}$ is simple.

4.6 Composition Series

Let V be an R-module.
Definition 4.6.1. A composition series for V consists of a chain of submodules

$$
0=V_{n} \subset V_{n-1} \subset \cdots \subset V_{1} \subset V_{0}=V
$$

s.t. V_{j-1} / V_{j} is simple $\forall j=1, \ldots, n$.

The composition series

$$
0=V_{n} \subset \cdots \subset V_{0}=V
$$

and

$$
0=W_{m} \subset \cdots \subset W_{0}=V
$$

are called equivalent if $n=m$ and $\exists \sigma \in S_{n}$ s.t.

$$
V_{j-1} / V_{j} \cong W_{\sigma(j)-1} / W_{\sigma(j)} \quad \forall j .
$$

ie. the list of "composition factors" (including multiplicities) is the same, although the order may be different.

Proposition 4.6.2. V has a composition series $\Longleftrightarrow V$ is both Artinian and Noetherian. In this case, any series can be refined to a composition series.

Proof.

\Leftarrow : Suppose V is Artinian and Noetherian. Let $V_{0}=V$. Since V is Noetherian, V contains a maximal (proper) submodule, V_{1} (by Theorem 2.6.2). Continuing, so long as $V_{j} \neq 0$, get

$$
V_{0} \supsetneq V_{1} \supsetneq \cdots \nexists V_{j} \ni \cdots
$$

s.t. V_{j+1} is maximal in V_{j}, ie. V_{j} / V_{j+1} is simple. Since V is Artinian, the chain must terminate.
\Rightarrow : Suppose

$$
0=V_{n} \subset \cdots \subset V_{0}=V
$$

is a composition series. Then we have the exact sequence

$$
0 \rightarrow V_{1} \rightarrow V \rightarrow V / V_{1} \rightarrow 0 .
$$

Since V_{1} is simple, V_{1} is Artinian and Noetherian. V / V_{1} has a composition series of length $n-1$, so by induction, V / V_{1} is Artinian and Noetherian. Thus, V is Artinian and Noetherian.

Finally, given any series

$$
0=V_{n} \subset \cdots \subset V_{0}=V,
$$

each V_{i-1} / V_{i} is Noetherian and Artinian, so it has a composition series. Using each of these series, we may refine the given series to a composition series.

Theorem 4.6.3. Any two comp. series for V are equivalent.
Proof. Let

$$
0=V_{n} \subset \cdots \subset V_{0}=V
$$

and

$$
0=W_{m} \subset \cdots \subset W_{0}=V
$$

be comp. series. For $1 \leq i \leq n$ and $1 \leq j \leq m$, set

$$
V_{i j}:=V_{i}+\left(V_{i-1} \cap W_{j}\right) \quad \text { and } \quad W_{j i}:=W_{j}+\left(W_{j-1} \cap W_{j}\right)
$$

Claim.

$$
\frac{V_{i, j-1}}{V_{i j}} \cong \frac{V_{i-1} \cap W_{j-1}}{\left(V_{i} \cap W_{j-1}\right)+\left(V_{i-1} \cap W_{j}\right)} \cong \frac{W_{j, i-1}}{W_{j i}} .
$$

Proof of claim. Consider

$$
\left.\phi: V_{i-1} \cap W_{j-1} \hookrightarrow V_{i}+\left(V_{i-1} \cap W_{j}-1\right) \mapsto \frac{V_{i}+\left(V_{i-1} \cap W_{j-i}\right)}{V_{i}+\left(V_{i-1}\right.} \cap W_{j}\right)=\frac{V_{i, j-i}}{V_{i j}}
$$

$V_{i} \subset V_{i j}$, so every element of $V_{i, j-1}$ is congruent modulo $V_{i j}$ to one in $V_{i-1} \cap W_{j-1}$. ie. ϕ is surjective.
Clearly, $V_{i-1} \cap W_{j} \subset V_{i j}$, so

$$
V_{i-1 \cap W_{j}} \subset \operatorname{ker} \phi
$$

Also, $V_{j} \cap W_{j-1} \subset V_{i} \subset V_{i j}$, so

$$
V_{i} \cap W_{j-1} \subset \operatorname{ker} \phi
$$

Hence,

$$
\left(V_{i-1} \cap W_{j}\right)+\left(V_{i} \cap W_{j-1}\right) \subset \operatorname{ker} \phi
$$

Conversely, suppose $x \in V_{i-1} \cap W_{j-1}$ lies in

$$
\operatorname{ker} \phi=\left(V_{i-1} \cap W_{j-1}\right) \cap\left(V_{i}+\left(V_{i-1} \cap W_{j}\right)\right) .
$$

Write $x=y+z$ where $y \in V_{i}$ and $z \in V_{i-1} \cap W_{j}$. Since $x \in W_{j-1}$ and $z \in W_{j} \subset W_{j-1}$, it follows that $y \in W_{j-1}$. So

$$
x=y+z
$$

exhibits x as an elt. of $\left(V_{i} \cap W_{j-1}\right)+\left(V_{i-1} \cap W_{j}\right)$.

Notice that since V_{i-1} / V_{i} and W_{j-1} / W_{j} are simple,

$$
\frac{V_{i-1} \cap W_{j-1}}{\left(V_{i} \cap W_{j-1}\right)+\left(V_{i-1} \cap W_{j}\right)}
$$

is either 0 or simple.
So we have

$$
\begin{equation*}
V=V_{0}=V_{10} \supset V_{11} \supset \cdots \supset V_{1 m}=V_{1}=V_{20} \supset \cdots \supset \cdots \supset V_{n-1}=V_{n 0} \supset \cdots \supset V_{n m}=0 . \tag{*}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
V=W_{0}=W_{10} \supset W_{11} \supset \cdots \supset W_{1 n}=W_{1}=W_{20} \supset \cdots \supset \cdots \supset W_{m-1}=W_{m 0} \supset \cdots \supset W_{m n}=0 \tag{**}
\end{equation*}
$$

Notice that both chains have the same length, and by the claim, there is a bijection between the quotient modules, each of which is either simple or 0 . So by shortening the chains by deleting entries which equal their predecessors, all the 0 -quotient modules are deleted, and what is left are composition series. The number of 0-quotients deleted is the same (they are paired), so the resulting comp. series have the same length and same quotients, ie. they are equivalent.

But (*) reduces to

$$
V_{n} \subset \cdots \subset V_{0}
$$

and $\left({ }^{* *}\right)$ reduces to

$$
W_{m} \subset \cdots \subset W_{0},
$$

since they are respectively refinements of these series, and you can't refine a comp. series any further. So these two comp. series are equivalent.

4.7 Characters

Let

$$
\rho: K[G] \mapsto \operatorname{End}_{K}(V)
$$

be a rep. of K on a free K-module V. Define

$$
\chi_{\rho}: K[G] \mapsto K,
$$

the character of ρ by $\chi_{\rho}=\operatorname{Tr}(\rho(x))$.
Since $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B), \chi_{\rho}$ is determined by its values on the basis G for $K[G]$, so sometimes write $\chi_{\rho}: G \mapsto K$.

