
Chapter 1

Groups

1.1 Definitions and Elementary Properties

Definition 1.1.1. A binary operation ∗ on a set S is a function

∗ : S × S → S

(a, b) 7→ a ∗ b.

∗ is called associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ S .

∗ is called commutative if a ∗ b = b ∗ a ∀a, b ∈ S .

Definition 1.1.2. A group consists of a set G together with a binary operation

∗ : G ×G 7→ G

(g, h) 7→ g ∗ h,

such that the following conditions are satisfied:

1. (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ S (associativity),

2. There exists an element e ∈ G such that e ∗ a = a and a ∗ e = a ∀a ∈ G (identity),

3. For each a ∈ G, there exists an element b ∈ G such that a ∗ b = e and b ∗ a = e (inverse).

Definition 1.1.3. A group (G, ∗) is called abelian (or commutative) if a ∗ b = b ∗ a ∀a, b ∈ G.

Definition 1.1.4. Let H be a non-empty subset of the group G. Suppose that the product in G of two

elements of H lies in H and that the inverse in G of any element of H lies in H. Then H is called a

subgroup of G, written H ≤ G.
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Notation: For X ⊂ G, write

〈X〉 =
⋂

X⊂H≤G

H.

This is called the subgroup of G generated by X.

Exercise: show that 〈X〉 is a subgroup.

Example 1.1.5.

1. Cyclic groups Cn

Let n ∈ N. Cn := {e = x0, x, x2, . . . , xn−1}, with multiplication x j ∗ xk := x( j+k)mod n.

Also, the infinite cyclic group is C∞ := {xn | n ∈ Z} with x j ∗ xk := x j+k.

2. Permutation groups

Let X be a set. S X := { f : X 7→ X | f is a bijection}. Multiplication is composition

S X × S X 7→ S X

( f , g) 7→ g ◦ f .

Notation: In case X = {1, . . . , n} for some n ∈ N, write S n for S X (called a symmetric group).

If G ≤ S n for some n, G is a permutation group of degree n.

3. Linear groups

A field (F,+, ·) consists of a set F together with binary operations + and ·, such that:

(a) (F,+) forms an abelian group,

(b) (F − {0}, ·) forms an abelian group (where 0 is the identity for (F,+)),

(c) a · (b + c) = a · b + a · c ∀a, b, c ∈ F (distributivity).

Let F be a field. GLn(F) := {invertible n × n matrices with entries from F}. The group operation

is matrix multiplication. GLn is called the general linear group.

If G ≤ GLn(F) for some F and n then G is called a linear group of degree n.

4. Symmetry groups Let X ⊂ Rn. The group of symmetries of X, denoted S ym(X), is the subgroup

of S X containing only isometries (that is, functions f : X 7→ X such that ‖ f (x) − f (y)‖ =
‖x − y‖ ∀x, y ∈ X).

Notation: In case N = 2 and X = the regular n-gon, S ym(X) is called the nth dihedral group,

written D2n.

Proposition 1.1.6. Let G be a group. Then ∃ exactly one element e ∈ G such that e ∗ g = g and

g ∗ e = g ∀g ∈ G.
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Proof. By definition, such an element exists. If e, e′ ∈ G both have the property then

e = e ∗ e′ = e′.

�

Proposition 1.1.7. Let G be a group and let g ∈ G. Then ∃ exactly one element h ∈ G such that

g ∗ h = e and h ∗ g = e.

Proof. By definition, such an element exists. Suppose h, h′ are both inverses to g. Then

h′ = h′ ∗ e = h′ ∗ (g ∗ h) = (h′ ∗ g) ∗ h = e ∗ h = h.

�

Notation: The inverse to g will be denoted g−1.

Proposition 1.1.8. Let G be a group and let x, y, z ∈ G.

1. If xz = yz then x = y.

2. If zx = zy then x = y.

Proof.

1. x = xe = x(zz−1) = (xz)z−1
= (yz)z−1

= y(zz−1) = ye = y.

2. Likewise.

�

Note: xz = zy 6⇒ x = y; “mixed” cancellation doesn’t work.

Corollary 1.1.9. Let G be a group and let g, h ∈ G such that g ∗ h = e. Then h = g−1 (and g = h−1).

Proof. g ∗ h = e is given; g ∗ g−1
= e by the definition of g−1. So by cancellation, h = g−1. �

Proposition 1.1.10. In a group G, (gh)−1
= h−1g−1.

Proof.

(gh)(h−1g−1) = g(hh−1)g−1
= geg−1

= gg−1
= e.

∴ h−1g−1 is the inverse of gh. �

Proposition 1.1.11. Let G be a group and g, h ∈ G. Then
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1. ∃! solution x in G to the equation gx = h.

2. ∃! solution x in G to the equation xg = h.

Proof.

1. x = g−1h.

2. x = hg−1.

�

Proposition 1.1.12. A non-empty subset H of a group G is a subgroup iff x, y ∈ H implies xy−1 lies in

H.

Proof. Exercise. �

G is called a finite group if its underlying set is finite. In this case, the number of elements in G is

called the order of G, written |G|.

Definition 1.1.13. Let x ∈ G. The order of x, written |x|, is the least integer k (if any) such that xk
= e.

Note: some, or even all elements of a group might have finite order even if |G| is infinite.

Definition 1.1.14. Let (G, ∗) and (H, △) be groups. A function f : G 7→ H is called a (group) homo-

morphism if f (x ∗ y) = f (x)△ f (y) ∀x, y ∈ G. A homomorphism f : G 7→ H which is a bijection is

called an isomorphism.

Notation: φ : G
�7−→ H means that φ is an isomorphism from G to H.

G � H means that there exists an isomorphism φ : G
�7−→ H.

Isomorphisms preserve all group properties. e.g. if φ : G
�7−→ H then:

G is abelian ⇐⇒ H is abelian,

|x| = |φ(x)| ∀x ∈ G, etc.

Lemma 1.1.15. Let φ : G 7→ H be a homomorphism, and let e, e′ be the identities in G,H respectively.

Then φ(e) = e′.

Proof. Let h = φ(e).

h2
= φ(e)φ(e) = φ(e2) = φ(e) = h = he′

∴ by cancellation, h = e′. �

Corollary 1.1.16. Let φ : G 7→ H be a homomorphism. Then ∀g ∈ G, φ(g−1) = φ(g)−1.
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Proof.

φ(g)φ(g−1) = φ(gg−1) = φ(e) = e′.

Thus, φ(g)−1
= φ(g−1). �

Proposition 1.1.17. Let φ : G 7→ H be a group isomorphism. Let φ−1 : H 7→ G be the inverse function

to the bijection φ. Then φ−1 is an isomorphism.

Proof. Must show φ−1 is a homomorphism. Let h1, h2 ∈ H. Since φ is a bijection, ∃!g1, g2 ∈ G such

that φ(g1) = h1, φ(g2) = h2.

φ(g1g2) = φ(g1)φ(g2) = h1h2

So φ−1(h1h2) = g1g2 = φ
−1(h1)φ−1(h2). �

Proposition 1.1.18. The composition of group homomorphisms is a homomorphism.

The composition of group isomorphisms is a isomorphism.

Proof. Trivial. �

Notation: Aut(G) = {self-isomorphisms of G} ≤ S G.

Fundamental Problem of Group Theory:

Make a list of all possible types of groups. ie. Make a list of groups such that every group is isomorphic

to exactly one group on the list.

Given two groups (defined, for example, by multiplication tables, or by generators and relations),

the problem of determining whether or not the groups are isomorphic is, in general, very difficult

(NP-hard).
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1.2 New Groups from Old

1.2.1 Quotient Groups

Definition 1.2.1. Let φ : G 7→ H be a homomorphism. The kernel of φ is

ker φ := {g ∈ G | φ(g) = e}.

The image of φ is

Imφ := {h ∈ H | h = φ(g) for some g ∈ G}.

Proposition 1.2.2. ker φ ≤ G and Imφ ≤ G.

Proof. Trivial. �

Definition 1.2.3. For x, y ∈ G, we say y is conjugate to x (in G) if ∃g ∈ G such that y = gxg−1.

Proposition 1.2.4. Conjugacy is an equivalence relation.

Proof. Trivial. �

Notation: If A, B are subsets of G, let AB := {ab | a ∈ A, b ∈ B}. For g ∈ G,H ≤ G, the set gH is

called the left coset of H generated by g; Hg is the right coset of H generated by g.

Definition 1.2.5. A subgroup N of G is called normal, written N ⊳ G, if gN = Ng for all g ∈ G.

Proposition 1.2.6. N ≤ G is normal ⇐⇒ gxg−1 ∈ N ∀x ∈ N, g ∈ G.

Proof.

⇒: Suppose N is normal. Then for all x ∈ N, g ∈ G, gx ∈ gN = Ng, so gx = yg for some y ∈ N.

Thus, gxg−1
= y ∈ N.

⇐: Suppose gxg−1 ∈ N ∀x ∈ N, g ∈ G. If z ∈ gN then z = gx for some x ∈ N. Hence,

z = gx(g−1g) = (gxg−1)g ∈ Ng

∴ gN ⊂ Ng. Similarly, Ng ⊂ gN.

�

Corollary 1.2.7. Let φ : G 7→ H be a homomorphism. Then ker φ ⊳ G.
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Proof. Let x ∈ ker φ and let g ∈ G. Then

φ(gxg−1) = φ(g)eφ(g)−1
= e

so gxg−1 ∈ ker φ. �

Conversely:

Theorem 1.2.8. Suppose N ⊳ G. Then ∃ a group H and a homomorphism φ : G 7→ H such that

N = ker φ.

Proof. Exercise: check the details of the following:

1. For g, g′ ∈ G, define g ∼ g′ if g′g−1 ∈ N.

2. Check that ∼ is an equivalence relation.

3. Define H := G/N := {set of equivalence classes of G under ∼}.

4. Define binary operation ∗ on G/N by x ∗ y = xy. Check that this is well-defined, ie. suppose

x′ ∼ x and y′ ∼ y. Is x′y′ ∼ xy?

Well, x′ ∼ x means x′x−1
= n1 ∈ N, so x′ = n1x. Likewise, y′ ∼ y means y′y−1

= n2 ∈ N, so

y′ = n2y. So

x′y′ = n1xn2y = n1(xn2x−1)xy = n1n′2xy,

where n′
2
= xn2x−1 ∈ N since N is normal. Hence, x′y′ ∼ xy.

5. Check that (G/N, ∗) forms a group.

6. Define φ : G 7→ H by φ(x) = x.

7. Check that φ is a group homomorphism.

8. Check that N = ker φ.

�

G/N (as constructed above) is called a quotient group.
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1.2.2 Product Groups

Let G,H be groups. The product group is the set G × H, with multiplication

(g, h) · (g′, h′) := (gg′, hh′).

Clearly the projection maps

ΠG : G × H 7→ G

(g, h) 7→ g

and

ΠH : G × H 7→ H

(g, h) 7→ h

are group homomorphisms.

Proposition 1.2.9. Let A,G,H be groups.

1. Universal Property of Product:

Given group homomorphisms p : A 7→ G and q : A 7→ H, ∃! group homomorphism φ : A 7→
G × H such that:

A

�


















p

J
J
J
J
J
J
J
J
J

q

^

G × H

∃!φ

∨

G
������

ΠG

HHHHHΠH j
H

This says that G × H is the product of G and H in the category of groups.

2. Given a function φ : A 7→ G × H, φ is a group homomorphism if and only if ΠG ◦ φ and ΠH ◦ φ
are group homomorphisms.
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1.2.3 Free Products

Let G,H be groups. The free product of G and H is G ∗ H := {words in G ∐ H}/ ∼, where ∼ is the

equivalence relation generated by the following: for g, g′ ∈ G,

x1 · · · xngg′y1 · · · ym ∼ x1 · · · xn(gg′)y1 · · · ym,

and for h, h′ ∈ H,

x1 · · · xnhh′y1 · · · ym ∼ x1 · · · xn(hh′)y1 · · · ym.

Note: Given A ⊂ X × X, the equivalence relation generated by A is

⋂
{B ⊂ X × X | B is an equivalence relation and A ⊂ B}.

Multiplication in G ∗ H is given by juxtaposition: (v1 · · · vn) ∗ (w1 · · ·wm) = v1 · · · vnw1 · · ·wm.

Proposition 1.2.10. Universal Property of Free Product:

G H

J
J
J
J
J
J
J
J
J

p

^

HH
g 7→ g

HHj
G ∗ H

�


















q

���
h 7→ h

��

A

∃!φ

∨

(Here, G and H each embed into the words of length 1 in G × H).

This says that G ∗ H is the coproduct of G and H in the category of groups.

F(x) = {xn | n ∈ Z}(= C∞) is called the free group on the generator x.

F(x, y) := F(x) ∗ F(y) is the free group on 2 generators.

More generally, given a set S ,

F(S ) = {words in S }
is called the free group on S . A group homomorphism F(S ) 7→ G is uniquely determined by any

(set) function S 7→ G.
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1.3 Centralizers, Normalizers, and Commutators

Let G be a group, X ⊂ G.

Notation:

CG(X) := {g ∈ G | gxg−1
= x ∀x ∈ X} is the centralizer of X in G

NG(X) := {g ∈ G | gXg−1
= X} is the normalizer of X in G

= {g ∈ G | gX = Xg}

These definitions do not require that X be a subgroup, but note that CG(X) = CG(〈X〉). Also,

Z(G) := CG(G) is the center of G

= {g ∈ G | gx = xg ∀x ∈ G}

Note: Z(G) = G ⇐⇒ G is abelian.

Example 1.3.1. Let G = GLn(F). Then Z(G) = {cI | c ∈ F×}.

Proposition 1.3.2. CG(X) and NG(X) are subgroups of G.

Proof.

g, g′ ∈ CG(X)⇒ (gg′)(x)(gg′)−1
= g(g′xg′−1)g−1

= gxg−1
= x ∀x ∈ X

g ∈ CG(X)⇒ g−1xg = g−1(gxg−1)g = (g−1g)x(g−1g) = x ∀x ∈ X

Likewise,

g, g′ ∈ NG(X)⇒ (gg′)X(gg′)−1
= g(g′Xg′−1)g−1

= gXg−1
= X

g ∈ NG(X)⇒ g−1Xg = g−1(gXg−1)g = (g−1g)X(g−1g) = X

�

Clearly, Z(G) = CG(G) is always abelian, but for arbitrary H, CG(H) need not be abelian. For

example, in the extreme case, CG({e}) = G, which might not be abelian.

For H ≤ G, by construction, H ⊳ NG(H), and H ⊳ G ⇐⇒ NG(H) = G.

Proposition 1.3.3. For A ≤ B ≤ G,

g ∈ NG(NB(A))⇒ g(NB(A))g−1 ⊂ NG(A).
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Proof. If b ∈ NB(A) and g ∈ NG(NB(A)) then b′ = gbg−1 ∈ NB(A), so

(gbg−1)a(gbg−1)−1
= b′a(b′)−1 ∈ A

�

Note: K ⊳ H and H ⊳ G 6⇒ K ⊳ G. For a counterexample, take

G = S 4

H = 〈(1 2 3 4), (1 3)(2 4)〉 � D8

K = 〈(1 2 3 4)〉 � C4

Notation: For a, b ∈ G, let [a, b] := aba−1b−1.

Definition 1.3.4. The commutator subgroup G′ is the subgroup of G generated by

{[a, b] | a, b ∈ G}.

Proposition 1.3.5. g[a, b]g−1
= [gag−1, gbg−1].

Corollary 1.3.6. G′ ⊳ G.

Gab := G/G′ is abelian. Universal property: given any homomorphism φ : G 7→ H with H abelian,

G >> Gab

@
@
@
@
@

φ
R

H

∃!

∨

That is, if φ : G 7→ H with H abelian then G′ ⊂ ker φ.
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1.4 Isomorphism Theorems

Theorem 1.4.1 (First Isomorphism Theorem). Let φ : G 7→ H be a group homomorphism. Then

G/ ker φ � Imφ.

Proof. Set N := ker φ. Elements of G/N are cosets Ng, where g ∈ G. Define ψ : G/N 7→ Imφ by

ψ(Ng) = φ(g).

1. ψ is well defined:

Suppose Ng = Ng′. Then g = ng′ for some n ∈ N. Hence,

φ(g) = φ(ng′) = φ(n)φ(g′) = eHφ(g′) = φ(g′),

since n ∈ N = ker φ.

2. ψ is a homomorphism – easy.

3. ψ is surjective – easy.

4. ψ is injective:

If ψ(Ng1) = ψ(Ng2) then

φ(g1) = φ(g2)⇒ φ(g1g−1
2 ) = eH ⇒ g1g−1

2 ∈ N ⇒ Ng1 = Ng2

�

Proposition 1.4.2. If H,K subgroups of G then HK ≤ G ⇐⇒ HK = KH.

Proof.

⇒: Suppose HK ≤ G. Let x ∈ HK. Then x−1 ∈ HK. Write x−1
= hk for some h ∈ H, k ∈ K. Then

x = (hk)−1
= k−1h−1 ∈ KH,

so HK ⊂ KH, and similarly, KH ⊂ HK.

⇐: Suppose HK = KH. Let x, x′ ∈ HK. Write x = kh, x′ = h′k′, for some h, h′ ∈ H, k, k′ ∈ K.

Then

x′x−1
= h′k′h−1k−1

= h′h′′k′′k−1, letting k′h−1
= h′′k′′, since HK = KH

∈ HK
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�

Corollary 1.4.3. Let H,K be subgroups of G. If H ⊂ NG(K) then HK ≤ G and K ⊳ HK.

Proof. Let x = hk ∈ HK. Then x = (hkh−1)h ∈ KH, since hkh−1 ∈ K. So, HK ⊂ KH. Similarly, if

x = kh ∈ HK then x = h(h−1kh) ∈ HK, whence KH ⊂ HK. Hence

HK = KH ≤ G.

Also, K ⊂ NG(K) (always) and H ⊂ NG(K) (given), so

HK ⊂ NG(K)⇒ K ⊳ HK.

�

Corollary 1.4.4. If K ⊳ G then HK ≤ G for any H ≤ G.

Proof. If K ⊳ G then NG(K) = G, so automatically, H ⊂ NG(K). �

Theorem 1.4.5 (Second Isomorphism Theorem). Let H,K be subgroups of G such that

H ⊂ NG(K).

Then H ∩ K ⊳ H, K ⊳ HK, and
HK

K
�

H

H ∩ K

Proof. K ⊳ HK was shown above. Define φ : H 7→ HK/K by φ(h) = Kh ∈ HK/K. ie. φ is the

composition

H ֒→ HK 7→→HK/K

1. φ is a homomorphism (composition of homomorphisms).

2. φ is surjective

Proof. Let Kx ∈ HK/K, where x ∈ HK. By above, HK ≤ G, so HK = KH; thus let x = kh,

for some k ∈ K, h ∈ H. Hence,

Kx = Kkh = Kh = φ(h)

3. ker φ = H ∩ K

Proof.

ker φ = {y ∈ H | φ(y) = e}
= {y ∈ H | Ky = e}
= {y ∈ H | y ∈ K}
= H ∩ K
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H ∩ K ⊳ H and
H

H ∩ K
=

H

ker φ
� Imφ =

HK

K
.

�

Theorem 1.4.6 (Third Isomorphism Theorem). Let K ⊳ G and H ⊳ G with K ⊂ H. Then H/K ⊳ G/K

and
G/K

H/K
� G/H.

Proof. Define φ by composition

G 7→→G/K 7→→ G/K

H/K
.

Check that ker φ = H (exercise). �

1.5 The Pullback

Definition 1.5.1. Let φ : G 7→ H and j : B 7→ H be group homomorphisms. Define the pullback

G ×H B of φ and j by

G ×H B := {(g, b) ∈ G × B | φ(g) = j(b)}.

The pullback gives:

G ×H B
ΠG

> G

B

ΠB

∨

j
> H

φ

∨

Proposition 1.5.2. G ×H B ≤ G × B.

Proof. If (g, b) and (g′, b′) belong to G ×H B then

φ(gg′) = φ(g)φ(g′) = j(b) j(b′) = j(bb′).

If (g, b) ∈ G ×H B then

φ(g−1) = φ(g)−1
= j(b)−1

= j(b−1).