Recall that Tr is preserved under change of basis, since

$$
\operatorname{Tr}\left(A^{-1} B A\right)=\operatorname{Tr}\left(A A^{-1} B\right)=\operatorname{Tr}(B)
$$

So, if $h=x^{-1} g x$ then

$$
\rho(h)=\rho(x)^{-1} \rho(g) \rho(x)
$$

and thus, $\chi_{\rho}(h)=\chi_{\rho}(g)$.
Proposition 4.7.1. Let

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

be a short exact sequence of $K[G]$-modules, each of which is free as a K-module. Then

$$
\chi_{V}=\chi_{U}+\chi_{W}
$$

Proof. Since U is a $K[G]$-submodule, for all $g \in U$, the matrix for $\rho(g)$ has the form

$$
\rho_{V}(g)=\left(\begin{array}{cc}
\rho_{U}(g) & * \\
0 & \rho_{W}(g)
\end{array}\right)
$$

Proposition 4.7.2. $\chi_{V \otimes W}=\chi_{V} \chi_{W}$.
Proof. Let $\left\{e_{i}\right\},\left\{f_{j}\right\}$ be bases for V, W respectively. Then $\left\{e_{i} \otimes f_{j}\right\}$ is a basis for $V \otimes W$, and

$$
(A \otimes B)\left(e_{i} \otimes f_{j}\right)=a_{i i} b_{j j}\left(e_{i} \otimes f_{j}\right)+\text { other terms }
$$

So,

$$
\operatorname{Tr}(A \otimes B)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i i} b_{j j}=(\operatorname{Tr} A)(\operatorname{Tr} B)
$$

Proposition 4.7.3. Viewing $K[G]$ as a left $K[G]$-module,

$$
\chi_{K[G]}(g)= \begin{cases}|G|, & g=e \\ 0, & g \neq e\end{cases}
$$

Proof. In the basis $\{g\}_{g \in G}$ for $K[G]$, the action of any elt. of G is given by a permutation matrix. So, by the definition of the trace,

$$
\begin{aligned}
\chi_{K[G]}(g) & =|\{x \in G \mid g x=x\}| \\
& = \begin{cases}|G|, & g=e, \\
0, & g \neq e .\end{cases}
\end{aligned}
$$

Corollary 4.7.4. Suppose

$$
K[G] \cong V_{1} \oplus \cdots \oplus V_{r}
$$

and K is a field s.t. char $K \nmid|G|$. Thus $\chi_{K[G]}=\sum_{i=1}^{r} \chi_{i}$ where $\chi_{i}=\chi_{V_{i}}$.
Let $y=\sum_{g \in G} c_{g} g \in K[G]$. Then for any g,

$$
c_{g}=\frac{1}{|G|} \sum_{i=1}^{r} \chi_{i}\left(y g^{-1}\right) .
$$

Proof. Pick $g \in G$.

$$
\begin{aligned}
& y=\sum_{h \in G} c_{h} h=c_{g} g+\sum_{h \neq g} c_{h} h . \\
& \therefore y g^{-1}=c_{g} e+\sum_{h \neq g} c_{h} h g^{-1} . \text { Applying } \chi_{K[G]}=\sum_{i=1}^{r} \chi_{i}, \\
& \sum_{i=1}^{r} \chi_{i}\left(y g^{-1}\right)=\chi_{K[G]}\left(y g^{-1}\right) \\
&=c_{g} \chi_{K[G]}(e)+\sum_{h \neq g} c_{h} \chi_{K[G]}\left(h g^{-1}\right) \\
&=|G| c_{g}+0 .
\end{aligned}
$$

Set $\mathrm{CF}_{K}(G):=\left\{f: G \mapsto K \mid f\left(y^{-1} x y\right)=f(x) \forall x, y \in G\right\} . \mathrm{CF}_{K}(G)$ is a ring using addition and multiplication of functions. It is called the ring of class functions.
$\mathrm{R}_{K}(G)$ is the abelian group generated by iso. classes of f.d. reps. of G, with the relation

$$
[V]=\left[V^{\prime}\right]+\left[V^{\prime \prime}\right]
$$

for every short exact sequence

$$
0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0 .
$$

Define multiplication on $\mathrm{R}_{K}(G)$ by

$$
[V][W]=[V \otimes W] .
$$

Then the preceeding implies that

$$
\begin{aligned}
\theta: \mathrm{R}_{K}(G) & \mapsto \mathrm{CF}_{K}(G) \\
{[\rho] } & \mapsto \chi_{\rho}
\end{aligned}
$$

is a ring homomorphism.
Set $\mathrm{Ch}_{K}(G):=\operatorname{Im} \theta$, the "ring of generalized K-characters of G ", or simply the "character ring of G over K ".

Lemma 4.7.5. Let V, W be $K[G]$-modules and let $f \in \operatorname{hom}_{K}(V, W)$. Define $\tilde{f}: V \mapsto W$ by

$$
\tilde{f}(v)=\sum_{g \in G} g^{-1} f(g v) .
$$

Then $\tilde{f} \in \operatorname{hom}_{K[G]}(V, \underset{\sim}{W})$.
If $V=W$ then $\operatorname{Tr} \tilde{f}=|G| \operatorname{Tr}(f)$.
Proof. For $x \in G$,

$$
\tilde{f}(x v)=\sum_{g \in G} g^{-1} f(g x v)=\sum_{h \in G} x h^{-1} f(h v)=x \tilde{f}(v) .
$$

Now suppose $V=W$. Then,

$$
\tilde{f}=\sum_{g \in G} M_{g}^{-1} f M_{g}
$$

where M_{g} represents the action of g on V. Hence,

$$
\begin{aligned}
\operatorname{Tr}(\tilde{f}) & =\sum_{g \in G} \operatorname{Tr}\left(M_{g}^{-1} f M_{g}\right) \\
& =\sum_{g \in G} \operatorname{Tr}(f) \\
& =|G| \operatorname{Tr}(f) .
\end{aligned}
$$

Let K be a field.
Lemma 4.7.6. Let $\alpha: G \mapsto \operatorname{Aut}_{K}(V), \beta: G \mapsto \operatorname{Aut}_{K}(W)$ be non-isomorphic simple reps. Pick bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m} for V and W. Let $\left[\alpha_{i j}(g)\right]$ and $\left[\beta_{i j}(g)\right]$ denote matrices for $\alpha(g), \beta(g)$ in these bases. Then for any $i, j, k, t, 1 \leq i, j \leq n, 1 \leq k, t \leq m$,

$$
\sum_{g \in G} \beta_{i j}\left(g^{-1}\right) \alpha_{k t}(g)=0
$$

Proof. Let $f: V \mapsto W$ be the linear transformation which in chosen bases for V and W is given by the matrix E which is 1 in the $(j, k)^{\mathrm{th}}$ position and 0 elsewhere. By the previous lemma, $\tilde{f} \in$ $\operatorname{hom}_{K[G]}(V, W)=0$ (since V, W are non-isomorphic and simple). The $(i, t)^{\text {th }}$ position of the matrix for \tilde{f} is

$$
\begin{aligned}
0 & =\sum_{g \in G} \sum_{r, s} \beta_{i r}\left(g^{-1}\right) E_{i s} \alpha_{s t}(g) \\
& =\sum_{g \in G} \beta_{i j}\left(g^{-1}\right) \alpha_{k t}(g)
\end{aligned}
$$

since $E_{r s}=0$ except when $r=j, s=k$.
Corollary 4.7.7. Let V, W be non-isomorphic simple $K[G]$-modules. Then

$$
\sum_{g \in G} \chi_{V}(g) \chi_{W}\left(g^{-1}\right)=0
$$

Proof. Let $\alpha(g), \beta(g)$ be the matrices for the reps. Then

$$
\sum_{g \in G} \chi_{V}(g) \chi_{W}\left(g^{-1}\right)=\sum_{g} \sum_{t} \sum_{i} \alpha_{t t}(g) \beta_{i i}\left(g^{-1}\right)=0
$$

Theorem 4.7.8. Let $\alpha: G \mapsto \operatorname{Aut}_{K}(V)$ be a simple G-rep. If K is algebraically closed and char $K=0$ then $\operatorname{dim} Z||G|$ and

$$
\sum_{g \in G} \alpha_{i j}\left(g^{-1}\right) \alpha_{k t}(g)=\delta_{j k} \delta_{i t} \frac{|G|}{\operatorname{dim} V}
$$

Proof. Let $f: V \mapsto V$ be the linear transformation which in a chosen basis for V is given by the matrix E which is 1 in the $(j, k)^{\text {th }}$ position and 0 elsewhere. So $\tilde{f} \in \operatorname{hom}_{\mathbb{Z}[G]}(V, V)$. Since V is simple, $\operatorname{hom}_{K[G]}(V, V)=K$, and thus, $\operatorname{hom}_{\mathbb{Z}[G]}(V, V)=\mathbb{Z}$. That is, $\tilde{f}=c I$ for some $c \in \mathbb{Z}$.