�
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Proposition 1.5.3. Let φ : G 7→ H, j : B 7→ H and i : A 7→ B be homomorphisms. Then

A ×B (B ×H G)
ΠB×HG

> B ×H G
ΠG

> G

p.b. p.b.

A

ΠA

∨

i
> B

ΠB

∨

j
> H

φ

∨

and A ×B (B ×H G) � A ×H G. (Composition of pullbacks is a pullback).

Proof.

A ×B (B ×H G) = {(a, (b, g)) | a ∈ A, (b, g) ∈ B ×H G, i(a) = ΠB(b, g) = b}
In this description, b is redundant because it is determined by a via b = i(a). Also,

(b, g) ∈ B ×H G means that j(b) = φ(g). So,

A ×B (B ×H G) � {(a, g) | j(i(a)) = φ(g)} = A ×H G.

�

Note some special cases:

1. If H = {e} then j(b) = φ(g) holds ∀b, g, so B ×{e} G = B ×G.

2. If B ≤ H and j is the inclusion, then

B ×H G = {(b, g) | j(b) = φ(g)}, so b is redundant

� {g ∈ G | φ(g) ∈ B}
= φ−1(B)

Proposition 1.5.4. Let

B ×H G
ΠG

> G

B

ΠB

∨ j
> H

φ

∨

be a pullback. Then kerΠB � ker φ and kerΠG � ker j.
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Proof.

kerΠB = {(b, g) ∈ B ×G | b = e and φ(g) = j(b)}
= {(e, g) ∈ B ×G | φ(g) = j(e) = e}
= {e} × ker φ ⊂ B ×G

� ker φ

�

Now consider the special case where B ≤ H and j is inclusion. Set A = B ×H G = φ−1(B).

Proposition 1.5.5.

1. If B ⊳ H then A ⊳ G.

2. If B ⊳ H and φ is onto then G/A � H/B.

Proof.

1. Suppose B ⊳ H. Let a ∈ A. Then for g ∈ G,

φ(gag−1) = φ(g)φ(a)φ(g)−1 ∈ B, since φ(a) ∈ B ⊳ H,

so gag−1 ∈ A.

2. Let ψ be the composition

G
φ7−→→ H

q7−→→ H/B,

where q is the quotient map. Then φ(A) ⊂ B = ker q so A ⊂ kerψ. If g ∈ kerψ then φ(g) ∈
ker q = B, so g ∈ φ−1(B) = A. Thus, kerψ = A. Hence,

G

A
=

G

kerψ
� Imψ =

H

B

since both φ and q are onto.

�

Theorem 1.5.6 (Fourth Isomorphism Theorem). Suppose N ⊳ G. Then the quotient map q : G 7→→G/N

induces a bijection between the subgroups of G which contain N and the subgroups of G/N. Explicitly,

A ≤ G 7→ q(A) ≤ G/N, and

X ≤ G/N 7→ q−1(X) ≤ G

Moreover, this bijection satisfies
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1. A ≤ B iff q(A) ≤ q(B), and in this case B : A = q(B) : q(A).

2. q(A ∩ B) = q(A) ∩ q(B).

3. A ⊳ B iff q(A) ⊳ q(B).

Proof. Exercise. �
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1.6 Symmetric Groups

|S n| = n!

Notation for elements of S n: Consider σ ∈ S 6 given by:

σ(1) = 2

σ(2) = 4

σ(3) = 5

σ(4) = 6

σ(5) = 3

σ(6) = 1

Mapping Notation:

σ =
1 2 3 4 5 6

2 4 5 6 3 1

Cycle Notation:

σ = (1 2 4 6)(3 5)

Usually omit cycles of length one. eg. τ = (1 4 3) means (1 4 3)(2)(5)(6).

The group operation on S n is ∗ given by

σ ∗ τ = τ ◦ σ

Note: Dummit and Foote use the opposite convention: σ△τ = σ ◦ τ. However, the results are

isomorphic; (S n, ∗) � (S n, △).

Notation: S X := permutations of X with f ∗ g = g ◦ f .

S ′X := permutations of X with f ∗ g = f ◦ g.

στ =
(
(1 2 4 6)(3 5)

)
(1 4 3) = (1 2 3 5)(4 6)

τσ = (1 4 3)
(
(1 2 4 6)(3 5)

)
= (1 6)(2 4 5 6)

So S n is not abelian.

Note: There is an ambiguity in the cycle notation: (1 2 4 6)(3 5) could mean either σ or (1 2 4 6) ∗
(3 5). This is not important because these are equal.
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1.6.1 Conjugation in S n

Example 1.6.1. Let σ = (1 2 3)(4 5), τ = (2 5). Then

τστ−1
= (2 5)(1 2 3)(4 5)(2 5) = (1 5 3)(4 2).

This is obtained from σ by switching 2 and 5 (in the cycle notation).

Proposition 1.6.2. Let σ, τ ∈ S n, with

σ = (a
(1)

1
· · · a

(r1)

1
) · · · (a(1)

n · · · a(rn)
n ).

Then

τστ−1
= (τ−1(a

(1)

1
) · · · τ−1(a

(r1)

1
)) · · · (τ−1(a(1)

n ) · · · τ−1(a(rn)
n )).

Proof. In general, (τστ−1)( j) = τ−1
(
σ(τ( j))

)
. So

(τστ−1)(τ−1a
(1)

1
) = τ−1(σ(τ(τ−1a

(1)

1
))
)
= τ−1(σ(a

(1)

1
)
)
= τ−1a

(2)

1

etc. �

Notice that τστ−1 has the same cycle type as σ.

Corollary 1.6.3. σ is conjugate to σ′ ⇐⇒ σ and σ′ have the same cycle type.

Proof. Above shows that any conjugate of σ has the same cycle type as σ. Conversely, suppose that

σ,σ′ have the same cycle type. Let

σ = (a
(1)

1
· · · a

(r1)

1
) · · · (a(1)

n · · · a(rn)
n )

σ′ = (a
(1)′
1
· · · a

(r1)′
1

) · · · (a(1)′
n · · · a(rn)′

n )

Choose τ ∈ S n such that τ−1(a
( j)

i
) = a

( j)′
i

. Then σ′ = τστ−1. �

1.6.2 The Alternating Group

Define the polynomial ∆ by

∆(x1, . . . , xn) =
∏

i< j

(xi − x j)

For σ ∈ S n, let

σ(∆)(x1, . . . , xn) = ∆(xσ(1), . . . , xσ(n)).
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Here, all the same factors appear, but with some signs reversed.

∴ σ∆ = ±∆.

Define ǫ : S n 7→ {1,−1} by

ǫ(σ) =


1 if σ∆ = ∆

−1 if σ∆ = −∆
.

{1,−1} is a group under multiplication (� C2), and ǫ is a group homomorphism.

Set An := ker ǫ ⊳ S n. This is the alternating group.

Proposition 1.6.4. Let γ = (p q) ∈ S n be a transposition (ie. 2-cycle). Then γ < An (ie. γ∆ = −∆).

Proof. Say p < q.

∆ =

∏

i< j

(xi − x j)

= (xp − xq)
(∏

i<p

(xi − xp)
)(∏

i>p

(xp − xi)
)(∏

i<q

(xi − xq)
)(∏

i>q

(xq − xi)
)( ∏

i < j
i , p, q
j , p, q

(xi − x j)
)

By applying γ to ∆:

• (xp − xq) becomes (xq − xp) = −(xp − xq),

• The factors
(∏

i<p(xi − xp)
)

and
(∏

i<q(xi − xq)
)

switch,

• The factors
(∏

i>p(xp − xi)
)

and
(∏

i>q(xq − xi)
)

switch, and

• The factor ( ∏

i < j

i , p, q

j , p, q

(xi − x j)
)

is unchanged.

Thus, γ∆ = −∆. �

Any permutation can be written (in many ways) as a product of transpositions.

Corollary 1.6.5. σ ∈ An ⇐⇒ σ is the product of an even number of transpositions.
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1.7 Group Actions

Theorem 1.7.1 (Lagrange’s Theorem). Let G be finite, H ≤ G. Then |H| divides |G|, and

G : H :=
|G|
|H| = # of left cosets of H in G = # of right cosets of H in G.

(G : H is called the index of H in G).

Proof. Define the equivalence relation ∼ by g ∼ g′ ⇐⇒ gH = g′H. For g ∈ G, |H| = |gH| (because

the map x 7→ gx is a bijection). Hence, ∼ partitions G into equivalence classes (cosets of H), each

containing |H| elements. ie.

|G| = (number of equiv. classes) × (number of elts. per equiv. class)

= (number of left cosets) × |H|

Similarly, |G| = (number of right cosets) × |H|. �

Corollary 1.7.2. If H ⊳ G then |G/H| = |G|/|H|.

Corollary 1.7.3. For x ∈ G, |x| divides |G|.

Proof. Set H = 〈x〉. Then |x| = |H| || |G|. �

Corollary 1.7.4. If |G| = p, a prime number, then G � Cp.

Proof. Let x ∈ G, x , e. Then |x| = p, so G = 〈x〉 � Cp(x). �

Definition 1.7.5. A left action of a group G on a set X consists of an operation

G × X 7→ X

(g, x) 7→ g · x

such that:

1. (gh) · x = g · (h · x) ∀g, h ∈ G, x ∈ X, and

2. e.x = x ∀x ∈ X.

Equivalently, an action of G on X is a group homomorphism G 7→ S ′X.

Example 1.7.6.

1. F a field, G = GLn(F), X = Fn.

G acts on X by matrix multiplication, A · x = Ax.

21



2. G any group, X = G.

G acts by left multiplication on X, ie. g · x = gx.

3. G a group, N ⊳ G.

G acts by conjugation on N, ie. g · x = gxg−1.

(gh) · x = ghx(gh)−1
= ghxh−1g−1

= g(h · x)g−1
= g · (h · x).

In this example, the image of G 7→ S ′
X

lies in Aut(N), ie.

g · (xy) = gxyg−1
= gxg−1gyg−1

= (g · x)(g · y).

Note special case where N = G.

Similarly, we may define a right action (it is a group homomorphism G 7→ S X). Given a right

action ⊙ of G on X, can define a left action of G on X by

g · x := x · g−1.

Example 1.7.7. G = S n, X = {1, . . . , n}. Then

X ×G 7→ X by j · σ = σ( j)

yields a right action of G on X, ie.

j · (στ) = (στ)( j) = (τ ◦ σ)( j) = τ(σ( j)) = ( j · σ) · τ.

∴ Define left action G × X 7→ X by σ · j := j · σ−1
= σ−1( j).

Definition 1.7.8. Let G × X 7→ X be a (left) action of G on X. Let x ∈ X. The orbit of x is

Orb(x) := {g · x | g ∈ G} ⊂ X.

The stabilizer of x is

Stab(x) := {g ∈ G | g · x = x} ⊂ G.

Proposition 1.7.9. Stab(x) ≤ G.

Proposition 1.7.10. Orb(x) = Orb(y) ⇐⇒ y ∈ Orb(x).

Proof.

⇒ Suppose Orb(x) = Orb(y). Then

y = e · y ∈ Orb(y) = Orb(x).
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⇐ Suppose y ∈ Orb(x). Write y = g · x, for some g ∈ G.

∴ g−1 · y = g−1 · (g · x) = g−1g · x = e · x = x and thus x ∈ Orb(y).

If z ∈ Orb(y) then z = g′ · y = g′ · (g · x) = (gg′) · x so z ∈ Orb(x). Hence Orb(x) ⊂ Orb(y), and

similarly, Orb(y) ⊂ Orb(x).

�

Corollary 1.7.11. Given an action of G on X, the relation x ∼ y ⇐⇒ Orb(x) = Orb(y) is an

equivalence relation.

Theorem 1.7.12. Let G be a finite group. Let G × X 7→ X be an action of G on X. Then for x ∈ X,

|Orb(x)| |Stab(x)| = |G|.

Note: Lagrange’s Theorem is a special case. ie. H ≤ G, X = {left cosets of H}.

G × X 7→ X by g ·C = gC

defines a left action. Set x = H.

Proof.
|G|

|Stab(X)| = G : Stab(X) = # of left cosets of Stab(X) in G

Define

θ : {left cosets of Stab(X) = H} 7→ Orb(x)

gH 7→ g · x

1. θ is well-defined:

Suppose gH = g′H. Then g = g′h for some h ∈ H. Hence,

g · x = (g′h) · x = g′ · (h · x) = g′ · x, since h ∈ Stab(x).

2. θ is surjective:

If y ∈ Orb(x) then y = g · x, for some g ∈ G. Thus y = θ(gH).

3. θ is injective:

Suppose θ(gH) = θ(g′H). Then g · x = g′ · x. Hence,

x = g−1 · (g · x) = g−1 · (g′ · x) = (g−1g′) · x.

∴ g−1g′ ∈ H, ie. g′ = gh for some h ∈ H. Thus g′H = gH.
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∴ θ is a bijection and the theorem follows. �

Corollary 1.7.13. Let G be a finite group acting on a finite set X. Then

|X| =
∑ |G|
|Stab(x)| ,

where the sum is taken over one element from each orbit.

Proof. The equivalence relation x ∼ y ⇐⇒ Orb(x) = Orb(y) partitions X into disjoint subsets. So

|X| =
∑
|Orb(x)|, summed over one element from each orbit

=

∑ |G|
|Stab(x)|

�

Consider the action of G on itself by conjugation. ie. X = G and g · x = gxg−1. Then

Stab(x) = {g ∈ G | g · x = x} = {g ∈ G | gxg−1
= x} = CG(x).

Corollary 1.7.14. Class Formula:

|G| =
∑ |G|
|CG(x)| ,

summed over one element from each conjugacy class.

Corollary 1.7.15. Let p be prime and let G be a p-group (ie. |G| is a power of p). Then Z(G) , {e}.
Proof. CG(e) = G. By the class formula,

|G| =
∑

all conj. classes

|G|
|CG(x)|

=
|G|
|CG(e)| +

∑

remaining conj.
classes

|G|
|CG(x)|

∴ pn
= 1 +

∑

remaining conj.
classes

|G|
|CG(x)|

∴ ∃x , e such that |G|
|CG(x)| is not divisible by p. Since |G| = pn, this can happen only when |CG(x)| = pn,

ie. when CG(X) = G. ie. ∃e , x ∈ G such that CG(x) = G, ie. x ∈ Z(G). �
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Corollary 1.7.16. If |G| = p2 where p is prime then G is abelian.

Proof. Let x , e such that x ∈ Z(G). If G = 〈x〉 then G is abelian. Otherwise, |x| = p, and since

x ∈ Z(G), 〈x〉 ⊳ G. So, ∃y ∈ G such that y generates G/〈x〉 � Cp. Then x and y generate G, and since

x ∈ Z(G), x↔ y. Hence G is abelian. �
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1.8 Semi Direct Products

Let H,K be subgroups of G. Define µ : H × K 7→ G by µ(h, k) = hk.

Proposition 1.8.1. If H ∩ K = {e} then µ is injective.

Proof. Suppose hk = h′k′. Then

(h′)−1h = k′k−1 ∈ H ∩ K = {e}

so h′−1
= e = k′k−1. ie. h = h′ and k = k′. �

Assuming (for the rest of this section) that H ∩ K = {e}, the above says

µ : H × K 7→ HK ⊂ G

is a bijection. We wish to compare H × K to HK (which, in general, may not be a subgroup of G).

Suppose that H ⊳ G. Then HK = KH is a subgroup of G, but is not necessarily isomorphic to H ×K.

Besides H × K, what other possibilities are there for HK?

Suppose g = hk and g′ = h′k′ lie in HK. Then

gg′ = hkh′k′ = hkh′k−1kk′ = h′′k′′

where h′′ = h(kh′k−1) ∈ H and k′′ = kk′ ∈ K.

ie., Labelling elements of HK by the corresponding element in H × K, the group operation in HK

can be written

(h, k)(h′, k′) = (hk · h′, kk′)

where k · h′ := kh′k−1 (the restriction to K of the conjugation action of G on the normal subgroup H).

Recall that this action satisfies k · (h1h2) = (k · h1)(k · h2), ie. it is a homomorphism into Aut(H).

Reverse the process:

Definition 1.8.2. Given groups H,K together with a group homomorphism φ : K 7→ Aut(H), (an

action of K on H – denote k · h = φ(k)(h)), the semidirect product H ⋊ K is the set H × K with the

binary operation

(h, k)(h′, k′) := (h(k · h′), kk′).

Proposition 1.8.3. H ⋊ K forms a group.
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Proof.

(
(h, k)(h′, k′)

)
(h′′, k′′) = (h(k · h′), kk′)(h′′, k′′)

= (h(k · h′)(kk′ · h′′), kk′k′′), and

(h, k)
(
(h′, k′)(h′′, k′′)

)
= (h, k)(h′(k′ · h′′), k′k′′)
=

(
h(k · (h′(k′ · h′′))), kk′k′′

)
.

However, since Imφ ⊂ Aut(H),

k · (h′(k′ · h′′)) = (k · h′)(k · (k′ · h′′)) = (k · h′)(kk′ · h′′).

∴
(
(h, k)(h′, k′)

)
(h′′, k′′) = (h, k)

(
(h′, k′)(h′′, k′′)

)
.

(e, e)(h′, k′) = (e(e · h′), ek′) = (eh′, ek′) = (h′, k′), and

(h, k)(e, e) = (h(k · e), ke) = (he, ke) = (h, k).

(Here, k · e = e since Imφ ⊂ Aut(H).) Hence (e, e) is the identity.

(h, k)(k−1 · h−1, k−1) =
(
h(k · (k−1 · h−1)), kk−1)

=
(
h((kk−1) · h−1), kk−1)

= (h(e · h−1), kk−1)

= (hh−1, kk−1)

= (e, e), and

(k−1 · h−1, k−1)(h, k) =
(
(k−1 · h−1)(k−1 · h), k−1k)

= (k−1 · (h−1h), k−1k), since Imφ ⊂ Aut(H)

= (k−1 · e, e)

= (e, e).

Hence (h, k)−1
= (k−1 · h−1, k−1). �

Define

iH : H 7→ H ⋊ K

h 7→ (h, e), and

iK : K 7→ H ⋊ K

k 7→ (e, k)
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Proposition 1.8.4. iH and iK are (injective) group homomorphisms.

Proof.

(h, e)(h′, e) = (h(e · h′), ee) = (hh′, e)

(e, k)(e, k′) = (e(k · e), kk′) = (ee, kk′) = (e, kk′)

�

Using iH and iK , regard H and K as subgroups of H ⋊ K.

ie. H � iH(H) = {(h, e)} ≤ H ⋊ K

K � iK(K) = {(e, k)} ≤ H ⋊ K

Proposition 1.8.5. H ⊳ (H ⋊ K) and (H ⋊ K)/H � K.

Proof. Define φ : H ⋊ K 7→→K by φ(h, k) = k. Then

φ((h, k)(h′, k′)) = φ(h(k · h′), kk′) = kk′

so φ is a group homomorphism.

ker φ = {(h, e) ∈ H ⋊ K} = iH(H) � H.

�

Returning to the motivating example, H ⊳ G,K ≤ G,H ∩ K = {e}, and by construction,

HK � H ⋊ K.

Proposition 1.8.6. If both H ⊳ G and K ⊳ G with H ∩ K = {e} then µ : H × K 7→ HK is an

isomorphism.

Proof. For h ∈ H, k ∈ K,

hkh−1k−1
= (hkh−1)k−1 ∈ K, and

hkh−1k−1
= h(kh−1k−1) ∈ H

So hkh−1k−1 ∈ H ∩ K = {e}.
ie. hk = kh ∀h ∈ H, k ∈ K.

Hence

µ(h, k)µ(h′, k′) = hkh′k′ = hh′kk′ = µ(hh′, kk′) = µ((h, k)(h′, k′)).

∴ µ is a homomorphisms, so µ : H × K
�7−→ HK. �
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Proposition 1.8.7. Let H,K be groups and let φ : K 7→ Aut(H). TFAE:

1. H × K � H ⋊ K.

2. φ is the trivial homomorphism.

3. K ⊳ (H ⋊ K).

Proof.

1⇒ 2:

∀h, h′ ∈ H, k, k′ ∈ K, (hh′, kk′) = (h, k)(h′, k′) = (h(k · h′), kk′)

∴ φ(k)(h′) = k · h′ = h′ ∀h′, ie. φ(k) = 1H.