As above, the $(i, t)^{\text {th }}$ entry of the matrix for \tilde{f} is

$$
\sum_{g \in G} \alpha_{i j}\left(g^{-1}\right) \alpha_{i j}\left(g^{-1}\right) \alpha_{k t}(g)
$$

Now, $\operatorname{Tr}(\tilde{f})=\operatorname{Tr}(c I)=c \operatorname{dim} V$. On the other hand, by the earlier lemma, $\operatorname{Tr}(\tilde{f})=|G| \operatorname{Tr}(E)$. Thus,

$$
\begin{aligned}
c \operatorname{dim} V & =|G| \operatorname{Tr}(E), \\
c & =\frac{|G| \operatorname{Tr}(E)}{\operatorname{dim} V} .
\end{aligned}
$$

If $j \neq k$ then $\operatorname{Tr}(E)=0$, so $c=0$. Also, if $i \neq t$ then the $(i, t)^{\text {th }}$ entry of \tilde{f} is 0 , regardless of c. Hence,

$$
\sum_{g \in G} \alpha_{i j}\left(g^{-1}\right) \alpha_{k t}(g)=0 \quad \text { unless } i=t \text { and } j=k
$$

When $i=t$ and $j=k, \operatorname{Tr}(E)=1$ so

$$
\frac{|G|}{\operatorname{dim} V}=c=\sum_{g \in G} \alpha_{i j}\left(g^{-1}\right) \alpha_{k t}(g),
$$

and in particular, $\operatorname{dim} V||G|$.
Corollary 4.7.9. Let V be a simple $K[G]$-module where K is algebraically closed and char $K=0$. Then

$$
\sum_{g \in G} \chi_{V}(g) \chi_{V}\left(g^{-1}\right)=|G| .
$$

Proof. Let $\alpha(g)$ be the matrix for V. Set $s:=\operatorname{dim} V$. Then

$$
\begin{aligned}
\sum_{g \in G} \chi_{V}(g) \chi_{V}\left(g^{-1}\right) & =\sum_{g \in G} \sum_{t=1}^{s} \sum_{i=1}^{s} \alpha_{t t}(g) \alpha_{i i}\left(g^{-1}\right) \\
& =\sum_{t=1}^{s} \sum_{i=1}^{s} \sum_{g \in G} \alpha_{t t}(g) \alpha_{i i}\left(g^{-1}\right) \\
& =\sum_{t=1}^{s} \sum_{i=1}^{s} \delta_{i t} \frac{|G|}{s} \\
& =s \frac{|G|}{s} \\
& =|G| .
\end{aligned}
$$

If char $K=0$, can define an inner product on $\mathrm{Ch}_{K}(G)$ via

$$
\left\langle\chi_{V}, \chi_{W}\right\rangle:=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \chi_{W}\left(g^{-1}\right)
$$

If K is algebraically closed, have just shown that $\left\{\chi_{V} \mid V\right.$ simple $\}$ forms an orthonormal set in $\mathrm{Ch}_{K}(G)$. Since $K[G]$ is semisimple, every rep. is a sum of simple ones, so this is in fact a basis.

In particular:
Corollary 4.7.10. If $\operatorname{char} K=0$ then

$$
\mathrm{R}_{K}(G) \cong \mathrm{Ch}_{K}(G)
$$

If K is algebraically closed, then

$$
\mathrm{Ch}_{K}(G)=\mathrm{CF}_{K}(G) .
$$

Proof. We have just shown that $\left\{\chi_{V} \mid V\right.$ simple $\}$ is an orthonormal set in $\mathrm{Ch}_{K}(G) \subset \mathrm{CF}_{K}(G)$ (the inner product extends in the obvious way to $\left.\mathrm{CF}_{K}(G)\right)$. Thus, this set is linearly independent, so $\theta: \mathrm{R}_{K}(G) \mapsto \mathrm{Ch}_{K}(G)$ is injective. By construction, $\mathrm{R}_{K}(G) \mapsto \mathrm{Ch}_{K}(G)$ is onto, so $\mathrm{R}_{K}(G) \cong \mathrm{Ch}_{K}(G)$.

Let C_{1}, \ldots, C_{r} be the set of conj. classes of $G . \mathrm{CF}_{K}(G)$ has a basis $\left\{f_{j}: G \mapsto K\right\}$ where

$$
f_{j}(g)= \begin{cases}1 & g \in C_{j} \\ 0 & g \notin C_{j}\end{cases}
$$

Hence, the dimension of $\mathrm{CF}_{K}(G)$ is the number of conj. classes of G, which, we have seen, is the number of simple $K[G]$-modules, ie. the dimension of $\mathrm{R}_{K}(G)$.

4.8 Change of Group - Induction and Restriction

Let $H \leq G$, so $K[H] \subset K[G]$. Let N be a rep. of $G, G \times N \mapsto N$. Restricting to H produces an action $H \times N \mapsto N$. Denote the resulting rep. of H by N_{H}.

Conversely, let M be a rep. of G. Define the induced representation of G, denoted M_{G}, via

$$
M^{G}:=K[G] \otimes_{K[H]} M .
$$

ie. M^{G} is generated as a K-module by

$$
\{g \otimes m \mid g \in G, m \in M\}
$$

where $g h \otimes m \sim g \otimes h m$. The G-action on M^{G} is defined by

$$
g^{\prime}(g \otimes m)=g^{\prime} g \otimes m
$$

Let g_{1}, \ldots, g_{r} be a set of representatives for the left cosets $\{g H\}$. Then $\left\{g_{j} \otimes m\right\}$ generates M^{G}. In fact, if K is a field and m_{1}, \ldots, m_{k} is a basis for M then

$$
\left\{g_{j} \otimes m_{i} \mid 1 \leq j \leq r, 1 \leq i \leq k\right\}
$$

forms a basis for M^{G}. In particular,

$$
\operatorname{dim} M^{G}=\frac{|G|}{|H|} \operatorname{dim} M,
$$

whereas $\operatorname{dim} N_{H}=\operatorname{dim} N$.
This is a special case of a ground-ring change. A ring homo. $f: R \mapsto S$ induces

$$
\begin{aligned}
\{S \text {-modules }\} & \stackrel{P}{\longmapsto}\{R \text {-modules }\} \\
N & \longmapsto N,
\end{aligned}
$$

where N (on the right) is regarded as an R-module via the action through $f . f$ also induces

$$
\begin{aligned}
\{R \text {-modules }\} & \stackrel{Q}{\longmapsto}\{S \text {-modules }\} \\
M & \longmapsto M \otimes_{R} M .
\end{aligned}
$$

Q and P are adjoint functors, ie.

$$
\operatorname{hom}_{S}(Q M, N)=\operatorname{hom}_{R}(M, P N) \quad \forall R \text {-mods. } M, S \text {-mods. } N .
$$

To see this, given $\alpha: Q M=S \otimes_{R} M \mapsto N$, define $\beta: M \mapsto P N=N$ by

$$
\beta(m)=\alpha(1 \otimes m) .
$$

Then

$$
\beta(r m)=\alpha(1 \otimes r m)=\alpha(r \otimes m)=r \alpha(1 \otimes m)=r \beta(m),
$$

$\therefore \beta$ is an R-mod. homo.
Conversely, given $\beta: M \mapsto P N$, define $\alpha: Q M \mapsto N$ by

$$
\alpha(s \otimes m)=s \beta(m) .
$$

Then

$$
\alpha\left(s^{\prime}(s \otimes m)\right)=\alpha\left(s s^{\prime} \otimes m\right)=s s^{\prime} \beta(m)=s^{\prime} \alpha(s \otimes m)
$$

$\therefore \alpha$ is an S-mod. homo.
In our special case,

$$
\operatorname{hom}_{K[G]}\left(M^{G}, N\right)=\operatorname{hom}_{K[H]}\left(M, N_{H}\right) .
$$

This is called Frobenius Reciprocity.
Also, if $A \leq B \leq C$ then

$$
M^{C} \cong\left(M^{B}\right)^{C}
$$

and

$$
N_{A} \cong\left(N_{B}\right)_{A} .
$$

Let $\left(\chi_{N}\right)_{H}:=\chi_{N_{H}}$ and $\left(\chi_{M}\right)^{G}:=\chi_{M^{G}}$ denote the characters of restricted and induced representations. $\left(\chi_{N}\right)_{H}$ is the composite function

$$
H \hookrightarrow G \stackrel{\chi_{N}}{\longmapsto} K,
$$

ie. $\left(\chi_{N}\right)_{H}=\left.\chi_{N}\right|_{H}$. To describe $\left(\chi_{M}\right)^{G}$, let g_{1}, \ldots, g_{r} be a set of left coset representatives for $G H$ and let m_{1}, \ldots, m_{m} be a basis for V, so that $\left\{g_{i} \otimes m_{j}\right\}$ is a basis for M^{G}.