2⇒ 3: Since H,K generate H ⋊ K, it suffices to check hKh−1 ⊂ K, ∀h ∈ H. Note that

(h, e)−1
= (h−1, e),

so

(h, e)(e, k)(h−1, e) = (h(e · e), ek)(h−1, e)

= (h, k)(h−1, e)

= (h(k · h−1), ke)

= (hh−1, ke), by 2

= (e, k) ∈ K

3⇒ 1: This is the previous proposition. �

In particular, this proposition says that if G has normal subgroups H,K such that

H ∩ K = {e} and HK = G then G � H × K.

Theorem 1.8.8. Let φ : G 7→ K be a group homomorphism. Suppose ∃ a group homomorphism

s : K 7→ G such that φs = 1K . (s is called a section or a right splitting of φ.) Then

G � (ker φ) ⋊ K

Proof. Observe that existence of a function s : K 7→ G such that φs = 1K implies that φ is onto and s

is injective. Let H = ker φ. Set

K̃ = Ims
�←− s K.

Then

(ker φ) ⋊ K � H ⋊ K̃ � HK̃ ≤ G
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so it suffices to show HK̃ = G.

Given g ∈ G, let k = φ(g) ∈ K and let

k̃ = s(k) = sφ(g) ∈ K̃.

Then

φ(k̃) = φsφ(g) = φ(g),

since φs = 1K . Hence gk̃−1 ∈ ker φ = H, and so g ∈ HK̃. Thus G = HK̃. �

A right splitting of φ does not make G a product. In contrast, a left splitting does imply that G is

a product:

Theorem 1.8.9. Let H ⊳ G. Let i : H 7→ G be the inclusion map. Suppose ∃ a group homomorphism

r : G 7→ H such that ri = 1H. Then

G � H ×G/H.

Proof. Define θ : G 7→ H × (G/H) by

θ(g) = (rg, qg)

where q : G 7→→G/H is the quotient projection g 7→ gH. Then θ is a homomorphism.

If θ(g) = θ(g′) then r(g) = r(g′) and gH = g′H, so let g′ = gh for some h ∈ H. Hence

r(g) = r(g′) = r(g)r(h),

so

e = r(h) = ri(h) = h.

∴ g′ = gh = ge = g. Thus θ is injective.

To show θ is surjective, it suffices to show H × {e} ⊂ Imθ and {e} × (G/H) ⊂ Imθ, since these

generate H × (G/H).

Given h ∈ H,

θ(h) = (r(h), hH) = (h, e).

Given q(g) = gH ∈ G/H, let h = r(g) and set g′ = h−1g. Then

θ(g′) = (r(h−1g), q(h−1g))

= (r(h−1)r(g), q(g))

= (h−1h, q(g))

= (e, q(g))

So θ is onto. �
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Example 1.8.10. Use φ = ǫ : S 3 7→ C2. Then ker φ � A3. Let

s : C2 7→ S 3 by

s(1) = e

s(−1) = (1 2)

s is a right splitting. Thus S 3 � A3 ⋊C2.
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1.9 Sylow Theorems

Throughout this section, p denotes a prime and G is a finite group.

Suppose |G| = n. If H ≤ G then by Lagrange, |H| || n. However, the converse is false, eg. if G = S 5

then n = 120, but G has no subgroups of order 15, 30, or 40. However, ∃ a partial converse:

Theorem 1.9.1 ((First) Sylow Theorem). If pt || |G| then ∃H ≤ G such that |H| = pt.

Proof. Write |G| = mpt. Find r ≥ 0 such that pr | m but pr+1 ∤ m.

Lemma 1.9.2. pr |
|
(

mpt

pt

)
but pr+1 ∤

|
(

mpt

pt

)
.

Proof. (
mpt

pt

)
=

(mpt)(mpt − 1) · · · (mpt − pt
+ 1)

(pt)(pt − 1) · · · 3 · 2 · 1
If 0 < j < pt then

# of times p divides pt − j = # of times p divides j

= # of times p divides mpt − j

∴ Powers of p cancel except for those in the factor m. �

Proof of Theorem continued. Let S = {S ⊂ G | |S | = pt}. Define right action

S ×G 7→ S by S · g = S g.

S has

(
mpt

pt

)
elements, so there exists an orbit X = {S 1, S 2, . . . , S k} (of size k) such that pr+1 ∤ k.

(If pr+1 divided the number of elements in each orbit then pr+1 would divide |S|).
Orb(S 1) = X by definition. Set H := Stab(S 1) ≤ G. Then

|H| = |G||X| =
mpt

k
=

(
m

k

)
pt.

By construction, pr+1 ∤ k so p divides m at least as many times as p divides k. Thus |H| is divisible by

pt, and in particular,

|H| ≥ pt.

Pick s ∈ S 1. Then ∀h ∈ H, sh ∈ S 1 but h , h′ ⇒ sh , sh′. Hence

pt
= |S 1| ≥ |H|.

∴ |H| = pt. �
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Definition 1.9.3. Suppose |G| = n. Let p be a prime and let pt be the largest power of p dividing n.

Then a subgroup of G having order pt is called a Sylow p-subgroup of G.

Notation: Sylp(G) := {Sylow p-subgroups of G}.

Corollary 1.9.4 (Corollary to Sylow Theorem). Sylp(G) is non-empty ∀p.

Suppose H ≤ G. Then ∀g ∈ G, gHg−1 ≤ G and

H
�7−→ gHg−1

x 7→ gxg−1

In particular, |gHg−1| = |H|. (gHg−1 is called a conjugate subgroup of H in G.)

P ∈ Sylp(G)⇒ gPg−1 ∈ Sylp(G) ∀g ∈ G.

Pick P ∈ Sylp(G). Let

X = {Sylow p-subgroups of G which are conjugate to P}.

G acts on X by g · S = gS g−1.

If Q ≤ G, can restrict to get an action of Q on X. For an action of Q on Sylp(G), have

|Q| = |OrbQ(S )| |StabQ(S )|.

Here,

StabQ(S ) = {q ∈ Q | qS q−1
= S } = NQ(S ).

Lemma 1.9.5. If Q is a p-subgroup then for any Sylow p-subgroup S ,

NQ(S ) = S ∩ Q.

Proof. Let H = NQ(S ). From the definition, S ∩ Q ⊂ H. Conversely, H ⊂ Q, so it suffices to show

H ⊂ S . Consider S H.

S H = HS ≤ G, since S ⊳ H.

|S H| = |S | |H||S ∩ H| = |S |
|H|
|S ∩ H| ≥ |S |.

H = NQ(S ) ≤ Q ⇒ |H| is a power of p ⇒ |S H| is a power of p. But S is a Sylow p-subgroup and

S ⊂ S H, so S = S H.

∴ H =⊂. Thus H = S ∩ Q. �
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Lemma 1.9.6. |X| ≡ 1 mod p.

Proof. Write X = {P = S 1, . . . , S r}. For any Q the action of Q on X divides X into orbits:

|X| =
∑

orbits

(# of elts. in that orbit).

Apply this with Q = S 1 = P:

StabP(S ) = NP(S ) = P ∩ S .

∴ |StabP(S )| || |P|, with equality only when S = P. Hence,

|OrbP(S )| = |P|
|StabP(S )|

is one when S = P, and is divisible by p otherwise. So

|X| =
∑

orbits

(# of elts. in that orbit)

= 1 +
∑

orbits not

containing P

(# of elts. in that orbit)

≡ 1 mod p.

�

Lemma 1.9.7. If Q is a p-subgroup then Q ⊂ P j for some P j ∈ X.

Proof. Again,

|X| =
∑

orbits

(# of elts. in that orbit).

Unless Q ⊂ P j for some j then for each j, Q ∩ P j will be a proper subset of Q, so that

|OrbQ(P j)| =
|Q|

|StabQ(P j)|
is divisible by p ∀ j.

But if p | (# of elements in orbit) for each orbit then p || |X|, contradicting the last lemma.

∴ Q ⊂ P j for some j. �

Corollary 1.9.8. Sylp(G) = X.
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Proof. For S ∈ Sylp(G), |S | is a power of p⇒ S ⊂ P j for some P j ∈ X. But |S | = |P j| since both are

Sylow p-subgroups.

∴ S = P j ∈ X. �

Lemma 1.9.9. |Sylp(G)| || |G|.

Proof. Consider the action of G on Sylp(G). Let P ∈ SylP(G).

|G| = |OrbG(P)| |StabG(P)|

OrbG(P) = {subgroups of G conjugate to P} = X = Sylp(G).

∴ |SylP(G)| divides G. �

In summary:

Theorem 1.9.10 ((Main) Sylow Theorem). Let G be a finite group and let p be a prime.

1. |Sylp(G)| ≡ 1 mod p.

2. |Sylp(G)| || |G|.

3. Any two Sylow p-subgroups of G are conjugate (and in particular, isomorphic).

4. Every p-subgroup of G is contained in some Sylow p-subgroup. In particular, every element

whose order is a power of p is contained in some Sylow p-subgroup.

Proof. Showed that if X = {Sylow p-subgroups conjugate to P} then SylP(G) = X ⇐⇒ 3.

Also showed |X| ≡ 1 mod p ⇐⇒ 1.

Also showed: every p-subgroup of G is contained in some S ∈ X ⇐⇒ 4.

Also showed |SylP(G)| || |G| ⇐⇒ 2. �

Corollary 1.9.11. Let P be a Sylow p-subgroup of G. Then P ⊳ G ⇐⇒ P is the unique Sylow

p-subgroup.

Proof.

⇐: Suppose ∃! Sylow p-subgroup. Since gPg−1 is a Sylow p-subgroup ∀g,

gPg−1
= P ∀G,

ie. P ⊳ G.

⇒: Suppose P ⊳ G. Then the only subgroup of G conjugate to P is P. By Sylow Theorem, 3, P is

the only Sylow p-subgroup.
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Corollary 1.9.12. Let P be a Sylow p-subgroup of G. Let N = NG(P). Then

NG(N) = N.

In particular, N ⊳ G iff P ⊳ G.

Proof. Set H := NG(N). Then ∀h ∈ H, hPh−1 ⊂ N and |hPh−1| = |P|, so hPh−1 is a Sylow p-subgroup

of G. But then hPh−1 is also a Sylow p-subgroup of N. However, P ⊳ N, so P is the unique Sylow

p-subgroup of N.

∴ hPh−1
= P, so h ∈ NG(P) = N. Hence H ⊂ N, so H = N.

In particular, if N ⊳ G then N = H = G so P ⊳ G. �
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1.10 Applications of Sylow’s Theorem

1. Suppose |G| = 15. Then

|Syl5(G)| ≡ 1 mod 5

|Syl5(G)| || 15
⇒ |Syl5(G)| = 1,

∴ ∃! element of Syl5(G). Let H be the unique Sylow 5-subgroup, so H ⊳ G. Similarly,

|Syl3(G)| ≡ 1 mod 3

|Syl3(G)| || 15
⇒ |Syl3(G)| = 1,

so ∃! Sylow 3-subgroup K, and so K ⊳ G.

Pick generators h ∈ H, k ∈ K; |h| = 5, |k| = 3. H,K are normal⇒ hk = kh, so |hk| = 15. Hence,

G has an element of order 15, so G � C15.

2. Suppose |G| = 10.

|Syl5(G)| ≡ 1 mod 5

|Syl5(G)| || 10
⇒ |Syl5(G)| = 1.

Let H be the unique Sylow 5-subgroup. Then H ⊳ G. Pick a generator h.

|Syl2(G)| ≡ 1 mod 2

|Syl2(G)| || 10
⇒ |Syl2(G)| = 1 or 5.

Case I: |Syl2(G)| = 1. Then G � C10, using argument above.

Case II: |Syl2(G)| = 5.

Let K be a Sylow 2-subgroup; K = {e, k}. If hk = kh then |hk| = 10 and we would be in

Case I. Hence,

hkh−1
= k2 = generator of a different Sylow 2-subgroup.

Similarly, h2kh−2, h3kh−3, h4kh−4 must be the generators of the other Sylow 2-subgroups.

(Again, if hikh−i
= h jkh− j for i , j then h j−ik = kh j−i and we would be in Case I.)

∴ Can list the ten elements of G:
e k

h hkh−1

h2 h2kh−2

h3 h3kh−3

h4 h4kh−4
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From this, we can construct the group table. eg. what is hk?

Well, hk , h j for any j, so hk has order 2.

∴ hkhk = e

hkh = k−1
= k

∴ hk = h(hkh)

= h2kh

= h2(hkh)h

= h3kh2

= h3kh−3.

This group must be D10.

1

2

34

5

h 7→ (1 2 3 4 5)

k 7→ (2 5)(3 4)

Conclusion: If |G| = 10 then G � C10 or G � D10.

In passing: note the existence of an element k of order 2 in D10 gives a splitting

D10
>

<

s

D10/H � C2

where if C2 = {e, x} then s(x) = k. Thus

D10 � H ⋊C2 = C5 ⋊C2.
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The corresponding homomorphism φ : C2 7→ Aut(C5) is given by k · h = h−1
= h4.

(Aut(C5) � C4 is generated by the map τ, taking h to h2. The only element of order 2 in

Aut(C5) is τ ◦ τ, which is h 7→ h4.)

3. Suppose |G| = 12. Then

|Syl2(G)| = 1 or 3,

|Syl3(G)| = 1 or 4.

Case I: |Syl2(G)| = 3 and |Syl3(G)| = 4.

Since two distinct groups of order 3 intersect only in the identity, and each Sylow 3-

subgroup has 2 elements of order 3, G has 4 × 2 = 8 elements of order 3. The remaining

4 elements must form a Sylow 2-subgroup.

∴ There aren’t enough elements left to form any more Sylow 2-subgroups. This is a

contradiction, so Case I doesn’t occur.

Case II: |Syl2(G) = 1.

Let H be the unique Sylow 2-subgroup, so H ⊳ G. |H| = 4, so either H � C4 or H �

C2 ×C2.

Case IIa: H � C4(σ).

Let τ be an element of some Sylow 3-subgroup, |τ| = 3.

τστ−1 ∈ H

|τστ−1| = |σ| = 4
⇒ τστ−1

= either σ or σ3.

If τστ−1
= σ3 then

τσ3τ−1
= (τστ−1)3

= σ9
= σ.

Moreover, τ3
= e, so

σ = τ3στ−3
= τ2(τστ−1)τ2

= τ2σ3τ−2
= τ(τσ3τ−1)τ−1

= σ3.

This is a contradiction. Thus, τστ−1
= σ.

Using the fact that τ and σ commute, |τσ| = 12. Thus G � C12.

Equivalent way of phrasing argument that τστ−1
= σ: Let T = {e, τ, τ2}. H is normal⇒ T

acts on H via τ · σ := τστ−1.

|Orb(σ)| |Stab(σ)| = |T | = 3.

σ has order 2⇒ x · σ has order 2 ∀x ∈ T . So Orb(σ) ⊂ {σ,σ3}. Since |Orb(σ)| divides 3,

Orb(σ) = {σ}.
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∴ τστ−1
= σ.

Another rephrasing: H ⊳ G.

G >
<

s

G/H � C3,

where s takes the generator a to τ. ie. The existence of an element τ of order 3 in G gives

a splitting, so

G � C4 ⋊φ C3

for some φ : C3 7→ Aut(C4). However, Aut(C4) � C2 = {1C4
and σ 7→ σ3}. so the only

homomorphism C3 7→ Aut(C4) is trivial.

∴ G � C4 ×C3 � C12.

Case IIb: H � C2 ×C2.

Let

H = {e, σ1, σ2, σ3}, σ2
j = e.

Let T = {e, τ, τ2} be some Sylow 3-subgroup.

G >
<

s

G/H � C3,

and thus,

G � H ⋊φ T,

with φ : T 7→ Aut(H) � permutations of {σ1, σ2, σ3} � S 3. So

(φ(τ))(σ1) = τσ1τ
−1
= σ1, σ2, or σ3.

Case IIbi: τσ1τ
−1
= σ1. Then since the order of φ(τ) must divide the order of τ, which is 3, φ(τ) = id.

Hence φ = id and

G � H × T � C2 ×C2 ×C3.

Case IIIbii: τσ1τ
−1
, σ1.

So τσ1τ
−1
= σ2 or σ3. By symmetry, assume τσ1τ

−1
= σ2. Then φ(τ) must be a 3-cycle,

so τσ2τ
−1
= σ3.

Elements of G:
e σ1 σ2 σ3

τ τσ1 τσ2 τσ3

τ2 τ2σ1 τ2σ2 τ2σ3
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Eachσ j has order 2, and the elements τ, τ2, τσ j and τ2σ j each have order 3. Multiplication

is determined by τσ1τ
−1
= σ2 and τσ2τ

−1
= σ3. eg.

σ1τ = ττ
−1σ1τ = ττ

2σ1τ
−2
= ττσ2τ

−1
= τσ3.

What group is this? Let T1,T2,T3,T4 be the Sylow 3-subgroups. ie.

T j = {e, τσ j, (τσ j)
2} j = 1, 2, 3,

T4 = {e, τ, τ2}

Let X = {T1,T2,T3,T4}. Conjugation by elements of G permutes elements of X, ie. have

morphism

θ : G 7→ S X = S 4.

What is θ(τ)?

τT1τ
−1
= {τeτ−1, τ(τσ1)τ−1

= τσ2, τ(τσ1)2τ−1} = T2

τT2τ
−1
= {τeτ−1, τ(τσ2)τ−1

= τσ3, · · · } = T3

τT3τ
−1
= T1

τT4τ
−1
= T4

ie. τ
θ7−→ (1 2 3).

What is θ(σ1)? σ1T1σ
−1
1
= ?

Suffices to compute σ1(τσ1)σ−1
1

.

σ1(τσ1)σ−1
1 = σ1τ = τσ3.

∴ σ1(τσ1)σ−1
1
= T3. |σ1| = 2 ⇒ σ1T3σ

−1
1
= T1. Likewise, σ1T4σ

−1
1
= T2. So σ1 7→

(1 3)(2 4).

What is θ(σ2)?

σ2T1σ
−1
2 = σ2τσ1σ

−1
2 = τσ

2
1σ
−1
2 = τσ2 ∈ T2

etc., get σ2 7→ (1 2)(3 4).

G � A4.

Case III: |Syl2(G)| = 3, so |Syl3(G)| = 1.

Let T = {e, τ, τ2} be the unique Sylow 3-subgroup, so T ⊳ G. Let H be a Sylow 2-

subgroup. |H| = 4, so H � C4 or C2 ×C2. Then

H ֒→ G 7→→G/T
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is an isomorphism (it is an injection since H ∩ T = {e} for degree reasons, and since

|H| = 4 = |G/T |, it is bijective). This splits q : G 7→→G/T , so

G � T ⋊φ H.

Case IIIa: H � C2 ×C2.

Let H = {e, σ1, σ2, σ3}.
φ : H 7→ AutT = AutC3 � C2.

If φ(h) = 1T ∀h ∈ H then G = T × H, transposing to Case II. So φ is non-trivial,

ie. φ(h)(τ) = τ2 for some h ∈ H. Then

ker φ = C2

so ∃h ∈ H such that h , e and φ(h) = 1T . φ(h′)(τ) = τ2 for the other two non-trivial

elements h′ of H. By symmetry, suppose φ(σ3) = 1T , ie.

φ(σ1)(τ) = σ1τσ
−1
1 = τ

2,

φ(σ2)(τ) = σ2τσ
−1
2 = τ

2,

φ(σ3)(τ) = σ3τσ
−1
3 = τ.

This determines multiplication in G.

What group is this? σ3τ = τσ3, so |σ3τ| = |σ3| |τ| = 2 · 3 = 6. Set x = σ3τ. Elements of

G:
e x x2 x3 x4 x5

σ1 xσ1 x2σ1 x3σ1 x4σ1 x5σ1

Multiplication of elements in this form can be derived from:

σ1x = σ1xσ−1
1 σ1 = σ1σ3τσ

−1
1 σ1 = σ3(σ1τσ

−1
1 )σ1 = σ3τ

2σ1 = σ
5
3τ

5σ1 = x5σ1.

So G � D12.

6

5

4

3

2

1
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x 7→ (1 2 3 4 5 6)

σ1 7→ (2 6)(3 5)

What are the 3 Sylow 2-subgroups? One is H = {e, σ1, σ2, σ3}. Note that

σ3 = σ
3
3τ

3
= x3,

σ2 = σ3σ1 = x3σ1

∴ H = {e, σ1, x
3σ1, x

3}.
To find the others, pick g ∈ G and compute gHg−1.

g = x ⇒ gHg−1
= {e, xσ1x−1, xx3σ1x−1, xx3x−1}
= {e, xσ1x5, x4σ1x5, x3}
= {e, x(x5)5σ1, x

4(x5)5σ1, x
3}

= {e, x26σ1, x
29σ1, x

3}
= {e, x2σ1, x

5σ1, x
3}.

The other is {e, x4σ1, xσ1, x
3}.

Note that different Sylow p-subgroups can intersect non-trivially. eg. Here, x3 is in all

Sylow 2-subgroups.

Case IIIb: H � C4.

Let H = {e, σ, σ2, σ3}. Recall

G � T ⋊φ H,

T = {e, τ, τ2},
φ : H � C4 7→ Aut(T ) � C2

Aside from trivial φ (yielding G � T ×H � C3×C4, which is Case IIa), φ acts non-trivially

on σ and σ3. ie. στσ−1
= τ2. Elements of G are:

e σ σ2 σ3

τ τσ τσ2 τσ3

τ2 τ2σ τ2σ2 τ2σ3

Multiplication is determined by στσ−1
= τ2 (and τ3

= e, σ4
= e).

In summary, there are 5 (non-isomorphic) groups of order 12: C12, C2 ×C2 ×C3, A4, D12, and

C3 ⋊C4.
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1.11 Solvable and Nilpotent Groups

Let G be a group, A, B ⊂ G.

Notation: [A, B] := subgrp. of G generated by {[a, b] | a ∈ A, b ∈ B}. So [G,G] is the commutator

subgroup of G.

Inductively define:

G(0) := G,

G(n) := [G(n−1),G(n−1)], and

G′(0) := G,

G′(n) := [G(n−1),G].

Then

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n) ≥ · · · Derived (or commutator) series of G

q q p∧ p∧
G′(0) ≥G′(1) ≥G′(2) ≥ · · · ≥G′(n) ≥ · · · Lower central series of G

Definition 1.11.1. G is called solvable if ∃N such that G(N)
= {e}. G is called nilpotent if ∃N such

that G′(N)
= {e}.

Since G(n) ≤ G′(n), nilpotent⇒ solvable. We already showed [G,G] ⊳ G, so G(n)
⊳ G(n−1). In fact:

Proposition 1.11.2.

1. G(n)
⊳ G ∀n. In particular, G(n)

⊳ G(n−1) (because for A ≤ B ≤ G, if A ⊳ G then A ⊳ B).

2. G′(n)
⊳ G ∀n. In particular, G′(n)

⊳ G′(n−1).

Proof.

1. For g ∈ G and [a, b] a generator of G(n), where a, b ∈ G(n−1),

g[a, b]g−1
= [gag−1, gbg−1] ∈ [G(n−1),G(n−1)]

by induction.

2. For g ∈ G and [a, b] a generator of G′(n), where a ∈ G′(n−1) and b ∈ G,

g[a, b]g−1
= [gag−1, gbg−1] ∈ [G′(n−1),G]

by induction.
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Notice that G(n−1)/G(n)
= G

(n−1)

ab
is abelian. Conversely:

Proposition 1.11.3. G is solvable iff ∃ a finite sequence of subgroups

{e} = HN ⊳ HN−1 ⊳ · · · ⊳ H0 = G

such that Hn−1/Hn is abelian for all n.

Proof. Suppose that such a sequence exists. Since Hn−1/Hn is abelian, [Hn−1,Hn−1] ≤ Hn for all n.

Inductively,

G(n)
= [G(n−1),G(n−1)] ≤ [Hn−1,Hn−1] ≤ Hn

so G(n) ≤ Hn ∀n. Thus,

G(N) ≤ HN = {e}
∴ G(N)

= {e}. �

Lemma 1.11.4. S n is solvable iff n < 5.

Proof.

n = 1, 2: S n is abelian and thus solvable.

n = 3: Note that [σ, τ] is always an even permutation, so

[S n, S n] ≤ An ∀n.

When n = 3, A3 � C3 is abelian, so S 3 is solvable.

n = 4: Since [S 4, S 4] ≤ A4, in suffices to check that A4 is solvable. Let

H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Then H � C2 ×C2 is abelian, H ⊳ A4, and

|A4/H| = 3,

so A4/H � C3 is abelian.
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n ≥ 5: Let σ = (1 5 3), τ = (1 4 2). Then

[σ, τ] = στσ−1τ−1

= (1 5 3)(1 4 2)(1 3 5)(1 2 4)

= (1 2 3) ∈ [S n, S n]

Similarly, every 3-cycle is a commutator of 3-cycles, provided n ≥ 5. Thus, ∀k, A
(k)
n contains

every 3-cycle.

∴ A
(k)
n , {e} ∀k, so An is not solvable.

�

Theorem 1.11.5. Suppose A ⊳ B. Then B is solvable ⇐⇒ both A and B/A are solvable.

Furthermore, if A ≤ B and B is solvable then A is solvable (even if A is not normal in B).

Proof. Suppose B is solvable and A ≤ B. Then A( j) ≤ B( j) ∀ j, so B(k)
= {e} for some k ⇒ A(k)

= {e},
so A is solvable.

⇒: Suppose now that A ⊳ B and let π : B 7→ B/A be the canonical projection. If x ∈ B lies in B′

then π(x) ∈ (B/A)′, and conversely, if

y = (u v u)−1(v)−1 ∈ (B/A)′

then y = π(uvu−1v−1) ∈ π(B′). Hence,

π(B′) = (B/A)′

π(B(2)) = π(B′′) = (π(B′))′ = (B/A)′′ = (B/A)(2)

...

π(B(k)) = · · · = (B/A)(k)

Since π(B(k)) = {e}, (B/A)(k)
= {e}, whence B/A is solvable.

⇐: Suppose A and B/A are both solvable. If {e} = (B/A)(k)
= π(B(k)) then B(k) ⊂ A. Thus, B(k+ j)

=

(B(k))( j) ⊂ A( j). So if A(m)
= {e} then B(k+m)

= {e}. Hence, B is solvable.

�

Theorem 1.11.6. G is finite and solvable⇒ ∃ subgroups

{e} = Am ⊳ Am−1 ⊳ · · · ⊳ A1 ⊳ A0 = G

such that A j/A j+1 is cyclic of prime order ∀ j.
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Proof. The proceding theorem reduces the proof to the case where G is abelian, and it is clear that a

finite abelian group has such a composition series. �

Upper Central Series:

Given a group G, inductively define Zn(G) as follows: Set Z0 := {e}. Having defined Zn−1 such that

Zn−1 ⊳ G, define Zn as the pullback:

Zn > Z(G/Zn−1)

G
∨ qn−1

>> G/Zn−1

△

∨

where qn−1 : G 7→ G/Zn−1 is the quotient map. ie.

Zn := q−1
n−1(Z(G/Zn−1)).

Zn ⊳ G because Z(G/Zn−1) ⊳ G/Zn−1.

qn−1([Zn,G]) ⊂ [Z(G/Zn−1,G/Zn−1] = {e},
so [Zn,G] ⊂ ker qn−1 = Zn−1.

Lemma 1.11.7. G is nilpotent iff ZN(G) = G for some N.

Proof.

⇒: Suppose ZN = G.

G′(1)
= [G,G] = [ZN ,G] ≤ ZN−1.

Inductively,

G′(k)
= [G′(k−1),G] ≤ [ZN−(k+1),G] ≤ ZN−k.

∴ G′(N) ≤ Z0 = {e} so G is nilpotent.

⇐: Suppose G′(N)
= {e}. Inductively (as k decreases), assume

[G′(k),G] = G′(k+1) ≤ ZN−k−1.

Suppose x ∈ G′(k). Given g = qN−k−1(g) ∈ G/ZN−k−1,

[qN−k−1(x), g] = qN−k−1[x, g]

∈ qN−k−1([G′(k),G])

⊂ qN−k−1(ZN−k−1)

= {e}.
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∴ qN−k−1(x) commutes with g ∀ g ∈ G/ZN−k−1 so

qN−k−1(x) ∈ Z(G/ZN−k−1).

∴ x ∈ ZN−k.

Thus G′(k) ≤ ZN−k ∀k. Therefore,

ZN ≥ G′(0)
= G

∴ ZN = G as required.

�

Corollary 1.11.8. If G is a finite group then G is nilpotent iff ∀n, Z(G/Zn) , {e} unless G/Zn = {e}.
Proof. If Z(G/Zn) = {e} then Zn+1 = q−1

n−1
{e} = Zn, so the series

Z0 ≤ Z1 ≤ · · · Zn ≤ Zn+1 ≤ · · ·
never reaches G (unless Zn = G already).

Conversely, if ∀n, Z(G/Zn) , {e} then

Zn < Zn+1 ∀n

and since G is finite, eventually Zn = G. �

Corollary 1.11.9. If G is a p-group then G is nilpotent.

Lemma 1.11.10. G is nilpotent iffG/Z(G) is nilpotent. More precisely, ZN+1(G) = G iff ZN(G/Z(G)) =

G/Z(G).

Proof. Set H := G/Z(G).

Z2(G) > Z(G)= Z1(H)

p.b.

G
∨

q1

> H
∨

∩

= G/Z(G) = G/Z1(G)

Suppose inductively that Zn−1(G) is isomorphic to the pullback

Pn−1 > Zn−2(H)

p.b.

G
∨

q1

>> H
∨
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By a property of pullbacks (Proposition 1.5.5),

G/Zn−1(G) � G/Pn−1 � H/Zn−2(H).

So

Pn > Zn−1(H) > Z(H/Zn−2(H))� Z(G/Zn−1(G))

p.b. p.b.

G
∨

q1

>> H
∨

>> H/Zn−2(H)
∨

� G/Zn−1(G)

Then Pn is isomorphic to the composite pullback, which, by definition, is Zn(G). So

Zn(G) � Pn ∀n.

If H is nilpotent then ∃N such that ZN(H) = H. Then

ZN+1(G) > ZN(H)

p.b.

G
∨

q1

>> H
∨

shows ZN+1 = G.

Conversely, if ZN+1(G) = G for some N then the pullback shows

H/ZN(H) � G/ZN+1(G) � {e}

so ZN(H) = H. �

Corollary 1.11.11. G is nilpotent iff the sequence of surjections

Q0 7→→ Q1 7→→ Q2 7→→ · · · 7→→ Qn 7→→ · · ·
q q q q

G G/Z(G) Q1/Z(Q1) Qn−1/Z(Qn−1)

eventually reaches {e}. (QN = {e} for some N).
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Proof.

⇒: Qn is nilpotent iff Qn+1 is nilpotent. So, if QN = {e} then QN is nilpotent, so Q0 = G is nilpotent.

⇐: Suppose that G is nilpotent with ZN(G) = G. Then ZN−1(Q1) = Q1 and inductively, ZN−k(Qk) =

Qk ∀k. Then

Z(QN−1) = Z1(QN−1) = QN−1

so QN = QN−1/Z(QN−1) = {e}.

�

Corollary 1.11.12. A finite product of nilpotent groups is nilpotent.

Proof. By induction, it suffices to consider the product of two nilpotent groups, G1 and G2.

Q1(G1 ×G2) =
G1 ×G2

Z(G1 ×G2)

=
G1 ×G2

Z(G1) × Z(G2)

= G1/Z(G1) ×G2/Z(G2)

= Q1(G1) × Q1(G2)

By iterating, Qn(G1 × G2) = Qn(G1) × Qn(G2). So if QN1
(G1) = {e} and QN2

(G2) = {e} then

Qmax{N1,N2}(G1 ×G2) = {e}. �

Theorem 1.11.13. Let G be a finite group. For each prime p, let Pp be a Sylow p-subgroup. Then

TFAE:

1. G is nilpotent.

2. H < G⇒ H < NG(H) (every proper subgroup of G is a proper subgroup of its normalizer).

3. Pp ⊳ G ∀p.

4. G �
∏

p Pp.

Proof.

1⇒ 2: Suppose H < G. Z(G) ≤ NG(H), so unless Z(G) ⊂ H, it is immediate that H < NG(H).

So assume Z(G) ⊂ H. Write G := G/Z(G) and let

q : G 7→→G
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be the quotient map. Set H = q(H) < G. G nilpotent⇒ G nilpotent. By induction (assuming 1

⇒ 2 is known for all groups of order less than |G|),

H < NG

(
H

)
.

But then by the 4th Isomorphism Theorem,

H = q−1
(
H

)
< q−1NG

(
H

)
= NG(H).

2⇒ 3: Let N = NG(Pp). By a corollary to the Sylow Theorem (Corollary 1.9.12), NG(N) = N.

∴ Hypothesis 2⇒ N = G, so Pp ⊳ G.

3⇒ 4: Write

|G| = p
r1

1
p

r2

2
· · · prm

m .

Suppose by induction (on m) that

H = Pp1
· · · Ppm−1

� Pp1
× · · · Ppm−1

.

Then H ⊳ G, Ppm
⊳ G, and H ∩ Ppm

= {e}. Hence,

Pp1
· · · Ppm

= HPpm
� H × Ppm

� Pp1
× · · · Ppm

.

However, |Pp1
· · · Ppm

| = |G| so Pp1
· · · Ppm

= G.

4⇒ 1: It was already shown that p-groups are nilpotent and a finite product of nilpotent groups is

nilpotent.

�
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1.12 Free Groups

Theorem 1.12.1. A subgroup of a free group is free.

Proof. Let S be a set and let G = F(S ). Suppose H ≤ G. Let

S ′ = S ∐ {inverses of elts. in S }.

Recall that elements of G are finite length words in S and S ′. Let M(S ′) denote the free monoid

on S ′ (so that in M(S ′), ss−1 does not simplify for s ∈ S ). ∃ a surjective map of monoids q : M(S ′) 7→
F(S ) given by

q(x) = x ∀x ∈ M(S ′).

Write x for q(x).

Say that a word x = x1 · · · xk ∈ M(S ′) (where xi ∈ S ′ ∀i) is reduced (or a reduced representative)

if ∄ a shorter word y ∈ M(S ′) s.t. q(x) = q(y) = x1 · · · xk in G.

Well-order S ′. This induces a well-order on M(S ′) by ordering the words first by length, and then

lexicographically among words of the same length. Let

R = {reduced words} ⊂ M(S ′).

ie. x ∈ R iff x = min q−1{q(x)}. For g ∈ G, define g̃ ∈ M(S ′) by

g̃ = min q−1(Hg).

ie. g̃ = min{x ∈ M(S ′) | Hx = Hg}. Let

R̃ = {g̃ | g ∈ G} ⊂ M(S ′)

be the set of chosen coset representatives. Clearly, only reduced words can occur: R̃ ⊂ R.

Lemma 1.12.2. A left substring of an element in R̃ is in R̃.

Proof. Suppose b = cu ∈ M(S ′) with b ∈ R̃ and c a proper substring. Check that c ∈ R̃.

Since b ∈ R̃ and c is shorter than b, Hb , Hc (or else, c would be the chosen coset rep. for Hb

rather than b). If c < R̃ then c′ < c and Hc′ = Hc. So

Hb = Hcu = Hc′u = Hc′u.

However, the ordering is such that x < y ⇒ xz < yz. So c′ < c ⇒ c′u < b, which contradicts the

minimality of b. �
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Proof of Theorem continued. Given r ∈ R̃, s ∈ S ′, define vrs ∈ H by

vrs = rs(r′)−1, where r′ = r̃s ∈ R̃.

ie. r′ is the canonical rep. for Hrs. So Hr′ = Hrs, and thus vrs ∈ H.

Notice v−1
rs = r′s−1(r)−1, and

Hr′ = Hrs⇒ Hr = Hr′s−1,

and since r ∈ R̃, r is the canonical rep. for Hr′s−1. Thus

v−1
r,s = vr′,s−1 ,

so {vr,s | r ∈ R̃, s ∈ S ′} is closed under inverses. Let

T = {vrs ∈ H | r ∈ R̃, s ∈ S ′, vrs , e}.

Note that it is possible to have vr,s = vr′,s′ without r = r′ and s = s′.
Define φ : F(T ) 7→ H by φ(vrs) := vrs ∀vrs ∈ T . To finish the proof that H is free, we show that φ

is an isomorphism.

Let h ∈ H. Write h = s1 · · · sℓ in terms of generators of G. Set b1 = e and inductively set

b j+1 = b̃ js j (ie. b j+1 is the canon. rep. for coset Hb js j).

∴ By construction, vb j,s j
= b js jb j+1

−1
. By induction,

Hb j+1 = Hb js j = Hb j−1s j−1s j = · · ·Hb1s1 · · · s j = Hs1 · · · s j.

∴ Hbℓ+1 = Hs1 · · · sℓ = Hh = H, so bℓ+1 = e.

φ(vb1,s1
vb2,s2

· · · vbℓ,sℓ) = b1s1(b2)−1b2s2(b2)−1 · · · bℓsℓ(bℓ+1)−1
= s1 · · · sℓ = h.

∴ φ is onto.

Suppose φ(x) = e for some x ∈ F(T ) and x , e. Let x = x1 · · · xℓ be an expression for x as a

reduced word in the elts. of T . Recall that the elemnts of T can be written as vr,s in many ways. For

each i = 1, . . . , ℓ, pick the expression xi = vbi,si
in which bi ∈ R̃ be minimal. Then vbi,si

contains

an occurrence of si, since if si cancelled then, using the fact that R̃ is closed under left substrings, a

shorter b′i and an s′i could be picked such that xi = vb′
i
,s′

i
.

Since φ(x) = e, within G, the string φ(x), which initially contains all of s1, . . . , sℓ, must reduce

to eliminate them. So ∃m such that φ(vbm,sm
vbm+1,sm+1

) reduces to eliminate sm or sm+1 (or both). Write

vbm,sm
vbm+1,sm+1

as:

bmsm(y)−1bm+1sm+1(z)−1,

where y = canon. rep. for Hbmsm and z = canon. rep. for Hbm+1sm+1. Cancellation of at least one of

sm, sm+1 can happen in one of three ways:
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1. y = bm+1 and sm = s−1
m+1

, or

2. bm+1sm+1 is a left substring of y, or

3. ys−1
m is a left substring of bm+1.

If 1: Hz = Hbm+1sm+1 = Hys−1
m = Hbm, so z = bm (both lie in R̃ and they represent the same coset).

So vbm+1,sm+1
= (vbm,sm

)−1 and the word x was not reduced, which is a contradiction.

If 2: Since bm, y, bm+1, z ∈ R̃ ⊂ R, all are reduced, so bm+1sm+1 is a left substring of y ⇒ bm+1sm+1

is a left substring of y. Hence bm+1sm+1 ∈ R̃. So bm+1sm+1 and z are canon. reps. for the coset

Hbm+1sm+1, so z = bm+1sm+1. But then vbm+1,sm+1
= e so vbm+1,sm+1

< T , which is a contradiction.

If 3: As in case 2, ys−1
m is a left substring of bm+1 so ys−1

m ∈ R̃ and represents the same coset as bm. So

bm = ys−1
m and so vbm,sm

= e < T , which is a contradiction.

∴ None of these cases can occur, so φ(x) = e for x , e is not possible. Hence φ is an injection. �

Note: it is possible that H is not finitely generated, even if G is finitely generated. e.g. Let G = F(x, y)

and let H = [G,G] (the commutator subgroup). Then

H = F(x, y, [y, x], [[y, x], x], . . . , [· · · [[y, x], x]x · · · , x], . . . }.
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Chapter 2

Rings and Modules

2.1 Rings

Definition 2.1.1. A ring consists of a set R together with binary operations + and · satisfying:

1. (R,+) forms an abelian group,

2. (a · b) · c = a · (b · c) ∀a, b, c ∈ R,

3. ∃1 , 0 ∈ R such that a · 1 = 1 · a = a ∀a ∈ R, and

4. a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c ∀a, b, c ∈ R.

Note:

1. Some people (e.g. Dummit + Foote) do not require condition 3, and refer to a “ring with

identity” if they want to assume · has an identity element.