For $g \in G$,

$$
g \cdot\left(g_{i} \otimes m_{j}\right)=g g_{i} \otimes m_{j}=g_{i_{g}} \otimes h m_{j},
$$

where $g g_{i}=g_{i_{g}} h, h \in H, i_{g}=1, \ldots, r$. Letting $\alpha_{G}(g)$ be the matrix representing the action of g on M^{G} and $\alpha_{H}(h)$ be the matrix for the action of h on M, the contribution to $\operatorname{Tr} \alpha_{G}(g)$ is:

$$
\text { coeff. of }\left(g_{i} \otimes m_{j}\right) \text { in } g\left(g_{i} \otimes m_{j}\right)= \begin{cases}0 & i_{g} \neq i \\ \left(\alpha_{H}(h)\right)_{j j} & i_{g}=g\end{cases}
$$

Note that if $i_{g}=i$ then $h=g_{i}^{-1} g g_{i}$. So

$$
\begin{aligned}
& \chi_{M}^{G}(g)=\sum_{i, j} \begin{cases}0 & g_{i}^{-1} g g_{i} \notin H \\
\alpha_{H}\left(g_{i}^{-1} g g_{i}\right)_{j j} & g_{i}^{-1} g g_{i} \in H\end{cases} \\
&=\sum_{i} \begin{cases}0 & g_{i}^{-1} g g_{i} \notin H \\
\chi_{M}\left(g_{i}^{-1} g g_{i}\right) & g_{i}^{-1} g g_{i} \in H\end{cases} \\
&=\sum_{i} \chi_{M}\left(g_{i}^{-1} g g_{i}\right), \\
& \text { using the convention } \chi_{M}(x)=0 \text { if } x \notin H \\
&=\frac{1}{|H|} \sum_{x \in G} \chi_{M}\left(x^{-1} g x\right) .
\end{aligned}
$$

4.9 Examples

4.9.1 $G=S_{3}$

We have $|G|=6$.

Conj. class	\# conjugates
$\lambda=(3),\left(\begin{array}{ll}1 & 3\end{array}\right)$	2
$\lambda=(2,1),(12)$	3
$\lambda=(1,1,1), e$	1

We have 3 conjugacy classes, so 3 indecomposable reps. So our dimensions are determined:

$$
6=1^{2}+1^{2}+2^{2}
$$

The reps. are:

1. $V_{1}=$ trivial rep., $\operatorname{dim} V_{1}=1, \chi_{1}=(1,(2,1)(3)$
2. $V_{2}=\operatorname{sign}$ rep., $\operatorname{dim} V_{2}=1, \chi_{2}=(1,-1,1)$.
3. $V_{3}=$ natural rep., $\operatorname{dim} V_{3}=2$. By orthogonality of characters, $\chi_{2}=(2,0,-1)$. This representation is given on the space

$$
\left\langle x_{1}, x_{2}, x_{3}\right\rangle /\left\langle x_{1}+x_{2}+x_{3}\right\rangle
$$

by

$$
\sigma\left(\overline{x_{i}}\right)=\overline{x_{\sigma(i)}} .
$$

Altogether, our character table is

$$
\chi=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
2 & 0 & -1
\end{array}\right)
$$

4.9.2 $G=D_{8}=\left\langle a, b \mid a^{4}=b^{2}=e, b a b^{-1}=a^{-1}\right\rangle$
$|G|=8$. We view $G \subset S_{4}$ via $a=\left(\begin{array}{ll}1 & 2\end{array} 4\right.$ 4), $b=(12)$.

Conj. class	\# conjugates
$a=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	2
$a^{2}=\left(\begin{array}{ll}1 & 2\end{array}\right)(34)$	1
$b=\left(\begin{array}{ll}1 & 2\end{array}\right)$	2
$a b=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)$	2
e	1

The dimensions of the irred. reps. are determined:

$$
8=1^{2}+1^{2}+1^{2}+1^{2}+2^{2}
$$

The 1-dim. reps. are given by $\operatorname{hom}\left(D_{8}, S^{1}\right)$ where

$$
S^{1}=\{z \in \mathbb{C}| | z \mid=1\} .
$$

We have

$$
\operatorname{hom}\left(D_{8}, S^{1}\right)=\operatorname{hom}\left(\left(D_{8}\right)_{a b}, S^{1}\right)=\operatorname{hom}\left(C_{2} \times C_{2}, S^{1}\right)=\operatorname{hom}\left(C_{2}, S^{1}\right) \times \operatorname{hom}\left(C_{2}, S^{1}\right)
$$

Dimension	Rep.	
1	V_{1}	trivial,
1	V_{2}	$a \cdot v=-v, b \cdot v=v$
1	V_{3}	$a \cdot v=v, b \cdot v=-v$
1	V_{4}	$a \cdot v=-v, b \cdot v=-v$
2	V_{5}	Find character by $\chi_{K[G]}(\sigma)= \begin{cases}\|G\|, & \sigma=e \\ 0, & \sigma \neq e .\end{cases}$

Our character table (columns indexed by $e, a, a^{2}, b, a b$) is:

$$
\chi=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 & 1 \\
2 & 0 & -2 & 0 & 0
\end{array}\right)
$$

Set $I C_{\langle a\rangle}:=\left(\operatorname{Triv} C_{\langle a\rangle}\right)^{D_{8}}$, that is, the 2-dimensional representation of D_{8} obtained by induction from the trivial representation of the cyclic subgroup generated by a. If v is a basis for the 1dimensional vector space V for the trivial 1-dimensional vector representation of $C_{\langle a\rangle}$, then a basis for $V^{D_{8}}=K\left[D_{8}\right] \otimes_{K[\langle a\rangle} V$ is given $\langle 1 \otimes v, b \otimes v\rangle$, since 1 and b are a set of coset representatives. Since left multiplication by e, a, or a^{2} preserve the cosets, in $I C_{\langle a\rangle}$ they are mapped to the identity matrix, while left multiplication by b or $a b$ switches the cosets. Thus the traces are 2 and 0 respectively so $\chi_{I C_{a s}}=\left(\begin{array}{llll}2 & 2 & 2 & 0\end{array}\right)$. Comparing this with the character table gives $I C_{\langle a\rangle}=V_{1}+V_{3}$.

Let $\alpha^{3,1}$ denote the natural 3-dimensional representation of S_{4} on $\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle /\left\langle x_{1}+x_{2}+x_{3}+x_{4}\right\rangle$. $\left.\alpha^{3,1}\right|_{D_{8}}$ splits as $\left.W \oplus \alpha^{3,1}\right|_{D_{8}} / W$, where $W=\langle w\rangle$ where $w=x_{1}+x_{2} .$. Since $a \cdot w=x_{3}+x_{4}=-w$ and $b \cdot w=x_{2}+x_{1}=w, W \cong V_{2}$. and, it is easy to see (using characters or otherwise) that $\left.W \oplus \alpha^{3,1}\right|_{D_{8}} / W \cong V_{5}$, so $\left.\alpha^{3,1}\right|_{D_{8}}=V_{2}+V_{5}$.