2. People who include existence of a unit in their defn. of a ring refer to a “ring without identity”

for an object satisfying the other three axioms. Some people (e.g. Jacobson) call this a “rng”.

3. Some people (e.g. Lang) do not require 1 , 0 in condition 3.

Definition 2.1.2. R is called commutative if its multiplication is commutative, ie.

ab = ba ∀a, b ∈ R.

Definition 2.1.3. A ring homomorphism from R to S is a function f : R 7→ S such that ∀a, b ∈ R:

1. f (a + b) = f (a) + f (b),
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2. f (ab) = f (a) f (b), and

3. f (1) = 1.

A bijective ring homomorphism is called an isomorphism.

Definition 2.1.4. A subring of R is a subset A which forms a ring such that the inclusion A ֒→ R is a

ring homomorphism. A subgroup I of the abelian group (R,+) is called a (two -sided) ideal if

x ∈ I, r ∈ R⇒ rx ∈ I and xr ∈ I.

Similarly if a subgroup I satisfies

x ∈ I, r ∈ R⇒ rx ∈ I,

I is called a left ideal, and if it satisfies

x ∈ I, r ∈ R⇒ xr ∈ I,

it is called a right ideal.

Example 2.1.5. If f : R 7→ S is a homomorphism then ker f := {x ∈ R | f (x) = 0} is an ideal in R.

(An ideal is always a subrng but never a subring, unless it is all of R.)

Theorem 2.1.6. Let I ⊆� R be a proper ideal. Then ∃ a ring R/I and a surjective ring homomorphism

f : R 7→→R/I such that ker f = I.

Proof. Define an equivalence relation on R by x ∼ y ⇐⇒ x − y ∈ I. Let

R/I := {equiv. classes}.

Define operations on R/I by

[x] + [y] := [x + y],

[x] · [y] := [xy].

Check that these are well-defined and produce a ring structure on R/I.

Define f : R 7→ R/I by f (x) = [x]. f is a ring homomorphism. Moreover, f (x) = 0 iff [x] = 0 iff

x = x − 0 ∈ I. �

Definition 2.1.7. The ring R is called a division ring if (R − {0}, ·) forms a group. A commutative

division ring is called a field.
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An element u ∈ R for which ∃v ∈ R such that uv = vu = 1 is called a unit.

Notation: R× = {units of R}. This forms a group under multiplication.

A non-zero element x ∈ R is called a zero divisor if ∃y , 0 such that either xy = 0 or yx = 0. A

commutative ring with no zero divisors is called an integral domain.

Proposition 2.1.8. If x , 0 is not a zero divisor and xy = xz then y = z.

Proof. x(y − z) = 0 and x is not a zero divisor so either x = 0 or y − z = 0. But x , 0 so y = z. �

Theorem 2.1.9 (First Isomorphism Theorem). Let f : R 7→ S be a ring homomorphism. Then

R/ ker f � Im f .

Theorem 2.1.10 (Second Isomorphism Theorem). Let A ⊂ R be a subring and let I ⊆� R be a proper

ideal. Then A + I := {a + x | a ∈ A, x ∈ I} is a subring of R, A ∩ I is a proper ideal in A, and

(A + I)/I � A/(A ∩ I).

Theorem 2.1.11 (Third Isomorphism Theorem). Let I ⊂ J be proper ideals of R. Then J/I := {[x] ∈
R/I | x ∈ J} is an ideal in R/I, and

R/I

J/I
� R/J.

Theorem 2.1.12 (Fourth Isomorphism Theorem). Let I be a proper ideal of R. Then the correspon-

dence J 7→ J/I is a bijection between the ideals of J containing I and the ideals of R/I.

Let I, J be ideals in R. Define ideals

I + J := {x + y | x ∈ I, y ∈ J},
I ∩ J,

IJ :=


n∑

i=1

xiyy | n ∈ N, xi ∈ I, yi ∈ J



Then

IJ ⊂ I ∩ J ⊂ I ∪ J ⊂ I + J.

(Note that I ∪ J may not be an ideal.) I + J is the smallest ideal containing both I and J.
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2.2 Maximal and Prime Ideals

Definition 2.2.1. An ideal M ⊆� R is called a maximal ideal if ∄ an ideal I s.t. M ⊆� I ⊆� R.

Lemma 2.2.2. Given an ideal I ⊆� R, ∃ a maximal ideal M s.t. I ⊂ M.

Proof. Let

S = {ideals J | I ⊂ J ⊆� R}.
Then S is a partially ordered set (ordered by inclusion). If C ⊂ S is a chain (ie. a totally ordered

subset) then

J =
⋃

C∈C
C

is an ideal which forms an upper bound for C in S (it is indeed a proper ideal since 1 < J).

∴ Zorn’s Lemma⇒ S has a maximal element M. �

For the rest of this section, suppose that R is commutative.

Proposition 2.2.3. R is a field ⇐⇒ the only ideals of R are {0} and R.

Proof.

⇒: Let R be a field and let I ⊂ R be an ideal. If I , {0} then ∃x , 0 ∈ I.

R a field ⇒ ∃y ∈ R such that xy = yx = 1. Since I is an ideal, 1 ∈ I, so r ∈ I ∀r ∈ R. Thus

I = R.

⇐: Suppose the only ideals in R are {0} and R. Let x , 0 ∈ R. Let

I = Rx := {rx | r ∈ R}.

I is an ideal and x = 1x ∈ R, so I , 0. Hence I = R, so 1 ∈ I. ie. 1 = yz for some y ∈ R.

∴ Every x , 0 ∈ R has an inverse, so R is a field.

�

Corollary 2.2.4. Let f : F 7→ S be a ring homomorphism where F is a field. Then f is injective.

Proof. ker f is a proper ideal in F, so ker f = 0. �

Theorem 2.2.5. M is a maximal ideal ⇐⇒ R/M is a field.

Proof. The 4th iso. thm. says ∃ a bijection between the ideals of R containing M and the ideals of

R/M.

∴ ∃I s.t. M ⊆� I ⊆� R ⇐⇒ ∃J s.t. {0} ⊆� J ⊆� R/M. ie. M is not maximal ⇐⇒ R/M is not a field. �

58



Definition 2.2.6. An ideal P ⊆� R is called a prime ideal if ab ∈ P implies a ∈ P or b ∈ P.

Theorem 2.2.7. P is a prime ideal ⇐⇒ R/P is an integral domain.

Proof.

⇒: Suppose P is a prime ideal. If [xy] = [x][y] = 0 in R/P then xy ∈ P, so either x ∈ P or y ∈ P.

ie. either [x] = 0 or [y] = 0. Thus R/P has no zero divisors.

⇐: Suppose R/P is an integral domain. If xy ∈ P then [x][y] = 0 in R/P, so [x] = 0 or [y] = 0. ie.

either x ∈ P or y ∈ P.

�

Corollary 2.2.8. A maximal ideal is a prime ideal.

Proof. A field is an integral domain. �

Notation: a | b means ∃c s.t. b = ac (say a divides b).

Proposition 2.2.9. In an integral domain, if a | b and b | a then b = ua for some unit u.

Proof. a | b⇒ b = ua for some u ∈ R. b | a⇒ a = vb for some v ∈ R.

∴ b = ua = uvb, and since b is not a zero divisor, 1 = uv. Thus, u is a unit. �

Definition 2.2.10. q is called a greatest common divisor of a and b if:

1. q | a and q | b, and

2. If c also satisfies c | a, c | b then c | q.

Notation: q = gcd(a, b) means q is the greatest common divisor of a and b.

We say a and b are relatively prime if gcd(a, b) = 1.

Proposition 2.2.11. Let R be an integral domain. If q = gcd(a, b) and q′ = gcd(a, b) then q′ = uq for

some unit u. Conversely, if q = gcd(a, b) and q′ = uq where u is a unit then q′ = gcd(a, b).

Proof. Let q = gcd(a, b). If q′ = gcd(a, b) then q′ | q and q | q′ so q′ = uq for some unit u.

Conversely, if q′ = uq for some unit u then q′ | q so q′ | a and q′ | b. Also q | q′ so whenever c | a
and c | b, c | q so c | q′. �

Definition 2.2.12. A non-unit p , 0 ∈ R is called a prime if p | ab⇒ p | a or p | b.
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Notation: Let x ∈ R. (x) := Rx = {rx | r ∈ R} is called the principal ideal generated by x. Thus

y ∈ (x) iff x | y.

Likewise, for x1, . . . , xn ∈ R, let (x1, . . . , xn) denote the following ideal:

{r1x1 + · · · + rnxn | r1, . . . , rn ∈ R},

ie. the ideal generated by x1, . . . , xn.

Proposition 2.2.13. If p , 0 then p is prime ⇐⇒ (p) is a prime ideal.

Proof.

⇒: Suppose p is prime. If ab ∈ (p) then ab = rp for some r, so p | ab. So p | a or p | b. ie. a ∈ (p)

or b ∈ (p).

⇐: Suppose (p) is a prime ideal. If p | ab then ab ∈ (p) so a ∈ (p) or b ∈ (p).

∴ p | a or p | b.

�

Nonzero elements x and y are called associates if ∃ a unit u s.t. x = uy, y = u−1x. Thus, x, y are

associate ⇐⇒ (x) = (y). ie. For associates x and y, x | a iff y | a.

x ∼ y iff x, y are associate forms an equivalence relation on R − {0}.

Definition 2.2.14. x ∈ R is irreducible if x , 0, x is not a unit, and whenever x = ab, either a is a

unit or b is a unit.

Definition 2.2.15. Ideals I and J are called comaximal or relatively prime if I + J = R.

Theorem 2.2.16 (Chinese Remainder Theorem). Let R be a commutative ring. Let

I1, . . . , Ik ⊂ R

be ideals. Suppose Ii and I j are comaximal whenever i , j. Let

φ : R 7→ R/I1 × R/I2 × · · · × R/Ik

r 7→ (r + I1, r + I2, . . . , r + Ik).

Then φ is surjective and

ker φ = I1 ∩ I2 ∩ · · · ∩ Ik = I1 · · · Ik.
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Proof. Consider first the case when k = 2. Suppose I, J are comaximal. Then ∃x ∈ I, y ∈ J s.t. x+y =

1. So φ(x) = (0, 1) and φ(y) = (1, 0). Since (0, 1) and (1, 0) generate R/I × R/J, φ is surjective.

Clearly ker φ = I ∩ J, and in general, IJ ⊂ I ∩ J. For any c ∈ I ∩ J,

c = c1 = cx + cy ∈ IJ.

∴ IJ = I ∩ J.

General case: set I = I1, J = I2 · · · Ik. For each i = 2, . . . , k, ∃xi ∈ I and yi ∈ Ii s.t. xi + yi = 1.

Since xi + yi ≡ yi mod I,

1 = 1 · · · 1 = (x2 + y2)(x3 + y3) · · · (xk + yk) ≡ y2 · · · yk mod I

So 1 ∈ I + J.

∴ R 7→→R/I × R/J and by induction,

R/I × R/J 7→→R/I1 × R/I2 × R/I3 × · · · × R/Ik

and

I1I2 · · · Ik = IJ = I ∩ J = I1 ∩ I2 ∩ · · · Ik.

�
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2.3 Polynomial Rings

Let R be a ring.

R[x] := {anxn
+ an−1xn−1

+ · · · + a1x + a0 | n ≥ 0 ∈ Z and a j ∈ R for j = 0, · · · , n}

(modulo 0xn
+ an−1xn−1

+ · · · + a0 ∼ an−1xn−1
+ · · · + a0). Operations are

n∑

i=1

aix
i
+

n∑

i=1

bix
i :=

n∑

i=1

(ai + bi)xi, and


n∑

i=1

aix
i




m∑

i=1

bix
i

 :=

n+m∑

k=0


k∑

i=0

aibk−i

 xk.

More formally,

(R[x],+) =

∞⊕

n=0

R,

with multiplication defined by

(ai)i≥0(b j) j≥0 = (ck)k≥0 where ck =

k∑

i=0

aibk−i.

Inductively, set

R[x1, . . . , xn] := (R[x1, . . . , xn−1])[xn].

(called the polynomial ring in n variables). For an arbitrary set S , set

R[S ] :=
⋃

T=finite subset of S

R[T ].

If q(x) =
∑n

i=0 aix
i and an , 0 then n is called the degree of q. Embed R ֒→ R[x] via

r 7→ r (polynomial of degree 0).

Some properties:

1. R[x] is commutative ⇐⇒ R is commutative.

2. R[x] is an integral domain ⇐⇒ R is an integral domain.

3. If R is an integral domain then q(x) ∈ R[x] is invertible ⇐⇒ q(x) ∈ R and is invertible in R.

62



Proposition 2.3.1. Let I ⊂ R be an ideal. Let I[x] denote the ideal of R[x] generated by I. Then

R[x]/I[x] � (R/I)[x].

Proof. Define φ : R[x] 7→ (R/I)[x] by

φ(
∑

aix
i) :=

∑
aix

i.

Then φ is onto and ker φ = I[x], so

R[x]/I[x] � (R/I)[x].

�

Corollary 2.3.2. I[x] is a prime ideal ⇐⇒ I is a prime ideal.
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2.4 Modules

Definition 2.4.1. Let R be a ring. A (left) R-module consists of an abelian group (M,+), together

with a function · : R × M 7→ M s.t.

1. (r + s)m = rm + sm ∀r, s ∈ R,m ∈ M,

2. r(m + n) = rm + rn ∀r ∈ R,m, n ∈ M,

3. (rs)m = r(sm) ∀r, s ∈ R,m ∈ M, and

4. 1m = m ∀m ∈ M.

If R is a field, an R-module is also called a vector space over R.

Definition 2.4.2. An R-module homomorphism f : M 7→ N is a function satisfying

1. f (a + b) = f (a) + f (b) ∀a, b ∈ M and

2. f (ra) = r f (a) ∀r ∈ R, a ∈ M.

If R is a field, an R-module homomorphism is also called a linear transformation. A bijective homo-

morphism is called an isomorphism.

Definition 2.4.3. A submodule of M is a subset A which forms an R-module s.t. the inclusion A ֒→ M

is an R-module homomorphism. The R-module M is simple if its only submodules are M and {0}.

Example 2.4.4.

1. M = R with R × M 7→ M given by mult. in R. Submodules of R are left ideals.

2. R = Z and M = abelian grp., with

n · x := x + · · · + x, for n ≥ 0, and

(−n) · x := −(n · x), for n ≥ 0.

Conversely, any Z-module is just an abelian group.

3. F a field, V a vector space over F, T : V 7→ V a linear transformation. Let R = F[x] and

M = V. Define

xn · v := T n(v) = T (T n−1v) ∀v ∈ V

and extend linearly to an action of F[x] on V.
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If f : M 7→ N is an R-module homomorphism then ker f is a submodule of M and Im f is a

submodule of R. If M,N are R-modules, set

homR(M,N) := {R-module homomorphisms from M to N}.

homR(M,N) is an abelian group in general, and if R is commutative, it becomes an R-module via

(r f )(m) = f (rm).

Let N be a submodule of M. On the abelian group M/N, define the action of R by r · m := r · m.

This is well-defined and produces an R-module structure on M/N.

Theorem 2.4.5.

1. First Isomorphism Theorem

Let f : M 7→ N be an R-module homomorphism. Then M/ ker f � Im f .

2. Second Isomorphism Theorem Let A, B be submodules of M. Then

(A + B)/B � A/(A ∩ B)

where A + B = {a + b | a ∈ A, b ∈ B}, which itself forms a submodule.

3. Third Isomorphism Theorem Let A ⊂ B ⊂ M be R-modules. Then

M/A

B/A
� M/B.

4. Fourth Isomorphism Theorem Let N ⊂ M be R-modules. Then A ↔ A/N sets up a bijection

between the submodules of M containing N and the submodules of M/N.

A sequence

0 > A
j

> B
f

> C > 0

of R-module homomorphisms s.t. j is injective, f is surjective, and ker f = Im j is called a short exact

sequence of R-modules. 1st iso. thm.⇒ C � B/Im j.

Proposition 2.4.6. Let

0 > A
j

> B
f

> C > 0

be a short exact sequence of R-modules. Then TFAE:
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1. ∃s : C 7→ B s.t. f s : C 7→ C is an isomorphism.

2. ∃r : B 7→ A s.t. r j : A 7→ A is an isomorphism.

3. B � A ⊕C.

Remarks:

1. The fact that the above are isomorphic as abelian groups was discussed in the section on semidi-

rect products, since for abelian groups, all subgroups are normal and semidirect products be-

come products.

2. As discussed in semidirect product section, 2 ⇐⇒ 3, even for nonabelian groups, but in that

situation, 1; 2 or 3.

Given a set S , ∃ an R-module M having the property that for any R-module M,

homR(M,N) = morphismssets(S ,N).

ie. An R-module homomorphism from M is uniquely determined by the images of the elts. of S .

Explicitly,

M � RS ≡
⊕

S

R.

M is called the free R-module with basis S . An R-module which possesses a basis is called a free

R-module. An arbitrary elt. of a free R-module can be uniquely written as a finite linear combination

x =
∑

risi

where ri ∈ R and si ∈ S . When R = Z, the free Z-module on S is also called the free abelian group

on S , denoted Fab(S ).

Let M be a right R-mod. and let N be a left R-mod. Define an abelian group M ⊗R N (tensor

product of M,N over R) by

M ⊗R N = Fab(M × N)/ ∼
where

1. (m, n1 + n2) ∼ (m, n1) + (m, n2) ∀m ∈ M, n1, n2 ∈ N,

2. (m1 + m2, n) ∼ (m1, n) + (m2, n) ∀m1,m2 ∈ M, n ∈ N, and

3. (m · r, n) ∼ (m, r · n) ∀r ∈ R,m ∈ M, n ∈ N.
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Write m ⊗ n for the equiv. class of (m, n) in M ⊗R N. So an arbitrary elt. of M ⊗R N has the form

k∑

i=1

ci(mi ⊗ ni)

where mi ∈ M, ni ∈ N, ci ∈ Z.

Note that R ⊗R N � N and M ⊗R R � M.

M ⊗R N has the universal property: q is R-bilinear and given bilinear f : M × N 7→ A,

M × N
q
>> M ⊗R N

@
@
@
@
@

f
R

A

∃! f

∨

f bilinear means:

f (m1 + m2, n) = f (m1, n) + f (m2, n),

f (m, n1 + n2) = f (m, n1) + f (m, n2), and

f (mr, n) = f (m, rn)

If R is commutative then M ⊗R N becomes an R-module via

r · (m ⊗ n) := m ⊗ (r · n).

More generally, if M is an R-bimodule (ie. has both a left and a right R-module action which commute

with each other) then M ⊗R N becomes a left R-module via

r · (m ⊗ n) := (r · m) ⊗ n.

Notice that R is an R-bimodule even if R is not commutative. (ie. Left multiplication commutes with

right multiplication – R is associative.)

More generally, let f : R 7→ S be a ring homomorphism. Then S becomes an R-bimodule via

r · s := f (r)s

s · r := s f (r)

This induces a map from R-modules to S -modules given by N 7→ S ⊗R N.
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Example 2.4.7 (Extension of Coefficients). Let N be a vector space over a field F. Let F ֒→ K be an

extension field. Elts. of N are finite sums ∑
aiei

where {ei}i∈T forms a basis for N. Then elts. of K ⊗F N are finite sums

∑
aiei

where ai ∈ K, i ∈ T. (So {ei} forms a basis for K ⊗F N as a vector space over K.)

In general,

M ⊗R (
⊕

i∈T
Ni) �

⊕

i∈T
(M ⊗R Ni),

so

S ⊗R (
⊕

i∈T
R) �

⊕

i∈T
(S ⊗R R) �

⊕

i∈T
S .

Thus if N is a free R-module with basis T then S ⊗R N forms a free S -module with basis T .

Theorem 2.4.8 (Steinitz Exchange Theorem). Let R be a commutative ring. Let B and T be bases for

a free R-module N. Then CardB = CardT.

Proof. If g : R 7→ S is any ring homomorphism then S ⊗R N is a free S -module with both B and T as

bases. Letting g : R 7→→R/M where M is a maximal ideal in R, we may reduce to the case where R is

a field.

Case I: At least one of CardB,CardT is finite. Say CardB ≤ CardT and suppose CardB < ∞. Write

B = {b1, . . . , bn}. ∃t1 ∈ T s.t. when ti is written in the basis B, the coeff. of b1 is nonzero (or else

b2, . . . , bn would span N). Then {t1, b2, . . . , bn} forms a basis for N. Inductively, ∀ j = 1, . . . , n,

find t j s.t. {t1, . . . , t j, b j+1, . . . , bn} forms a basis for N. Then {t1, . . . , tn} forms a basis for N, so

T = {t1, . . . , tn}

and |T | = |B|.

Case II: Both CardB and CardT are infinite. For each b ∈ B, set

Tb = {elts. of T occuring in the expression for b in basis T } ∈ 2T .

Then Tb is finite ∀b. Define f : B 7→ 2T by f (b) = Tb. If X ⊂ T is finite with say |X| = n, at

most n elts. of B lie in the span of X. So | f −1(X)| ≤ |X|.
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B =
⋃

X ⊂ T

X finite

f −1(X) =

∞⋃

n=1

⋃

X ⊂ T

|X| = n

f −1(X).

Since T is infinite, the cardinality of

{X ⊂ T | |X| = n}

is equal to the cardinality of |T |. Since | f −1(X)| ≤ |X|,

CardB = Card

∞⋃

n=1

⋃

X ⊂ T

|X| = n

f −1(X)

≤ Card(

∞⋃

n=1

CardT )

= CardT.

Similarly, CardT ≤ CardB.

�

Note: Once we reduced to the case of a division ring, we no longer needed the commutativity of R,

so the thm. also holds whenever R is a division ring, or indeed when R admits a homomorphism to a

division ring. However, we used commutativity of R to produce our map R 7→ (division ring), since

R/2-sided max. ideal

need not be a division ring if R is not commutative.

If R is a commutative ring and N is a free R-module, the cardinality of any basis for N is called

the rank of N. If R is a field then every R-module is free and its rank is called its dimension.

Proposition 2.4.9. If φ : M 7→→N is a surjective R-module homomorphism and N is a free R-module

then ∃ an R-module homomorphism s : N 7→ M s.t. φs = 1N . In particular, M � N ⊕ ker φ.

Proof. Let S be a basis for N. For each x ∈ S , choose m ∈ M s.t. φ(m) = x and set s(x) = m. Since N

is free, this extends (uniquely) to an R-module map. �
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An R-module P is called projective if given a surjective R-mod. homom. φ : M 7→ P, ∃ an R-mod.

homom. s : P 7→ M s.t. φs = 1P. Equivalently, P is surjective iff ∃Q s.t. P ⊕ Q � RN for some N.

Equivalently, P is projective iff

P

@
@
@
@
@

θ

R

M

∃s

∨ f
>> N > 0

∃ a lift s (not necessarily unique).

∴ Free⇒ Projective.

Example 2.4.10 (A projective module which is not free). Let R = Mn×n(F) (n×n matrices with entries

in a field F), with n > 1. Let

P =



∗ 0 · · · 0
...

...
...

∗ 0 · · · 0



(matrices which are 0 beyond the first column). Then P forms a left ideal in R, ie. P is a left R-module.

Let

Q =



0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗



(matrices which are 0 in the first column). Then P ⊕ Q = R, so P is projective. But P is not free,

because if P � Rs then, regarded as vector spaces over F, we would have

n = dim P = dim Rs
= sn2.

This is a contradiction since n > 1.

Definition 2.4.11. Let R be an integral domain. An elt. x in an R-module M is called a torsion

element if ∃r , 0 ∈ R s.t. rx = 0. M is called a torsion module if x is a torsion elt. ∀x ∈ M. M is

called torsion-free if it has no torsion elements.

x, y torsion elts. ⇒ x + y is a torsion elt. If x is a torsion elt. and r ∈ R then rx is a torsion elt.

Hence,

TorM := {x ∈ M | x is a torsion elt.}
forms a submodule of M.
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The annihilator of x ∈ M is the left ideal

Ann(x) := {r ∈ R | rx = 0}.

The annihilator of M is the 2-sided ideal

AnnM := {r ∈ R | rx = 0 ∀x ∈ M}.
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2.5 Localization and Field of Fractions

From the 4th isomorphism theorem we get:

Proposition 2.5.1. A left ideal I is maximal if and only if the quotient module R/I is a simple (left)

R-module.

Note: It is important to remember that R/I (when I is a left ideal) is a quotient module and not

(necessarily) a quotient ring.

Definition 2.5.2. A ring with a unique maximal left ideal is called a local ring.

While it appears initially that replacing “left ideal” by “right ideal” might give a different concept,

as we shall see, “left local” equals “right local”. That is, a ring has a unique maximal left ideal if

and only if it has a unique maximal right ideal. Note however that while, as we shall see, a unique

maximal left ideal must in fact be a 2-sided ideal, the existence of a unique maximal 2-sided ideal is

not sufficient to guarantee that a ring be local. For example, when n > 1, {0} forms a unique maximal

ideal for matrix rings Mn×n(F) over a field F, but these rings are not local since they contain nontrivial

left ideals, as we saw in the previous section.

Theorem 2.5.3. Let R be a local ring with max. left ideal M. Then M is a 2-sided ideal.

Proof. Suppose y ∈ R. Must show My ⊂ M. If y ∈ M this is trivial since M is a left ideal, so assume

y < M. Let Iy := {x ∈ R | xy ∈ M}. To finish the proof, we must show that M ⊂ Iy.

For r ∈ R and x ∈ Iy, (rx)y = r(xy) ∈ rM ⊂ M, using that M is a left ideal. Therefore Iy is a

left ideal. Note that 1 < Iy, since y < M. Thus Iy is a proper left ideal so Iy ⊂ M. Let ȳ denote

the equivalence class of y in the quotient module R/M. Define φ : R → R/M by φ(r) = rȳ. Then

ker φ = Iy by definition of Iy. Since M is maximal, R/M is a simple module, so Imφ = R/M. Therefore

as left R-modules we have R/Iy � Imφ = R/M, which is simple and so Iy is a maximal left R-module.

Thus Iy = M. �

Corollary 2.5.4. Let R be a local ring with max. left ideal M. Then

1. x ∈ R − M iff x is a unit.

2. R has a unique maximal right ideal.

3. The unique maximal right ideal of R is M.

4. R/M is a division ring.

Conversely, if R is a ring with an ideal M s.t. x is a unit ∀x ∈ R − M then R is a local ring.
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Proof. Since no proper ideal can contain a unit, parts (2), (3), and (4) are immediate consequences of

part (1).

Given x ∈ R − M, maximality of M shows that Rx = R so ∃ y ∈ R such that yx = 1. Since M is a

2-sided ideal and x ∈ R − M it follows that y cannot lie in M. Therefore the same argument applies

to y and shows that ∃ z ∈ R such that zy = 1. But then z = z(yx) = (zy)x = x, so y forms a 2-sided

inverse to x, establishing (1).

Conversely if every element of R−M is a unit, then the fact that no proper ideal can contain a unit

shows that R is a local ring. �

For the rest of this section, suppose that R is commutative.

A subset S ⊂ R containing 1 and s.t. 0 < S , which is closed under the multiplication of R is called

a multiplicative subset. For example, let P ⊂ R be a prime ideal. Then R − P is a multiplicative

subset. Form a ring called the localization of R w.r.t. S , denoted S −1R. As a set,

S −1R := R × S/ ∼,

where (r, s) ∼ (r′, s′) if ∃t ∈ S s.t. t(rs′ − r′s) = 0. Think of (r, s) as r
s
. Check ∼ is an equiv. reln.:

If (r, s) ∼ (r′, s′) and (r′, s′) ∼ (r′′, s′′) then

∃t ∈ S s.t. t(rs′ − r′s) = 0

and ∃t′ ∈ S s.t. t′(r′s′′ − r′′s′) = 0

Then

s′tt′rs′′ = tt′r′ss′′ = tt′r′′s′s

ie. s′tt′(rs′′ − r′′s) = 0, (and s′tt′ ∈ S ) so (r, s) ∼ (r′′, s′′).
Define addition by (r, s) + (r′, s′) = (rs′ + r′s, ss′). Check + is well-defined: suppose

(r′, s′) ∼ (r′′, s′′), so tr′s′′ = tr′′s′.

Is (rs′ + r′s, ss′) ∼ (rs′′ + r′′s, ss′′)?
Formally, s2tr′s′′ = s2tr′′s′ so

t
(
ss′′(rs′ + r′s) − ss′(rs′′ + r′′s

)
= t(s2r′s′′ − s2r′′s) = 0.

Define · by (r, s) · (r′, s′) = (rr′, ss′) (easy to check · is well-defined). (S −1R,+, ·) becomes a

commutative ring ring with identity (1, 1).

Define the ring homomorphism

ψ : R 7→ S −1R

r 7→ (r, 1)
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Note that ψ(s) is a unit in S −1R ∀s ∈ S . ie. (1, s)ψ(s) = (1, s)(s, 1) = (s, s) ∼ (1, 1).

ψ : R 7→ S −1R has the universal property: If f : R 7→ A is a ring homomorphism s.t. f (s) is a unit

in A ∀s ∈ S then

R
ψ

> S −1R

@
@
@
@
@

f
R

A

∃!

∨

Proposition 2.5.5. If R is an integral domain then ψ : R 7→ S −1R is injective.

Proof. Suppose (r, 1) = ψ(r) = 0 = (0, 1). Then t(r − 0) = 0 for some t ∈ S , so r = 0. �

Note: if R is an integral domain, we can define the equiv. reln. simply by

(r, s) ∼ (r′, s′) iff rs′ = r′s

Special cases:

1. R an integral domain, S = R − {0}. Then S −1R is a field called the field of fractions of R.

2. S = R − P where P is a prime ideal. Then ψ(P) forms an ideal in S −1R and every element of

S −1R outside of ψ(P) is invertible (quotient of images of elts. in S ).

∴ S −1R is a local ring with max. ideal ψ(P). S −1R, also written RP, is called the localization of

R at the prime P.

3. S = I − {0}, where I is an ideal without 0-divisors. S −1R is sometimes called R with I inverted.

e.g. R = Z, I = Zp. Then

S −1R = Z[
1

p
] = {m

pt
∈ Q}

is “Z with p inverted” or “Z with 1
p

adjoined”. Sometimes called the localization of Z away

from p.
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2.6 Noetherian Rings and Modules

Definition 2.6.1. An R-module M is called Noetherian if, given any increasing chain of submodules

M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ · · ·

∃N s.t. Mn = MN ∀n ≥ N. The ring R is called a Noetherian ring if it is Noetherian when regarded

as an R-module.

If R is not commutative, notions of Noetherian, “right Noetherian”, and “2-sided Noetherian” do

not necessarily coincide.

Theorem 2.6.2. Let R be a ring and let M be a left R-module. Then TFAE:

1. M is a Noetherian R-module.

2. Every non-empty set of submodules of M contains a maximal element.

3. Every submodule of M is finitely generated (and in particular, M is finitely generated).

Proof.

1⇒ 2: Let Σ be a nonempty collection of submodules of M. Choose M1 ∈ Σ. If M1 is not maximal in

Σ then ∃M2 ∈ Σ s.t. M1 ⊆� M2. Having chosen M1, . . . ,Mn−1, if Mn−1 is not maximal in Σ then

∃Mn ∈ Σ s.t.

M1 ⊆� M2 ⊆� · · · ⊆� Mn−1 ⊆� Mn.

By hypothesis, no infinite chain of this sort exists, so eventually reach a max. elt.

2⇒ 3: Let N be a submodule of M. Let Σ be the collection of all finitely generated submodules of N.

By the hypothesis, Σ contains a maximal element N′. If N′ , N then pick x ∈ N − N′. Then

〈N′, x〉 is f.g. and properly contains N′, which is a contradiction.

∴ N′ = N, so N is f.g.

3⇒ 1: Suppose every submod. of M is f.g. Let

M1 ⊂ M2 ⊂ M3 ⊂ · · ·

be a chain of submodules. Let N =
⋃∞

i=1 Mi. Then N ⊂ M is a submodule, so

N = 〈a1, a2, . . . , an〉

for some finite set a1, . . . , an ∈ N.
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Since ai ∈ N, each ai ∈ Mk for some k. So ∃K s.t. MK contains all of a1, . . . , an. But then

N ⊂ MK , so

MK = MK+1 = · · · = MK+m = · · · = N.

ie. Mn = MK ∀n ≥ K.

�

Corollary 2.6.3. Let f : M 7→ N be an R-module homomorphism. Then M is Noetherian iff ker f

and Im f are Noetherian.

Proof.

⇒: Suppose M is Noetherian. Every submodule of ker f is a submodule of M, and thus is f.g., so

ker f is Noetherian.

If A ⊂ Im f then f −1(A) is a submodule of M, thus f.g. But then the images of the generators of

f −1(A) generate A, so A is f.g.

⇐: Suppose ker f and Im f are f.g. Let B ⊂ M be a submodule of M. Let

∆ = f (B) ⊂ Im f .

Pick a set x1, . . . , xk of generators for ∆ and let x1, . . . , xk be pre-images in B.

Claim. B = 〈ker f ∩ B, x1, . . . , xk〉.
Proof. Given b ∈ B, f (b) ∈ f (B) so

f (b) =

n∑

i=1

rixi, for some r1, . . . , rk ∈ R.

Then f (b −∑n
i=1 rixi) = 0 so

b −
n∑

i=1

rixi ∈ ker f ∩ B.

ie. b ∈ 〈ker f ∩ B, x1, . . . , xk〉.
But ker f ∩ B ⊂ ker f is f.g., so B is f.g.

�

Corollary 2.6.4. Let R be Noetherian. Then R/I is Noetherian.

Proof. It follows from the preceding corollary that R/I is Noetherian when regarded as an R-module.

However an increasing chain of R/I-submodules of R/I is also a increasing chain of R-submodules

of R/I and so the corollary follows. �
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Theorem 2.6.5 (Hilbert Basis Theorem). Let R be a commutative Noetherian ring. Then R[x] is

Noetherian.

Note: The converse is trivial, since R � R[x]/R[x]x.

Proof. Let I ⊂ R[x] be an ideal. Let L ⊂ R be the set of leading coefficients of elts. in I. That is,

L = {a ∈ R | axn
+ cn−1xn−1

+ · · · + c1x + c0 ∈ I, for some cn−1, . . . , c0}.

Then L is an ideal in R, so

L = (a1, . . . , an), for some a1, . . . , an.

For each i = 1, . . . , n, choose fi ∈ I s.t. leading coeff. of fi is ai. Let N := max{N1, . . . ,Nn} where

Ni = deg fi. For each d = 0, . . . ,N − 1, let

Ld := {0} ∪ {leading coefficients of elts. of I of degree d}.

Then Ld ⊂ R is an ideal, so

Ld = (b
(d)

1
, . . . , b(d)

nd
), some b

(d)

1
, . . . , b(d)

nd
∈ I.

Let f
(d)

i
be a polynomial of degree d with leading coeff. b

(d)

i
. To finish the proof, it suffices to show:

Claim. I is generated by

{ f1, . . . , fn} ∪
N−1⋃

d=0

{ f (d)

i
}i=1,...,nd

.

Proof. Let I′ be the ideal generated by this set. If I′ ⊆� I then ∃ f ∈ I of minimal degree s.t. f < I′. Let

e = deg f and let a be the leading coeff. of f .

Suppose e ≥ N. a ∈ L so

a =

n∑

i=1

riai, for some r1, . . . , rn ∈ R.

Then
n∑

i=1

rix
e−Ni fi ∈ I′

has degree e and leading coeff. a. So f − ∑
rix

e−Ni fi ∈ I − I′ has degree less than e, which is a

contradiction.
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∴ e < N. Hence a ∈ Le, so

a =

ne∑

i=1

rib
(e)

i
, for some r1, . . . , rne

∈ R.

Then
∑

ri f
(e)

i
has degree e and leading coeff. a, so f −∑

ri f
(e)

i
∈ I − I′ and has degree less than e. This

is a contradiction, so I = I′ and I is f.g. �
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2.7 Unique Factorization Domains

Note: For the remainder of this chapter, all the rings considered are integral domains, and in partic-

ular, are commutative.

x ∈ R is called irreducible if x , 0, x is not a unit, and whenever x = ab, either a is a unit or b is

a unit.

Proposition 2.7.1. In an integral domain, prime⇒ irreducible.

Proof. Let R be an integral domain. Let p ∈ R be a prime and suppose p = ab. Then p | a or p | b.

Say p | a, so a = zp for some z ∈ R. Thus p = ab = zpb so 1 = zb.

∴ b is a unit. Similarly, if p | b then a is a unit. Hence p is irreducible. �

Example 2.7.2. Let

R = Z[
√
−5] = {a + b

√
−5 | a, b ∈ Z} � Z[x]/(x2

+ 5).

Claim. 2 is irreducible but not prime in R. To see 2 is irreducible, consider N : R 7→ Z given by

N(a + b
√
−5) = |a + b

√
−5|2 = a2

+ 5b2,

(the “norm” map). N is not a ring homorphism but N(yz) = N(y)N(z).

∴ If 2 = αβ then 4 = N(α)N(β), so N(α) ≤ 4 and N(β) ≤ 4. The only elements with norm ≤ 4 are

1,−1, 2,−2, so

α, β ∈ {1,−1, 2,−2}.
Since αβ = 2, either α = ±1 or β = ±1, so 2 is irreducible.

However, in R/(2),

(1 +
√

5)2
= 6 + 2

√
5 ≡ 0

so R/(2) has zero divisors.

∴ R/(2) is not an integral domain, so 2 is not prime. What are the primes in R?

Consider first y ∈ Z+ ⊂ R. If y is not prime in Z then y is reducible so it is not prime in R. We

already saw that 2 is not prime in R and since 5 = (−
√
−5)(

√
−5) is reducible, 5 is not prime in R.

Therefore suppose y is a prime p ∈ Z+ with p , 2 or 5. R/(y) fails to be an integral domain iff ∃
nonzero s = a + b

√
−5 and t = c + d

√
−5 such that

st = (ac − 5bd) + (ad + bc)
√
−5

is zero in R/(y) = (Z/p)[
√
−5]. That is, ac = 5bd and ad = −bc in Z/p. None of a, b, c, d can be 0 in

Z/p since otherwise these equations would imply either s = 0 or = 0 in R/(y). But then the equations

yield
a2

b2
=

c2

d2
= −5,
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so if R(y) fails to be an integral doman than −5 is a square modulo p.

Conversely, if ∃ z such that z2
� −5 (mod p), then

(z +
√
−5)(z −

√
−5) = z2

+ 5 = 0

in R/(y) so R/(y) is not an integral domain. Thus y ∈ Z is a prime in R iff |y| is a prime p , 5 in Z
such that −5 is not a square modulo p.

Now consider y = a + b
√
−5 with b , 0.

a2
+ 5b2

= (a − b
√
−5)y ∈ (y)

so R 7→→R/(a2
+ 5b2)

q7−→→ R/(y). q is not injective since y < (a2
+ 5b2).

If a2
+ 5b2 is not a prime in Z then we can see that y is not prime in R as follows. Suppose that

a2
+ 5b2

= cd (c, d , ±1) and suppose that y is prime in R. Then y | cd so either y | c or y | d. Say

y | c. Write c = λy for some λ ∈ R. λ is not a unit since application of the norm map shows that the

only units in R are ±1, and c , ±y because c ∈ Z, y < Z. Letting x̄ denote the complex conjugate of x,

we have

yȳ = N(y) = cd = λyd

so ȳ = λd. Thus y = λ̄d̄ and since λ̄ and d̄ = d are not units, this shows that y is reducible and

therefore not prime.

If a2
+ 5b2 is a prime p in Z then

x2
+ 5 ≡ 0 mod p

has a solution x = a/b, so −5 is a square mod p. Set c := a/b ∈ Z/p.

Define φ : R/(y) 7→ Z/p � Fp by φ(
√
−5) = c and extending linearly. Then

φ(y) = a + bc ≡ 0 mod p

so φ is well-defined.
∣∣∣R/(a2

+ 5b2)
∣∣∣ = p2 and q is not injective so |R/(y)| = p and φ is an isomorphism.

∴ y = a + b
√
−5 is prime in R whenever a2

+ 5b2 is prime in Z.