4.9.3 $\quad G=\mathbb{H}_{8}$

\mathbb{H}_{8} is the group of Quaternions. It consists of 8 elements,

$$
\pm i, \pm j, \pm k, \pm 1
$$

such that $(-1)^{2}=1,-1 \in \mathrm{Z}\left(\mathbb{H}_{8}\right)$ and

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1 \\
i j=k, j k=i, k i=j .
\end{gathered}
$$

Conj. class	\# conjugates
$i \sim-i$	2
$j \sim-j$	2
$k \sim-k$	2
-1	1
1	1

The dimensions of the irred. reps. are determined:

$$
8=1^{2}+1^{2}+1^{2}+1^{2}+2^{2} .
$$

$\mathbb{H}_{8} /\langle-1\rangle \cong C_{2} \times C_{2}$ is abelian, so $\left(\mathbb{H}_{8}\right)_{a b}=C_{2} \times C_{2}$, and thus,

$$
\operatorname{hom}\left(\mathbb{H}_{8}, S^{1}\right)=\operatorname{hom}\left(C_{2}, S^{1}\right) \times \operatorname{hom}\left(C_{2}, S^{1}\right)
$$

Dimension	Rep.	
1	V_{1}	trivial
1	V_{2}	$i \cdot v=-v, j \cdot v=v$
1	V_{3}	$i \cdot v=v, j \cdot v=-v$
1	V_{4}	$i \cdot v=-v, j \cdot v=-v$
2	V_{5}	Find character by $\chi_{K[G]}(\sigma)= \begin{cases}\|G\|, & \sigma=e \\ 0, & \sigma \neq e .\end{cases}$

Our character table (columns indexed by $1,-1, i, j, k$) is:

$$
\chi=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
1 & 1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 \\
2 & -2 & 0 & 0 & 0
\end{array}\right)
$$

The "natural" representation of \mathbb{H}_{8} on $W=\left\langle x_{1}, x_{i}, x_{j}, x_{k}\right\rangle$ is given by $i \cdot x_{1}=x_{i}, i \cdot x_{i}=-x_{1}$, $i \cdot x_{j}=x_{k}, i \cdot x_{k}=-x_{j}$, etc. By inspection $\chi_{W}=(4-4000)$, which, from the character table is recognized as $2 V_{5}$. The subspace $\left\langle x_{1}+x_{i}, x_{j}+x_{k}\right\rangle \subset W$ is closed under the action of \mathbb{H}_{8} and provides a natural description of V_{5}.
4.9.4 $G=C_{7} \rtimes C_{3}=\left\langle a, b \mid a^{7}=e, b^{3}=e, b a b^{-1}=a^{2}\right\rangle$

Conj. class	\# conjugates
a	3
$a^{3} \sim a^{-1}$	3
b	7
b^{2}	7
1	1
$G_{a b}=C_{\langle b\rangle}=C_{3}$, and thus,	

$$
\operatorname{hom}\left(G, S^{1}\right)=\operatorname{hom}\left(C_{3}, S^{1}\right)
$$

yielding three 1-dimensional representatives.
The dimensions of the irred. reps. are determined:

$$
21=1^{2}+1^{2}+1^{2}+3^{2}+3^{2} .
$$

Let $\omega=e^{2 \pi i / 3}$.

Dimension	Rep.	
1	V_{1}	trivial
1	V_{2}	$a \cdot v=v, b \cdot v=\omega v$
1	V_{3}	$i \cdot v=v, b \cdot v=\omega^{2} v$
3	V_{4}	
3	V_{5}	

Our character table (columns indexed by $1, a, a^{3}, b, b^{2}$) looks like:

$$
\chi=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & \omega & \omega^{2} \\
1 & 1 & 1 & \omega^{2} & \omega \\
3 & x & y & s & t \\
3 & x^{\prime} & y^{\prime} & s^{\prime} & t^{\prime}
\end{array}\right)
$$

for some $x, y, s, t, x^{\prime}, y^{\prime}, s^{\prime}, t^{\prime}$.
Using $\chi_{K[G]}(\sigma)=\left\{\begin{array}{ll}|G|, & \sigma=e \\ 0, & \sigma \neq e,\end{array}\right.$ we find that $x^{\prime}=-(x+1), y^{\prime}=-(y+1), s^{\prime}=-s, t^{\prime}=-t$.
Orthogonality of χ_{1} and χ_{4} gives $7(s+t)=-3-3 x-3 y$ while orthogonality of the pairs χ_{2}, χ_{4} and χ_{3}, χ_{4} give $7\left(\omega s+\omega^{2} t\right)=-3-2 x-3 y$ and $7\left(\omega^{2} s+\omega t\right)=-3-2 x-3 y$ respectively. Thus $7(s+t)=7\left(\omega s+\omega^{2} t\right)=7\left(\omega^{2} s+\omega t\right)$, from which we deduce that $s=t=0$ and so $(x+y+1)=$ $-\frac{7}{3}(s+t)=0$. The inner product of χ_{4} with itself gives $|G|=21=9+3 x y+3 x y$, which combined with $x+y+1=0$ gives $x^{2}+x+2=0$, which determines x. Notice that the solution of $x^{2}+x+2=0$ satisfies $x=\zeta+\zeta^{2}+\zeta^{4}$, where $\zeta=e^{2 \pi i / 7}$ and $1-x=\zeta^{3}+\zeta^{5}+\zeta^{6}$,

Thus our character table is Our character table (columns indexed by $1, a, a^{3}, b, b^{2}$) looks like:

$$
\chi=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & \omega & \omega^{2} \\
1 & 1 & 1 & \omega^{2} & \omega \\
3 & x & y & 0 & 0 \\
3 & y & x & 0 & 0
\end{array}\right)
$$

where $x=\zeta+\zeta^{2}+\zeta^{4}$ and $y=\zeta^{3}+\zeta^{5}+\zeta^{6}$.
The representation V_{4} is given explicitly by $a \mapsto\left(\begin{array}{ccc}\zeta & 0 & 0 \\ 0 & \zeta^{2} & 0 \\ 0 & 0 & \zeta^{4}\end{array}\right), b \mapsto\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ while V_{5} is given by $a \mapsto\left(\begin{array}{ccc}\zeta^{3} & 0 & 0 \\ 0 & \zeta^{6} & 0 \\ 0 & 0 & \zeta^{5}\end{array}\right), b \mapsto\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.

4.10 Symmetric Polynomials

For a free K-module V, let

$$
T^{K}(V):=\bigoplus_{n=0}^{\infty} V^{\otimes n}
$$

called the tensor algebra on V. Multiplication is defined on $T^{K}(V)$ by

$$
\left(x_{1} \otimes \cdots \otimes x_{k}\right)\left(x_{k+1} \otimes \cdots \otimes x_{\ell}\right)=x_{1} \otimes \cdots \otimes x_{k} \otimes x_{k+1} \otimes \cdots \otimes x_{\ell} .
$$

S_{n} acts on $V^{\otimes n}$ by permuting factors (called the position action), ie.

$$
\sigma \cdot\left(x_{1} \otimes \cdots \otimes x_{n}\right)=x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)} .
$$

Let

$$
S(V):=T(V) / \sim
$$

where $\left(x_{1} \otimes \cdots \otimes x_{n}\right) \sim \sigma \cdot\left(x_{1} \otimes \cdots \otimes x_{n}\right)$. This is called the polynomial (symmetric) algebra on V.
Example 4.10.1. If x_{1}, \ldots, x_{m} form a basis for V then

$$
\begin{aligned}
S(V) & \stackrel{\cong}{\cong} K\left[x_{1}, \ldots, x_{m}\right] \\
x_{i_{1}} \otimes \cdots \otimes x_{i_{n}} & \mapsto x_{i_{1}} \cdots x_{i_{n}} .
\end{aligned}
$$

Likewise, the exterior algebra on V is

$$
\Lambda(V):=T(V) / \sim
$$

where

$$
x_{1} \otimes \cdots \otimes x_{n} \sim(-1)^{\sigma} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)} .
$$

If x_{1}, \ldots, x_{m} is a basis for V then S_{m} acts on V (on the right) by

$$
x_{j} \cdot \sigma=x_{\sigma^{-1}(j)}
$$

\therefore Get induced action of S_{m} on $T(V), S(V)$, and $\Lambda(V)$. This is called the internal action. Let

$$
\Sigma(V)=\operatorname{Fix}^{S_{m}}(S(V))=\left\{a \in S(V) \mid a=a \cdot \sigma \forall \sigma \in S_{m}\right\}
$$

When K is a field, the isomorphism $S(V) \cong K\left[x_{1}, \ldots, x_{m}\right]$ takes $\Sigma(V)$ to the ring of symmetric polynomials over K, as defined in Section 3.9. Recall the definition in that section of the elementary symmetric polynomials s_{1}, \ldots, s_{m} :

$$
s_{k}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} .
$$

By identifying $S(V)$ with $K\left[x_{1}, \ldots, x_{m}\right]$, we have $s_{j} \in \Sigma(V) \forall j$.