Remark 2.7.3. The question of which primes p have the property that −5 is a square modulo p can be

solved with the aid of Gauss’ Law of Quadratic Reciprocity, which says that for odd primes p and q,


p

−
q




q

−
p

 = (−1)(
p−1

2
)(

q−1
2

)
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where


p

−
q

 is the Legendre symbol, defined by


x

−
p

 =


1 if x is a square modulo p;

−1 if x is a not square modulo p.

Therefore 
−5

−
p

 =


−1

−
p




5

−
p

 =


−1

−
p

 (−1)4(
p−1

2
)


p

−
5

 =


−1

−
p




p

−
5

 .

Since


−1

−
p

 =


1 p � 1 mod 4;

−1 p � 3 mod 4,
and


p

−
5

 =


1 p � 1 or 4 mod 5;

−1 p � 2 or 3 mod 5,
, we get


−5

−
p

 = 1 iff

one of the following 4 pairs of congruences holds:

p � 1 mod 4

p � 1 mod 5
or

p � 1 mod 4

p � 4 mod 5
or

p � 3 mod 4

p � 2 mod 5
or

p � 3 mod 4

p � 3 mod 5.

By the Chinese Remainder Theorem, this is equivalent to saying that −5 is a square modulo the

prime p iff p � 1, 3, 7, or 9 mod (20).

Definition 2.7.4. An integral domain R is called a unique factorization domain (UFD) if every

nonzero element can be factored into primes.

Lemma 2.7.5. In an integral domain, a factorization into primes (should one exist) is always unique

up to associates. ie. If x = p1 · · · pn and x = q1 · · · qk then k = n and ∃ some renumbering σ of the q’s

such that p j and qσ( j) are associate primes ∀ j.

Proof. Suppose

p1 · · · pn = q1 · · · qk

and say n ≤ k. Then p1 | q1 · · · qk so p1 | q j for some j. Renumber so that q j is q1.

∴ q1 = ap1 for some a. But q1 is a prime and thus irreducible, so either a or p1 is a unit. Since p1 is

prime, it is not a unit, so a is a unit. ie. p1 and q1 are associates.

∴ p1 · · · pn = q1 · · · qk = ap1q2 · · · qk,

∴ p2 · · · pn = q′
2
q3 · · · qk where q′

2
= aq2 is associate to q2. Continuing, ∀i = 1, . . . , n, after renumber-

ing q j associate to pi, eventually reach

1 = q′n+1 · · · qk

where q′
n+1

is associate to qn+1. If k > n this is a contradiction since prime qn+1 is not invertible. Hence

k = n. �
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Proposition 2.7.6. In a UFD, prime ⇐⇒ irreducible.

Proof. Prime⇒ irreducible in any integral domain, so must show irreducible⇒ prime. Let x ∈ R be

irreducible. Write x = p1 · · · pn be a product of primes and suppose n > 1. Since x is irreducible, p1

is a unit or p2 · · · pn is a unit. But p1 is not a unit since p1 is prime and p2 · · · pn is not a unit since

p2, . . . , pn are primes. So this is a contradiction and thus n = 1 and x = p1 is prime. �

Theorem 2.7.7. An integral domain is a UFD iff every nonzero elt. can be factored uniquely (up to

associates) into irreducibles.

Proof.

⇒: Suppose R is a UFD. Then prime ⇐⇒ irreducible and every nonzero elt. has a unique factor-

ization into primes.

⇐: Suppose every nonzero elt. has a unique factorization (up to associates) into irreducibles. It

suffices to show that x is prime iff x is irreducible. ie. Show irreducible⇒ prime.

Let x , 0 be irreducible. Suppose x | ab. Then ab = zx for some z. Let

a = a1 · · · an and b = b1 · · · bk

be the factorizations of a, b into irreducibles. So

zx = a1 · · · anb1 · · · bk

is the factorization of zx into irreducibles, so by uniqueness, x is associate to some factor on the

RHS.

∴ x is assoc. to a j for some j, in which case x | a, or x is assoc. to b j for some j, in which case

x | b. Thus x is prime.

�

Proposition 2.7.8. In a UFD, every pair of elts. has a g.c.d.

Proof. Let R be a UFD and suppose x , 0, y , 0 ∈ R. Factor x into primes and, replacing primes by

associate ones when necessary, write

x = up
r1

1
· · · prn

n

where u is a unit and p1, . . . , pn are primes with pi not associate to p j for i , j. Similarly, write

y = vq
s1

1
· · · qsk

k
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where, replacing by associate if necessary, we may assume that if q j is associate to pi for some i then

q j = pi. Letting z1, . . . , zm be the union {p1, . . . , pn, q1, . . . , qk} of all primes occurring, we can write

x = uz
e1

1
· · · zem

m and y = vz
f1
1
· · · z fm

m

for some exponents e1, . . . , em, f1, . . . , fm ≥ 0. Let

d =
∏

z
min{e j, f j}
j

.

Then d = (x, y). �
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2.8 Principal Ideal Domains

Definition 2.8.1. A principal ideal domain (PID) is an integral domain in which every ideal is prin-

cipal.

Proposition 2.8.2. In a PID, every nonzero prime ideal is maximal.

Proof. Let I , 0 be a prime ideal. Suppose I ⊆� J ⊆� R. Write I = (x), J = (y). Since I is a prime ideal,

x is prime. Since I ⊂ J, x ∈ J so x = ay for some a ∈ R. Thus x | a or x | y.

If x | a then a = bx for some b ∈ R. Then x = ay = abxy⇒ 1 = by, so y is a unit and J = R.

If x | y then y ∈ (x) = I, so J ⊂ I, contradiction I ⊆� J. Hence I is maximal. �

Example 2.8.3. Let R = Z[x]. R/(x) � Z is an integral domain but not a field. So (x) is a prime ideal

which is not maximal.

∴ Z[x] is not a PID. In fact, I = (2, x) is an example of a non-principal ideal in R.

Theorem 2.8.4. Every PID is Noetherian

Proof. Every ideal in R is generated by a single element, so in particular, every ideal is finitely gen-

erated. By Theorem 2.6.2, this means that R is Noetherian. �

Theorem 2.8.5. Every PID is a unique factorization domain.

Proof. Let R be a PID and let x , 0 ∈ R be a non-unit. Must show that x can be factored into primes.

(x) ⊆� R so ∃ a maximal ideal M1 s.t.

(x) ⊂ M1 ⊆� R.

Write M1 = (p1). M1 is maximal and thus prime, so p1 is prime. x ∈ (p1) says x = p1x1 for some

x1 ∈ R. If x1 is a unit then p1x1 is a prime associate to p1 and we are done, so suppose not. Continuing,

we get

xn = pnxn+1 ∀n.

∴ xn ∈ (xn+1) so (xn) ⊂ (xn+1). If xn is a unit for some n then we have a factorization of x into primes.

If not, we get a chain of ideals

(x) ⊂ (x1) ⊂ · · · ⊂ (xn) ⊂ · · ·
Since R is Noetherian, ∃N s.t. (xn) = (xN) ∀n ≥ N. So xN+1 ∈ (xN) so xN+1 = λxN = λpN+1xN+1 so that

1 = λpN+1 showing that pN+1 is a unit, which is a contradiction.

So the infinite chain does not exist, so the procedure terminated giving a factorization of x. �

Proposition 2.8.6. Let R be a PID. Let a, b ∈ R and let q = gcd(a, b). Then ∃s, t ∈ R s.t. q = sa + tb.

84



Proof. Let I = 〈a, b〉 = {xa + yb | x, y ∈ R}. Then I is an ideal so I = (c) for some c ∈ R. c ∈ I so

c = xa + yb for some x, y. a ∈ I so c | a and b ∈ I so c | b. Moreover, if z | a and z | b then let a = αz

and b = βz for some α, β. Then

c = xa + yb = xαz + yβz = (xα + yβ)z

and thus z | c. So c = gcd(a, b).

If q is another g.c.d. of a, b then q = uc for some unit u, so

q = (ux)a + (uy)b.

�
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2.9 Norms and Euclidean Domains

Definition 2.9.1. A Euclidean domain is an integral domain R together with a function d : R− {0} 7→
Z+ = {n ∈ Z | n ≥ 0} s.t.

1. d(a) ≤ d(ab) ∀a, b , 0, and

2. Given a, b , 0 ∈ R, ∃t, r s.t. a = tb + r where either r = 0 or d(r) < d(b).

Example 2.9.2.

1. R = Z, d(n) = |n|.

2. R = F[x] where F is a field. d(p(x)) = polynomial degree of p.

Notice that if (R, d) is a Euclidean domain then so is (R, d′) where

d′(x) = d(x) + c, for some constant c ∈ Z+.

∴May assume that d takes values in N = {n ∈ Z | n ≥ 1}. Then extend d by defining d(0) = 0.

Definition 2.9.3. A Dedekind-Hasse norm on an integral domain R is a function

N : R 7→ Z+ s.t.

1. N(x) = 0 iff x = 0, and

2. For a, b , 0 ∈ R either a ∈ (b) or ∃ a nonzero x ∈ (a, b) s.t. N(x) < N(b).

If (R, d) is a Euclidean domain then d (modified s.t. d(0) = 0) is a Dedekind-Hasse norm: given

a, b , 0,

a = tb + r

for some t and r, so either b | a (ie. r = 0) or r = a − tb ∈ (a, b) with d(r) < d(b).

Theorem 2.9.4. Let R be an integral domain.

1. R is a PID iff R has a Dedekind-Hasse norm. In particular, a Euclidean domain is a PID.

2. If R has a Dedekind-Hasse norm then it is has a multiplicative Dedekind-Hasse norm (ie. one

satisfying N(ab) = N(a)N(b).)

Proof.

1. ⇒: Suppose R has a Dedekind-Hasse norm. Let I ⊂ R be a nonzero ideal. Choose 0 , b ∈ I

s.t. N(b) is minimum. Let a ∈ I. Then (a, b) ⊂ I so ∄ nonzero x ∈ (a, b) s.t. N(x) < N(b).

Hence a ∈ (b). Thus I = (b).
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⇐: Suppose R is a PID. Define N : R 7→ Z+ as follows: N(0) := 0. If u ∈ R is a unit, set

N(u) = 1. If x , 0 ∈ R is a nonunit, write x = p1 · · · pn where each p j is prime and set

N(x) = 2n. Notice that N is multiplicative.

Suppose a, b , 0 ∈ R. R is a PID so (a, b) = (r) for some r ∈ R, so b = xr for some x ∈ R.

If a < (b) then r < (b) so x is not a unit, and thus

N(b) = N(x)N(r) > N(r),

ie. ∃r ∈ (a, b) s.t. N(r) < N(b).

2. If R has a Dedekind-Hasse norm then by part 1, it is a PID, in which case it has a multiplicative

Dedekind-Hasse norm as constructed above.

�

2.9.1 Euclidean Algorithm

Let (R, d) be a Euclidean domain. Then R is a PID, so given a, b ∈ R, ∃s, t ∈ R s.t.

as + bt = gcd(a, b).

The Euclidean algorithm is an algorithm for finding s and t (and thus gcd(a, b)).

Procedure:

Say d(b) ≥ d(a). Set r−1 := b, r0 := a. Write

r−1 = q1r0 + r1, some q1, r1 with d(r1) < d(r0),

...

r j−1 = q j+1r j + r j+1, some q j+1, r j+1 with d(r j+1) < d(r j)

∴ d(r−1) ≥ d(r0) > d(r1) > · · · > d(r j) > · · · . Continue until rk+1 = 0, some k. Set

s0 := 0

s1 := 1

s j := −q j−1s j−1 + s j−2

t0 := 1

t1 := 0

t j := −q j−1t j−1 + t j−2

Claim. rk = gcd(a, b) and rk = sa + tb where s = sk+1 and t = tk+1.
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Proof. rk+1 = 0 so rk−1 = qk+1rk+0. Suppose by induction that rk | ri for i ≥ j. Then r j−1 = q j+1r j+r j+1

so rk | r j−1, concluding induction step.

∴ rk | r j ∀ j and in particular, rk | r0 = a and rk | r−1 = b.

Conversely, suppose z divides both a and b. Since r j+1 = r j−1 − q j+1r j, induction (going the other

way) shows z | r j ∀ j. In particular, z | rk. So rk = gcd(a, b). �

Also,

as0 + bt0 = a · 0 + b · 1 = b = r−1

as1 + bt1 = a · a + b · 0 = a = r0

as2 + bt2 = a(−q1s1 + s0) + b(−q1t1 + t0) = −q1(as1 + bt1) + (as0 + bt0)

= −q1r0 + r−1 = r1

...

as j + bt j = a(−q j−1s j−1 + s j−2) + b(−q j−1t j−1 + t j−2) = −q j−1(as j−1 + bt j−1) + (as j−2 + bt j−2)

= −q j−1r j−2 + r j−3 = r j−1

By induction, as j + bt j = r j−1 ∀ j. In particular, as + bt = ask+1 + btk+1 = rk = gcd(a, b).

Remark: In Computer Science, the speed of the Euclidean Algorithm over Z is important. Estimate

of the number of steps required: The faster the r’s go down, the quicker the algorithm goes, so the

worst case scenario is when all the q’s are only 1. In this case,

r j−1 = r j + r j+1.

ie. Worst case scenario occurs when a, b are consecutive terms of the Fibonacci Sequence. The

smallest possible numbers requiring N steps would be when:

rN = 1 rN−1 = 2 rN−2 = 3 rN−3 = 4 · · · rN− j = jth Fibonacci Number

∴ r0 = N th Fibonacci Number FN . ie. N steps can handle all numbers up to FN .

Fn+1 = Fn + Fn−1 ⇒ Fn+1

Fn
= 1 + Fn−1

Fn
. So if L = limn→∞

Fn+1

Fn
then L = 1 + 1

L
. So

L2 − L − 1 = 0

L =
1 ±
√

5

2

L =
1 +
√

5

2
= G

So Fn ≈ GN , ie. for large N, the number of steps required is no worse than around logG(r0).
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Lemma 2.9.5 (Gauss). Let R be a UFD and let F be its field of fractions. Let q(x) ∈ R[x]. If q(x) is

reducible in F[x] then q(x) is reducible in R[x]. Futhermore, if q(x) = A(x)B(x) in F[x] then in R[x],

q(x) = a(x)b(x) where A(x) =
a(x)

r
and B(x) =

b(x)

s
for some nonzero r, s ∈ F.

Proof. Suppose q(x) = A(x)B(x) where the coefficients of A, B lie in F. Multiplying by a common

denominator we get

dq(x) = a′(x)b′(x)

for some d ∈ R and polynomials a′(x), b′(x) ∈ R[x]. If d ∈ R is a unit, we can divide by d to get

q(x) =
a′(x)

d
b′(x).

∴ Suppose d is not a unit. Write d = p1 · · · pn as a product of primes in R. Let

R[x] 7→→ R[x]

p1R[x]
� (

R

p1R
)[x]

f (x) 7→ f (x)

Reducing modulo (p1R)[x] gives 0 = a′(x) b′(x) in the integral domain ( R
p1R

)[x]. Hence a′(x) = 0 or

b′(x) = 0. Say a′(x) = 0. Then all the coeffs. of a′(x) are divisible by p1, so can divide dq(x) =

a′(x)b′(x) by p1 to get

p2 · · · png(x) =
a′(x)

p1

b′(x) = a′′(x)b′(x)

with a′′, b′ ∈ R[x]. Continuing, eventually reach q(x) = a(x)b(x) with a(x), b(x) ∈ R[x] and a(x), b(x)

obtained from a′(x), b′(x) by multiplying by nonzero elements of F. �

A polynomial whose leading coefficient is 1 is called monic.

Corollary 2.9.6. Let R be a UFD with field of fractions F. Let p(x) ∈ R[x]. Suppose

gcd{coeffs. of p} = 1.

Then p(x) is irreducible in R[x] iff it is irreducible in F[x]. In particular, if p(x) is monic and irre-

ducible in F[x] then it is irreducible in R[x].

Proof. If p(x) is reducible in F[x] then Gauss implies p(x) is reducible in R[x].

Conversely, if p(x) is reducible in R[x] then the hypothesis on gcd ⇒ p(x) = a(x)b(x) where

neither a(x) nor b(x) is constant. Hence, a(x), b(x) are not units in F[x] so this factorization shows

p(x) is reducible in F[x]. �

Lemma 2.9.7. Let R be a UFD and let p(x) ∈ R[x] be irreducible. Then p(x) is prime.
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Proof. Let F be the field of fractions of R.

R[x]

(p(x))
֒→ F[x]

(p(x))
.

∴ To show p(x) R[x]/(p(x)) is an integral domain, it suffices to show that F[x]/(p(x)) is an integral

domain.

p(x) irreducible in R[x]⇒ p(x) irreducible in F[x]. However, F[x] is a UFD (being a Euclidean

Domain). So p(x) is prime in F[x] and thus F[x]/(p(x)) is an integral domain. �

Theorem 2.9.8. R is a UFD ⇐⇒ R[x] is a UFD.

Proof.

⇐: Suppose R[x] is a UFD. Let r ∈ R. Write r = p1(x) · · · pn(x) as a product of primes in R[x].

Since deg r = 0 and R is an integral domain, deg p j(x) = 0 ∀ j, ie. p j(x) = p j ∈ R.

R[x]/(p j) =

(
R

(p j)

)
[x]

∴ R/(p j) is an integral domain, so p j is prime in R.

Thus r = p1 · · · pn is a factorization of r into primes in R.

⇒: Suppose R is a UFD and let 0 , q(x) ∈ R[x]. Let F be the field of fractions of R. Since F[x] is

a UFD, in F[x] we can factor q(x)

q(x) = p1(x) · · · pr(x)

where p j(x) is a prime in F[x]. By Gauss’ lemma, in R[x] we can write

q(x) = p′1(x) · · · p′n(x)

where ∀ j∃s j , 0 ∈ F such that p′j(x) = s j p j(x).

∴ It suffices to show that p′j(x) can be factored uniquely into primes in R[x], as in the following

claim:

Claim. If p(x) is prime in F[x] and sp(x) = p′(x) ∈ R[x] for some 0 , s ∈ F then p′(x) can be

factored uniquely into primes in R[x].

Proof. Let

d = gcd{coeffs. of p′(x)}.
Then p′(x) = dp′′(x) where

gcd{coeffs. of p′′(x)} = 1.
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In F[x], have p′′(x) =
p′(x)

d
=

s
d

p(x), which is prime in F[x] since p(x) is prime and s
d

is a unit.

∴ Cor. 2.9.6⇒ p′′(x) is irreducible in R[x] and thus prime in R[x] by the previous lemma. Since

d can be factored into primes in R and a prime in R is also a prime in R[x], p′(x) = dp′′(x) can

be factored into primes in R[x].Uniqueness is easy to show. This concludes the proof of the

claim and thus concludes the proof of the theorem.

�
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2.10 Modules over PID’s

Note: In this section, and elsewhere, we will sometimes abuse notation and write R/p in place of

R/(p). (The notation Z/n is generally quite common).

Theorem 2.10.1. Over a PID, a submodule of a free module is free.

Proof. Let R be a PID. Let P =
⊕

j∈J
R j be a free R-module with basis J (R j � R ∀ j), and suppose

M ⊂ P is a submodule.

Choose a well-ordering of the set J. For each j ∈ J, set P j =
⊕

i≤ j
Ri and P j =

⊕
i< j

Ri, so

P j = P j ⊕ R.

Let f j be the composite

P j ∩ M ֒→ P j = P j ⊕ R 7→→R.

Then ker f j = P j ∩ M. Im f j ⊂ R is an ideal, so let Im f j = (λ j), some λ j ∈ R. Pick c j ∈ P j ∩ M such

that f (c j) = λ j. Let

J′ = { j ∈ J | λ j , 0}.
To finish the proof we show:

Claim: {c j} j∈J′ is a basis for M.

Proof. Check {c j} j∈J′ is linearly independent:

Suppose
n∑

k=1

akc jk = 0, where j1 < j2 < · · · < jn (∗)

Since jk < jn for k < n, c jk ∈ P jn for k < n.

∴ Applying f jn to (∗) gives
n∑

k=1

ak · 0 + anλ jn = 0,

whence an = 0, since λ jk , 0. Inductively, c jk = 0 ∀k = n, n − 1, . . . , 1.

∴ {c jk} j∈J′ is linearly independent.