Theorem 4.10.2. $\Sigma(V) \cong K\left[s_{1}, \ldots, s_{m}\right]$.
If $\operatorname{rank} V=m$, write $\Sigma^{K}[m]=\Sigma^{K}(V)$.

$$
\begin{aligned}
K\left[x_{1}, \ldots, x_{m+1}\right] & \mapsto K\left[x_{1}, \ldots, x_{m}\right] \\
x_{j} & \mapsto x_{j} \quad j \leq m \\
x_{m+1} & \mapsto 0
\end{aligned}
$$

induces the map

$$
\begin{aligned}
\rho_{m+1}: \Sigma[m+1] & \mapsto \Sigma[m] \\
s_{k}\left(x_{1}, \ldots, x_{m+1}\right) & \mapsto s_{k}\left(x_{1}, \ldots, x_{m}\right) .
\end{aligned}
$$

Set $\Sigma:=\underset{m}{\lim } \Sigma[m]$, the inverse limit of graded rings. That is,

$$
\Sigma=\left\{\left(a_{m} \in \Sigma[m]\right)_{m=1}^{\infty} \mid \rho_{m+1}\left(a_{m+1}\right)=a_{m} \forall m\right\}
$$

Σ is a graded ring; the elements of Σ_{n} are sequences $(f[m])_{m=1}^{\infty}$, where $f[m]$ is a degree n symmetric poly. in m variables, and

$$
f[m]\left(x_{1}, \ldots, x_{m}\right)=f[m+1]\left(x_{1}, \ldots, x_{m}, 0\right) .
$$

$\therefore f[m]$ determines $f[k]$ for all $k \leq m$. However, since each $f[m]$ is of degree $n, f[n]$ determines $f[m] \forall m$. ie. Given

$$
f[n]=\rho\left(s_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, s_{n}\left(x_{1}, \ldots, x_{n}\right)\right),
$$

we then have, for any $m \geq n$,

$$
f[m]=\rho\left(s_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, s_{n}\left(x_{1}, \ldots, x_{m}\right)\right) .
$$

Equivalently, $f[m]$ is obtained from $f[n]$ by "symmetrizing over the m variables".
So, we may identify the sequence ($f[m]$) with the single element $f[n]$. ie. Σ_{n} has a basis consisting of the symmetric polynomials of degree n in n variables. (Alternatively, Σ_{n} has a basis consisting of the symmetric polynomials of degree n in m variables, for any $m \geq n$.) So

$$
\Sigma \cong K\left[s_{1}, s_{2}, \ldots, s_{k}, \ldots\right] .
$$

Definition 4.10.3. A partition of n is a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of non-negative integers s.t.

$$
n=\lambda_{1}+\cdots+\lambda_{r} .
$$

$\lambda \vdash n$ means that λ is a partition of n.

Pick $n \geq 0$, let K be a field and let V be the free module with basis x_{1}, \ldots, x_{r}. For an unordered partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of n, set V^{λ} to be the $K\left[S_{n}\right]$-submodule of $V^{\otimes n}$ (position action) generated by

$$
x_{1}^{\otimes \lambda_{1}} \otimes \cdots \otimes x_{r}^{\otimes \lambda_{r}} .
$$

That is, V^{λ} is the subspace of $V^{\otimes n}$ with basis

$$
\left\{x_{i_{1}} \otimes \cdots \otimes x_{i_{n}} \mid\left\{i_{1}, \ldots, i_{n}\right\} \text { contains } \lambda_{j} \text { copies of } j\right\}
$$

Given $A \subset V^{\otimes n}$ a subspace, the characteristic polynomial of A is

$$
\operatorname{Ch}(A):=\sum_{\lambda+n} d_{\lambda} x^{\lambda}
$$

where $d_{\lambda}=\operatorname{dim}\left(A \cap V^{\lambda}\right)$ and $x^{\lambda}=x_{1}^{\lambda_{1}} \ldots x_{r}^{\lambda_{r}}$.
It is clear from the definition that

$$
\begin{aligned}
& \operatorname{Ch}(A \oplus B)=\operatorname{Ch}(A)+\operatorname{Ch}(B) \\
& \operatorname{Ch}(A \otimes B)=\operatorname{Ch}(A) \operatorname{Ch}(B) .
\end{aligned}
$$

If A is closed under the internal action of S_{r} on V then $\mathrm{Ch}(A)$ is symmetric.
Let P be a projective $K\left[S_{n}\right]$-module, so that $P=K\left[S_{n}\right] e$ for some idempotent $e \in K\left[S_{n}\right]$. For any right $K\left[S_{n}\right]$-module N,

$$
N \cong N e \oplus N(1-e)
$$

as vector spaces. Applying this in particular to $V^{\otimes n}$ with the position action,

$$
V^{\otimes n}=V^{\otimes n} e \oplus V^{\otimes n}(1-e) .
$$

Set $P(V):=V^{\otimes n} e$. Then

$$
\begin{aligned}
K \text {-vector spaces } & \mapsto K \text {-vector spaces } \\
V & \mapsto P(V)
\end{aligned}
$$

is a functor.
Example 4.10.4. Suppose $p \nmid n$!. Then letting P be the trivial 1-dimensional rep. of S_{n}, P is an indecomposable proj. module with idempotent

$$
e=\frac{1}{n!} \sum_{\sigma \in S_{n}} \sigma
$$

We have:

$$
\begin{aligned}
P(V) & =\operatorname{span}\left\{\left.\frac{1}{n!} \sum_{\sigma \in S_{n}} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)} \right\rvert\, v_{1}, \ldots, v_{n} \in V\right\} \subset V^{\otimes n} \\
& \cong S(V) .
\end{aligned}
$$

Let $V=\left\langle x_{1}, \ldots, x_{m}\right\rangle$, ie. V is the vector space with basis x_{1}, \ldots, x_{m}. Then $\operatorname{Ch}(P(V))$ is a symmetric polynomial in x_{1}, \ldots, x_{m} of degree n. In fact, if we let

$$
P[m]=\operatorname{Ch}\left(P\left(\left\langle x_{1}, \ldots, x_{m}\right\rangle\right)\right)
$$

then

$$
\begin{aligned}
\left\langle x_{1}, \ldots, x_{m+1}\right\rangle & \mapsto\left\langle x_{1}, \ldots, x_{m}\right\rangle \\
x_{j} & \mapsto x_{j} \quad j \leq m \\
x_{m+1} & \mapsto 0
\end{aligned}
$$

induces by functoriality a map

$$
\left.\left.P\left(\left\langle x_{1}, \ldots, x_{m+1}\right\rangle\right)\right) \mapsto P\left(\left\langle x_{1}, \ldots, x_{m}\right\rangle\right)\right)
$$

so by applying $\mathrm{Ch}(\cdot)$, we get

$$
\begin{aligned}
P[m+1] & \mapsto P[m] \\
x_{j} & \mapsto x_{j} \quad j \leq m \\
x_{m+1} & \mapsto 0 .
\end{aligned}
$$

ie. $(P[m])$ forms an elt. of $\Sigma^{\mathbb{Z}}$ (symmetric polys. with coeffs. in \mathbb{Z}). We write $\operatorname{Ch}(P)$ for this elt. of $\Sigma^{\mathbb{Z}}$. It is determined by the degree n symmetric polynomial $\operatorname{Ch}(P(V))$ in n vars. obtained from

$$
V=\left\langle x_{1}, \ldots, x_{n}\right\rangle .
$$

For an arbitrary $K\left[S_{n}\right]$-module P, we can write

$$
P=\sum n_{j} P_{j}
$$

where each P_{j} is an indecomposable proj. module and $n_{j} \geq 0 . \operatorname{Set} \operatorname{Ch}(P):=\sum n_{j} \operatorname{Ch}\left(P_{j}\right)$.
More generally, elements of $K_{0}\left(K\left[S_{n}\right]\right)$ are sums

$$
\sum n_{j} P_{j}
$$

with $n_{j} \in \mathbb{Z}$. So by extending the definition to this case via

$$
\mathrm{Ch}\left(\sum n_{j} P_{j}\right)=\sum n_{j} \operatorname{Ch}\left(P_{j}\right)
$$

yields a homomorphism

$$
\mathrm{Ch}: K_{0}\left(K\left[S_{n}\right]\right) \mapsto \Sigma^{\mathbb{Z}}[n] .
$$

We shall show, for char $K=0$, that $\operatorname{Ch}(P)$ determines P.
For $n \geq 0$, set

$$
\begin{aligned}
R_{n} & :=\text { Underlying group of the representation ring } R\left(S_{n}\right) \\
& =K_{0}\left(K\left[S_{n}\right]\right) \\
& =\operatorname{span}_{\mathbb{Z}}\left\{\text { simple } K\left[S_{n}\right] \text {-modules }\right\} \\
& \cong \operatorname{span}_{\mathbb{Z}}\left\{\text { simple characters of } S_{n}\right\}
\end{aligned}
$$

and set $R=\bigoplus_{n} R_{n}$. The map $\mathrm{Ch}: R_{n} \mapsto \Sigma_{n}^{\mathbb{Z}}$ for each n yields $\mathrm{Ch}: R_{n} \mapsto \Sigma^{\mathbb{Z}}$.
Define a ring structure on R as follows: Let M be a $K\left[S_{m}\right]$-module, in R_{m}, and N a $K\left[S_{n}\right]$-module, in R_{n}. Set

$$
M \cdot N=(M \otimes N)^{S_{m+n}} \in R_{m+n} .
$$

ie. $M \otimes N$ is a $\left(S_{m} \times S_{n}\right)$-module in an obvious way, and $S_{m} \times S_{n} \subset S_{m+n} ; M \cdot N$ is the induced S_{m+n}-module.

Theorem 4.10.5. Ch : $R \mapsto \Sigma$ is a ring isomorphism.
Proof. We know that $\mathrm{Ch}(M \oplus n)=\mathrm{Ch}(M)+\mathrm{Ch}(N)$. We must show that $\mathrm{Ch}(M \cdot N)=\operatorname{Ch}(M) \operatorname{Ch}(N)$. It suffices to consider the case where M is a simple $K\left[S_{m}\right]$-module and N is a simple $K\left[S_{n}\right]$-module. Write $M=K\left[S_{m}\right] \cdot e, N=K\left[S_{n}\right] \cdot f$. Then $e \otimes f \in K\left[S_{m}\right] \otimes K\left[S_{n}\right]=K\left[S_{m} \times S_{n}\right]$, and

$$
M \otimes N=K\left[S_{m} \times S_{n}\right] \cdot(e \otimes f)
$$

Now $K\left[S_{m} \times S_{n}\right] \subset K\left[S_{m+n}\right]$ and so

$$
M \cdot N=K\left[S_{m+n}\right] \cdot(e \otimes f)
$$

For any V,

$$
\begin{aligned}
\operatorname{Ch}(M \cdot N(V)) & =\operatorname{Ch}\left(V^{\otimes(m+n)} \cdot(e \otimes f)\right) \\
& =\operatorname{Ch}\left(V^{\otimes m} \cdot e \otimes V^{\otimes n} \cdot f\right) \\
& =\operatorname{Ch}\left(V^{\otimes m} \cdot e\right) \operatorname{Ch}\left(V^{\otimes n} \cdot f\right) \\
& =\operatorname{Ch}(M(V)) \operatorname{Ch}(N(V))
\end{aligned}
$$

$\therefore \mathrm{Ch}(M N)=\mathrm{Ch}(M) \mathrm{Ch}(N)$. Thus, Ch is a ring homomorphism.
Since $\Sigma=\mathbb{Z}\left[s_{1}, s_{2}, \ldots\right]$, to show Ch is onto, is suffices to show that $s_{n} \in \operatorname{Im}(\mathrm{Ch}) \forall n$. Let P be the one-dimensional sign rep. of S_{n}. ie. $P=\langle w\rangle$ with $\sigma \cdot w=(-1)^{\operatorname{sgn} \sigma} w$. Then $P=K\left[S_{n}\right] \cdot e$ with

$$
e=\frac{1}{n!} \sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn} \sigma} \sigma,
$$

an idempotent. For any vector space V,

$$
P(V)=\left(V^{\otimes n}\right) \cdot e=\Lambda(V)
$$

$\therefore \mathrm{Ch}(P(V))=\mathrm{Ch}(\Lambda(V))=s_{n}$. Thus, Ch is onto.
Claim. For each n, R_{n} and Σ_{n} are free abelian groups whose rank equals the number of partitions of n (into positive integers).

Proof of claim. The rank of R_{n} is equal to the number of non-isomorphic simple $K\left[S_{n}\right]$-reps, which is equal to the number of conjugacy classes in S_{n}. Each conjugacy class is determined by its cycle type, which is a partition of n (by Corollary 1.6.3). Moreover, it is obvious that every partition of n is the cycle type of some element in S_{n}. Thus, the rank of R_{n} is equal to the number of partitions of n.

For Σ_{n}, this follows from the fact that $\Sigma=\mathbb{Z}\left[s_{1}, s_{2}, \ldots\right]$ and the degree of s_{k} is k. ie. A basis for Σ_{n} consists of monomials in $\left\{s_{k}\right\}$ of total degree n, and since deg $s_{k}=k$, each such monomial corresponds to a partition of n via

$$
\left(\lambda_{1}, \ldots, \lambda_{r}\right) \leftrightarrow s_{\lambda_{1}} \ldots s_{\lambda_{r}} .
$$

Since Ch is one-to-one, this claim shows that Ch is also onto, whence an isomorphism.

4.10.1 Other Bases for Σ_{n}

There are 6 bases for Σ_{n}^{Q} in "common" use, of which 5 form bases in Σ_{n}^{Z}. All bases are indexed by partitions λ of n.

1. Elementary Symmetric Functions

$$
s_{\lambda}=s_{\lambda_{1}} s_{\lambda_{2}} \cdots s_{\lambda_{r}} .
$$

eg.

$$
s_{(2)}=x_{1} x_{2}, \quad s_{(1,2)}=\left(x_{1}+x_{2}\right)^{2} .
$$

2. Monomial Basis

$$
m_{\lambda}=\text { symmetrization of } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \ldots x_{r}^{\lambda_{r}} .
$$

eg.

$$
m_{(2)}=x_{1}^{2}+x_{2}^{2}, \quad m_{(1,1)}=x_{1} x_{2} .
$$

3. Homogeneous Functions

Let

$$
h_{k}=\sum_{k} \text { monomials of degree } k
$$

Then

$$
h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots h_{\lambda_{r}} .
$$

eg.

$$
h_{(2)}=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}, \quad h_{(1,1)}=\left(x_{1}+x_{2}\right)^{2} .
$$

4. Power Functions

Let

$$
\psi_{k}=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}
$$

Then

$$
\psi_{\lambda}=\psi_{\lambda_{1}} \psi_{\lambda_{2}} \cdots \psi_{\lambda_{r}} .
$$

eg.

$$
\psi_{(2)}=x_{1}^{2}+x_{2}^{2} \quad \psi_{(1,1)}=\left(x_{1}+x_{2}\right)^{2} .
$$

5. Schur Functions

For $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$, with $\mu_{j} \geq 0 \forall j$, let

$$
\begin{aligned}
V_{\mu} & :=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn} \sigma} x_{\sigma(1)}^{\mu_{1}} \cdots x_{\sigma(n)}^{\mu_{n}} \\
& =\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{\mu_{1}} & x_{1}^{\mu_{2}} & \cdots & x_{1}^{\mu_{n}} \\
x_{2}^{\mu_{1}} & x_{2}^{\mu_{2}} & \cdots & x_{2}^{\mu_{n}} \\
\vdots & \vdots & & \vdots \\
x_{n}^{\mu_{1}} & x_{n}^{\mu_{2}} & \cdots & x_{n}^{\mu_{n}}
\end{array}\right) .
\end{aligned}
$$

In particular,

$$
V_{(n-1, n-2, \ldots, 1,0)}=\prod_{i<j}\left(x_{i}-x_{j}\right),
$$

called the Vandermonde determinant. For the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of n (with $\lambda_{j}=0$ allowed),

$$
F_{\lambda}:=\frac{V_{\lambda+(n-1, \ldots, 1,0)}}{V_{(n-1, \ldots, 1,0)}} .
$$

eg.

$$
\begin{aligned}
F_{(2)}=F_{(2,0)} & =\frac{\left|\begin{array}{ll}
x_{1}^{3} & 1 \\
x_{2}^{3} & 1
\end{array}\right|}{\left|\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right|} \\
& =\frac{x_{1}^{3}-x_{2}^{3}}{x_{1}-x_{2}} \\
& =x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}, \\
F_{(1,1)} & =\frac{\left|\begin{array}{ll}
x_{1}^{2} & x_{1} \\
x_{2}^{2} & x_{2}
\end{array}\right|}{\left|\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right|} \\
& =\frac{x_{1}^{2} x_{2}-x_{1} x_{2}^{2}}{x_{1}-x_{2}} \\
& =x_{1} x_{2} .
\end{aligned}
$$

Note:
(a) $x_{i}=x_{j} \Rightarrow V_{\mu}=0$. Thus, $V_{\lambda+(n-1, \ldots, 1,0)}$ is divisible by $V_{(n-1, \ldots, 1,0)}$, and so F_{λ} is a polynomial.
(b) Interchanging x_{i}, x_{j} multiplies both numerator and denominator by -1 , so F_{λ} is symmetric.

6. Forgotten Basis

Let $m_{\lambda}=p\left(s_{1}, \ldots, s_{k}\right)$ be the expansion for m_{λ} in the elem. symmetric polys. Then

$$
f_{\lambda}=p\left(h_{1}, \ldots, h_{k}\right)
$$

eg. For $\lambda=(2)$,

$$
\begin{aligned}
\left.m_{(} 2\right) & =x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=s_{1}^{2}-2 s_{2}, \\
\therefore f_{(2)} & =h_{1}^{2}-2 h_{2}=\left(x_{1}+x_{2}\right)^{2}-2\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)=-x_{1}^{2}-x_{2}^{2} .
\end{aligned}
$$

For $\lambda=(1,1)$,

$$
\begin{aligned}
m_{(1,1)} & =x_{1} x_{2}=s_{2} \\
\therefore f_{(1,1)} & =h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} .
\end{aligned}
$$

We know that 1 forms a basis for Σ_{n}^{Q} and it is trivial to see that 2 does. We have to prove that the others do.
Note: $\left\{\psi_{\lambda}\right\}$ does not form a basis for Σ_{n}^{Z}. eg. $s_{2}=\frac{1}{2}\left(\psi_{(1,1)}-\psi_{(2)}\right)$ in $\sigma_{n}^{\mathbb{Q}}$, so

$$
s_{2} \notin \mathbb{Z}\left[\psi_{1}, \psi_{2}, \psi_{3}, \ldots\right] .
$$

Generating Functions for s_{n}, h_{n}, ψ_{n}

The first three of our bases are defined as monomials in some other symmetric functions. Set

$$
\begin{aligned}
& S(t):=\sum_{n=0}^{\infty} s_{n} t^{n} \\
& H(t):=\sum_{n=0}^{\infty} h_{n} t^{n} \\
& \Psi(t):=\sum_{n=0}^{\infty} \psi_{n} t^{n} .
\end{aligned}
$$

By expanding and examining the coefficient of t^{n}, we see that

$$
\begin{aligned}
S(t) & =\prod_{j=1}^{\infty}\left(1+x_{j} t\right), \\
H(t) & =\prod_{j=1}^{\infty}\left(1+x_{j} t+x_{j}^{2} t^{2}+x_{j}^{3} t^{3}+\cdots\right)=\prod_{j=1}^{\infty} \frac{1}{1-x_{j} t}, \\
\Psi(t) & =\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} x_{j}^{n} t^{n-1} \\
& =\sum_{j=1}^{\infty} \sum_{n=1}^{\infty} x_{j}^{n} t^{n-1} \\
& =\sum_{j=1}^{\infty} \frac{x_{j}}{1-x_{j} t} \\
& =\sum_{j=1}^{\infty}-\frac{d}{d t} \log \left(1-x_{j} t\right) \\
& =\frac{d}{d t} \log \left(\prod_{j=1}^{\infty} \frac{1}{1-x_{j} t}\right) \\
& =\frac{d}{d t} \log (H(t)) \\
& =\frac{H^{\prime}(t)}{H(t)}
\end{aligned}
$$

Thus,

$$
\begin{gather*}
S(t) H(-t)=1 \tag{1}\\
\Psi(t)=\frac{H^{\prime}(t)}{H(t)} \tag{2}\\
\Psi(-t)=\frac{H^{\prime}(-t)}{H(-t)}=\frac{S^{\prime}(t)}{S(t)} \tag{3}
\end{gather*}
$$

(1) implies that

$$
\begin{align*}
s_{0} h_{0} & =1 \\
\sum_{j=0}^{n}(-1)^{j} s_{j} h_{n-j} & =0 \quad n>0 \tag{1’}
\end{align*}
$$

Define $\omega: \Lambda^{\mathbb{Z}}=\mathbb{Z}\left[s_{1}, s_{2}, \ldots\right] \mapsto \Lambda^{\mathbb{Z}}$ by $\omega\left(s_{j}\right)=h_{j}$. Since (1^{\prime}) is symmetrical in h, s, we get that ω is an isomorphism. In particular, $\Lambda=\mathbb{Z}\left[h_{1}, h_{2}, \ldots\right]$, and so the homogeneous functions form a basis.

Applying ω to (1^{\prime}) gives

$$
\begin{aligned}
0 & =\sum_{j=0}^{n}(-1)^{j} h_{j} \omega\left(h_{n-j}\right) \\
& =\sum_{j=0}^{n}(-1)^{n-j} h_{n-j} \omega\left(h_{j}\right) \\
& =(-1)^{n} \sum_{j=0}^{n}(-1)^{j} \omega\left(h_{j}\right) h_{n-j} \quad \forall n>0 .
\end{aligned}
$$

Comparing with (1'), we see that $\omega\left(h_{n}\right)=s_{n}$, ie. $\omega^{2}=1$ (ω is an involution).
By (2),

$$
\begin{align*}
\sum_{n=1}^{\infty} n h_{n} t^{n-1}=\sum_{n=1}^{\infty} & \sum_{j=1}^{\infty} \psi_{j} h_{n-j} t^{n-1} \\
& \sum_{j=1}^{n} \psi_{j} h_{n-j}=n h_{n} \quad \forall n . \tag{2'}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{j-1} \psi_{j} s_{n-j}=n s_{j} \quad \forall n \tag{3'}
\end{equation*}
$$

Using (3'), each s_{n} can inductively be written as a polynomial in $\mathbb{Q}\left[\psi_{1}, \ldots, \psi_{n}\right]$, so the power functions form a basis for $\Lambda^{\mathbb{Q}}$.

Since ω interchanges h, s, comparing (2') and (3') gives

$$
\omega\left(\psi_{n}\right)=(-1)^{n-1} \psi_{n}
$$

To see that the Schur Functions form a basis for $\Lambda_{n}^{\mathbb{Z}}$, set $V_{n}:=V_{(n-1, \ldots, 0)}$. Let A_{k} be the set of skew symmetric polynomials of degree k in n variables. Then we have an isomorphism

$$
\begin{aligned}
\Lambda_{n} & \mapsto A_{n+\binom{n}{2}} \\
f & \mapsto f V_{n}
\end{aligned}
$$

Since $\left\{F_{\lambda} V_{n}\right\}$ is the "monomial" basis for $A_{n+\left({ }_{2}^{2}\right)}$ (ie. the basis obtained by skew symmetrizing each monomial), $\left\{F_{\lambda}\right\}$ forms a basis for Λ_{n}.