Check that {c j} j∈J′ spans M:

Suppose not. Then ∃ a least i ∈ J such that Pi ∩ M contains an element a not in span{c j} j∈J′ . Must

have i ∈ J′, since if not, fi(a) = 0, so a ∈ Pi, and thus a ∈ Pk for some k < i, contradicting minimality

of i.

∴ i ∈ J′. fi(a) ∈ (λi), so fia = rλi, for some r ∈ R. Set b := a − rci. Since a = b + rci cannot be

written as a linear combination of {ci}, neither can b. But

fib = f (a) − r f (ci) = rλi − rλi = 0
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so b ∈ Pk ∩ M for some k < i, contradicting the minimality of i.

∴ {c j} j∈J′ spans M. �

Theorem 2.10.2. Over a PID, a finitely generated torsion-free module is free.

Proof. Let R be a PID and let M be a finitely generated torsion-free R-module. Let R ֒→ K be the

inclusion of R into its field of fractions, and let

M̃ := K ⊗R M

be the extension of M to a K-vector space.

Let x1, . . . , xm ∈ M be a generating set for M. The images of x1, . . . , xm generate M̃, so ∃ a subset

y1 . . . , yn whose images in M̃ form a basis for M̃. Each x j can be written in M̃ as a K-linear combina-

tion of y1, . . . , yn, so clearing denominators gives that b jx j is an R-linear combination of y1, . . . , yn ∀ j.

Set b = b1 · · · bm, so that bx j is an R-linear combination of y1, . . . , yn ∀ j.

∴ bz is an R-linear combination of y1, . . . yn ∀z ∈ M, since x1, . . . , xm span M. Since M is torsion-

free,

b : M 7→ M

z 7→ bz

is injective. Hence,

M � M/ ker φ � Imb = bM.

However,

n⊕

j=1

y j

φ7−→ bM

y j 7→ y j

is an isomorphism (onto since bz is a linear combination of y1, . . . , yn ∀z ∈ M, (1-1) since y1, . . . yn are

linearly independent in M̃).

∴ M � bM � a free R-module. �

Corollary 2.10.3. If M is a finitely generated module over a PID then R � Tor(M) ⊕ Rn for some

n ∈ N.

Proof. M/Tor(M) is finitely generated and torsion-free. Hence,

M/Tor(M) � Rn, for some n.

Rn free⇒ M 7→→M/Tor(M) � Rn splits, so

M � Tor(M) ⊕ Rn.

�
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A torsion-free module over a PID which is not finitely generated need not be free:

Example 2.10.4. Let R = Z, M = Q. Clearly Q is torsion-free as a Z-module. Suppose M � Rs. Then

as a vector space /Q we get

Q ⊗Z Q � M ⊗ Q
� Rs ⊗ Q
� (R ⊗ Q)s

� Qs

Let

φ : Q ⊗Z Q 7→ Q
x ⊗ y 7→ xy,

ψ : Q 7→ Q ⊗Z Q
x 7→ x ⊗ 1.

Clearly xy = 1Q. ψφ(x ⊗ y) = (xy) ⊗ 1. Write x =
p

q
, y =

p′

q′ . Then in Q ⊗Z Q,

x ⊗ y =
p

q
⊗ p′

q′

= q′
p

qq′
⊗ p′

1

q′

= p′
p

qq′
⊗ q′

1

q′

=
pp′

qq′
⊗ 1

= (xy) ⊗ 1.

∴ ψφ = 1Q⊗Q. Hence Q ⊗Z Q � Q, and thus Q � Q ⊗Z Q � Qs. So counting dimensions gives

CardS = 1.

ie. If Q is a free R-module then its rank as a Z-module is 1. So Q � Z as a Z-module. ie. ∃q ∈ Q
s.t. Q = Zq; that is to say, ∀x ∈ Q ∃n ∈ Z s.t. x = nq. This is a contradiction.

So Q is not a free Z-module.

We now consider decompositions of finitely generated torsion modules over a PID. Let R be a

PID (throughout this section). We will show that every finitely generated R-module decomposes as a

direct sum of finitely many R-modules with a single generator (called cyclic modules).

First consider torsion modules.

Notation: For r ∈ R, let µr : M 7→ M be multiplication by r.
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Lemma 2.10.5. Let M be a torsion R-module. Write Ann(M) = (a) and suppose b ∈ R such that

(a, b) = 1. Then multiplication by b,

M
µb7−→ M

is an isomorphism.

Proof. Since R is a PID, ∃s, t ∈ R such that sa + tb = 1. Hence, for x ∈ M,

x = sax + tbx = tbx,

∴ bx = 0 ⇒ x = 0, so µb is injective. Moreover,

x = b(tx) = µb(tx)

so µb is surjective. �

Let M , 0 be a torsion module. Let Ann(M) = (a). Suppose a , 0. (Note: if M is torsion and f.g.

then a , 0 automatically.)

M , 0 ⇒ a is not a unit. Write

a = up
e1

1
· · · pek

k

where u is a unit and p1, . . . , pk are distinct primes. Replacing a by u−1a, may assume

a = p
e1

1
· · · pek

k
.

Let

Mp j
:= {x ∈ M | pe

jx = 0 for some e}.

Lemma 2.10.6. M � Mp1
⊕ · · · ⊕ Mpk

.

Proof. ∀x ∈ M,

p
e1

1
µp

e2
2
···pek

k
(x) = p

e1

1
p

e2

2
· · · pek

k
x = 0

so Imµp
e2
2
···pek

k
⊂ Mp1

.

Since p
e2

2
· · · pek

k
is coprime to Ann(Mp1

), by the preceding lemma,

µp
e2
2
···pek

k
|Mp1

is an isomorphism, so it splits the inclusion Mp1
֒→ M. Hence,

M � Mp1
⊕ ker µp

e2
2
···pek

k
.
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Ann(ker µp
e2
2
···pek

k
) = p

e2

2
· · · pek

k
. By induction,

ker µp
e2
2
···pek

k
� M′

p2
⊕ · · · ⊕ M′

pk

where

M′
p j
= {x ∈ ker µp

e2
2
···pek

k
| pe

jx = 0 for some e}
⊂ Mp j

= {x ∈ M | pe
jx = 0 for some e}.

However, Mp j
⊂ ker µp

e2
2
···pek

k
so Mp j

⊂ M′
p j

and thus Mp j
= M′

p j
.

Hence M � Mp1
⊕ · · · ⊕ Mpk

. �

In the finitely generated case, we now decompose Mp j
into cyclic summands for each p j. ie. We

have reduced to the case where Ann(M) = (pe) for some prime p.

Suppose M is a f.g. R-module with Ann(M) = (pe). ∃x ∈ M such that pe−1x , 0 (or else

Ann(M) = pe−1 rather than pe). Let x,m1, . . . ,mk be a generating set for M. Let M j be the submodule

M j := 〈x,m1, . . . ,m j〉.

Beginning with the identity map r0 : M0 7→ Rx, we inductively construct r j : M j 7→ Rx extending

r j−1 : M j−1 7→ Rx to produce a splitting r : M 7→ Rx of the inclusion Rx ֒→ M.

Suppose by induction that r j−1 : M j−1 7→ Rx has been defined such that r j−1|Rx = 1Rx. M j is

generated by M j−1 and m j. So to define r j extending r j−1, must define r j(m j) ∈ Rx, ie. r j(m j) = λx for

the correct λ.

Let (ps) = Ann(M j/M j−1), so psm j ∈ M j−1. r j−1(psm j) ∈ Rx, so r j−1(psm j) = αx for some α ∈ R.

pe−sαx = pe−s(r j−1 psm j) = r j−1(pem j) = r j−1(0) = 0

so pe−sα = λpe for some λ ∈ R ⇒ α = λps.

Define r j(m j) = λx and r j(y) = r j−1(y)∀y ∈ M j−1. Then

r j(psm j) = psλx = αx = r j−1(psm j)

so r j is well-defined. Thus M � Rx ⊕ M′.
Applying the procedure to M′ gives

M � Rx ⊕ Rx′ ⊕ M′′.

Continuing, the procedure eventually terminates since M is Noetherian.
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∴ M � Rx1 ⊕ Rx2 ⊕ · · · ⊕ Rxn for some x1, . . . , xn with Annx j = (p j) for some j. Notice that

R
ψ j7−→Rx j

r 7→ rx j

is surjective with kerψ j = Annx j. Thus Rx j � R/(p j).

Putting it all together, we get:

Theorem 2.10.7 (Structure Theorem for Finitely Generated Modules over a PID). Let M be a finitely

generated module over a PID R. Then

M � R/(p
s1

1
) ⊕ R/(p

s2

2
) ⊕ · · · ⊕ R/(psn

n ) ⊕ Rk,

where p1, . . . , pn ∈ R are primes (not necessarily distinct), s1, . . . , sn ∈ N and k ≥ 0.

Note that the generator of Ann(M) is lcm{ps1

1
, . . . , p

sn
n }.

We now show that this decomposition is unique. k is the dimension of M ⊗R K, where K is the

field of fractions, so k is unique, and we need only be concerned with the torsion part of the module.

Theorem 2.10.8. Suppose

R/(p
s1

1
) ⊕ R/(p

s2

2
) ⊕ · · · ⊕ R/(psn

n ) � R/(q
t1
1

) ⊕ R/(q
t2
2

) ⊕ · · · ⊕ R/(q
tk
k
),

with p1, . . . , pn, q1, . . . qk primes in R and s1, . . . sn, t1, . . . tk ∈ N. Then n = k and {qt1
1
, . . . , q

tk
k
} is a

permutation of (associates of) {ps1

1
, . . . , p

sn
n }.

Proof. Let

M = R/(p
s1

1
) ⊕ R/(p

s2

2
) ⊕ · · · ⊕ R/(psn

n ) and

N = R/(qt1
1

) ⊕ R/(qt2
2

) ⊕ · · · ⊕ R/(q
tk
k
).

For any prime p, let

Mp = {x ∈ M | pex = 0, for some e},
Np = {x ∈ N | pex = 0, for some e}.

If M � N then Mp � Np. Moreover,

Mp �

⊕

p j assoc. to p

R/(p
s j

j
),

Np �

⊕

q j assoc. to p

R/(q
t j

j
).
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∴ It suffices to consider one prime at a time. ie. We are reduced to the case where p j = q j = p ∀ j.

Suppose

M = R/(ps1) ⊕ · · · ⊕ R/(psn) and N = R/(pq1) ⊕ · · · ⊕ R/(pqk).

For Z = R/(ps), ∃ a short exact sequence

0 7→ pZ 7→ Z 7→ R/p 7→ 0,

ie. Z/pZ � R/p, a field.

Since M � N, ⊕

n

R/p � M/pM � N/pN �
⊕

k

R/p.

Since the dimension of a vector space is an invariant of the isomorphism class of the vector space,

n = k.

Also, M � N ⇒ pM � pN; that is:

R/ps1−1 ⊕ · · · ⊕ R/psn−1
� R/pt1−1 ⊕ · · · ⊕ R/ptk−1.

Ann(pM) has one less power of p than AnnM. So by induction on the size of Ann(M), the positive

elts. in the list {t1 − 1, . . . , tk − 1} is a permutation of those in {s1 − 1, . . . , sn − 1}. ie. Information

about summands R/p has been lost, since p(R/p) = 0, so pM and pN have no record of how many

summands R/p there were in M and N. But they see all the remaining summands, showing that

entries in {t1, . . . , tk} which are at least 2 are the same (up to a permutation) as those in {s1, . . . , sn}.
The remaining entries on each list are 1, and there are the same number of them on each list since

n = k and the entries greater than 1 correspond.

∴ {t1, . . . , tk} is a permutation of {s1, . . . , sn}. �

Thus, {ps j

j
} is uniquely determined by (and uniquely determines) M. It is called the set of elemen-

tary divisors of M.

Example 2.10.9.

1. R = Z. List all non-isomorphic abelian groups of order 16:

Z/16, Z/8 ⊕ Z/2, Z/4 ⊕ Z/4 Z/4 ⊕ Z/2,⊕Z/2 Z/2 ⊕ Z/2 ⊕ Z/2 ⊕ Z/2

(all non-isomorphic by the theorem).

2. Let F be a field, V a f.d. vector space /F, T : V 7→ V a linear transformation. Let R = F[x] (a

PID) and M = V with R-action

f (x)(v) = f (T )(v) =

n∑

j=0

a jT
j(v).
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Let

Ch(λ) = det(T − λI),

the characteristic polynomial of T . Then Ch(T ) = 0 (Cayley-Hamilton Theorem).

∴ Ch(x)v = 0 ∀v ∈ V. ie. M is a torsion R-module and Ch(x) ∈ Ann(M). Hence

M � F[x]/p1(x)r1 ⊕ · · · ⊕ F[x]/pk(x)rk

for some primes p1(x), . . . , pk(x) ∈ F[x].

Suppose F is algebraically closed so that every poly. in F[x] factors completely as a product of

linear factors. Then the primes in F[x] are the degree 1 polynomials. So mult. by a scalar to

make p j monic:

p j(x) = x − λ j

for some λ j ∈ F. Then

M � · · · ⊕ F[x]/(x − λ j)
r j ⊕ · · ·

implies that ∃v ∈ V s.t. (x − λ j) ∈ AnnV. ie. (T − λ j)v = 0. (And conversely, if (T − λ)v = 0 for

some v then x − λ = p j(x) for some j.)

∴ {λ1, . . . , λk} = eigenvalues of T .

Examine F[x]/(x−λ j)
r j more closely. Write λ for λ j and r for r j. As an F[x]-module, F[x]/(x−

λ)r is gen. by (x − λ). Elts. can be written uniquely as

r−1∑

k=0

ak(x − λ)k

where ak ∈ F. ie. Over F, F[x]/(x − λ)r has dimension r with basis

1, x − λ, (x − λ)2, . . . , (x − λ)r−1.

Let B = B j ⊂ V = M be the image of F[x] = (x − λ j)
r j under the iso.

ψ :
⊕

i

F[x]/(x − λi)
ri
�7−→ M

and let v j = ψ((x − λ) j−1) for j = 1, . . . , r be the F-basis for B corresponding to the basis

{(x − λ)i}.
B is a F[x]-submodule of V so it is closed under the action of any f (x) ∈ F[x]. For f (x) = x−λ,

by construction,

f (x) · v j = v j+1 j < r

f (x) · vr = 0.
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ie. when written in the basis v1, . . . , vr, the matrix T − λ is



0 0 · · · 0

1

0
. . .

. . .
...

...
. . .

. . .

0 · · · 0 1 0



.

ie. T looks like 

λ 0 · · · 0

1 λ

0
. . .

. . .
...

...
. . .

. . . λ

0 · · · 0 1 λ



.

Therefore:

Theorem 2.10.10 (Jordan Canonical Form). Let T : V 7→ V be a linear transformation where V is a

f.d. vector space over an algebraically closed field F. Then ∃ a basis for V in which T has the form



B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 Bk



where

B j =



λ j 0 · · · 0

1 λ j
. . .

0
. . .

. . .
. . .

...
...

. . .
. . . λ j 0

0 · · · 0 1 λ j



.

Note: While Ch(λ) ∈ Ann(V), it does not necessarily generate the ideal Ann(V). Letting Ann(V) =

(M(λ)), M(λ) is called the minimum polynomial of T . ie.

Ch(x) =
∏

j

(x − λ j)
r j but M(x) = lcm{(x − λ j)

r j}.
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Reformulation of the Structure Theorem for f.g. torsion modules.

Let R be a PID and let a, b ∈ R be relatively prime. Then Ra + Rb = 1 so the Chinese Remainder

Thm. applies:

R
φ7−→→ R/(a) × R/(b)

and ker φ = (a) ∩ (b) = (a)(b).

Claim. R a PID and gcd(a, b) = 1⇒ (a)(b) = (ab).

Proof. (a)(b) = (c) for some c. Since ab ∈ (a)(b) = (c), c | ab.

Conversely, (c) = (a)∩(b) ⊂ (a) so a | c and similarly b | c. Write c = λa and c = µb. gcd(a, b) = 1

⇒ ∃s, t s.t. sa + tb = 1. So

λ = λsa + λbt

= sc + λbt

= sµb + λbt

= (sµ + λt)b

∴ (ab) = (c). �

Thus

R/(ab) � R/(a) × R/(b).

By continual application of this iso. we can rewrite our decomposition thm. as follows:

Theorem 2.10.11. Let M be a f.g. R-module (R a PID). Then

M � Rk ⊕ R/(a1) ⊕ R/(a2) ⊕ · · · ⊕ R/(an)

where an | an−1 | · · · | a1 , 0.

a1, . . . , an are called the invariant factors of M.

Example 2.10.12. Suppose

M � Z/8 ⊕ Z/2 ⊕ Z/2 ⊕ Z/9 ⊕ Z/3 ⊕ Z/5.

Then

M � Z/360 ⊕ Z/6 ⊕ Z/2
The number of summands required is

max{r | some prime p occurs r times among the elementary divisors}.

Reformulation of Chinese Remainder Thm. over a PID. Suppose m1, . . . ,mk satisfy gcd(mi,m j) =

1 for i , j. Given a1, . . . , ak, ∃x ∈ R/(m1 · · ·mk) s.t. x ≡ a j mod m j∀ j = 1, . . . , k.
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Example 2.10.13. Find x s.t. x ≡ 2 mod 9, x ≡ 3 mod 5, x ≡ 3 mod 7.

Solution. m1 = 9,m2 = 5,m3 = 7, a1 = 2, a2 = 3, a3 = 3. Set z1 := m2m3 = 35. Then

y1 := z−1
1 mod 9

= 8−1 mod 9

= 8.

Likewise,

z2 := m1m2 = 60

y2 := z−1
2 mod 5

= 3−1 mod 5

= 2,

z3 := m1m2 = 45

y3 := z−1
3 mod 7

= 3−1 mod 7

= 5.

Set x := a1y1z1 + a2y2z2 + a3y3z3 mod (m1m2m3). Then modulo m1, z2 ≡ 0, z3 ≡ 0, y1z1 ≡ 1, so x ≡ a1

mod m1, etc. In our example,

x = 2 · 8 · 35 + 3 · 2 · 63 + 5 · 3 · 45 mod (9 · 5 · 7)

= 1613 mod 315

= 38 mod 315.

In general, x =
∑

j a jy jz j where z j = m1 · · ·m j−1m j+1 · · ·mn and y j = z−1
j mod m j.
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Chapter 3

Galois Theory

3.1 Preliminaries about Polynomials and Fields

Proposition 3.1.1. Let F ⊂ K be an extension of fields. Let f (x), g(x) ∈ F[x]. Then a g.c.d. of

f (x), g(x) within F[x] is also a g.c.d. of f (x), g(x) within K[x].

Proof. Let d(x) ∈ F[x] be a g.c.d. for f (x), g(x) within F[x]. Then ∃s(x), t(x) ∈ F[x] s.t.

s(x) f (x) + t(x)g(x) = d(x) (1)

Since F[x] ⊂ K[x], this eqn. holds in K[x] also.

d(x) | f (x) and d(x) | g(x) holds in F[x] and thus holds in K[x]. If h(x) | f (x) and h(x) | g(x)

within K[x] then (1)⇒ h(x) | d(x) in K[x]. Hence d(x) is a g.c.d. for f (x), g(x) in K[x]. �

Proposition 3.1.2. The ideal (p(x)) in F[x] is maximal ⇐⇒ p(x) is irreducible.

Proof. F[x] is a PID so in F[x], prime ⇐⇒ irreducible ⇐⇒ maximal. �

Corollary 3.1.3. F[x]/(p(x)) is a field ⇐⇒ p(x) is irreducible.

Theorem 3.1.4 (Eisenstein Irreducibility Criterion). Let

f (x) = anxn
+ an−1xn−1

+ · · · + a1x + a0 ∈ R[x]

where R is a UFD. Let p ∈ R be prime. Suppose p | a0, p | a1, . . . , p | an−1 but p ∤ an and p2 ∤ a0.

Then f (x) is irreducible in K[x] where K is the field of fractions of R.

Proof. It suffices to consider the case where {a0, . . . , an} has no common factor. Suppose f (x) is

reducible over K and thus (by Gauss’ Lemma) reducible over R. Write

f (x) = (b0 + b1x + · · · + br xr)(c0 + c1x + · · · cr xs)
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in R[x], with r < n, s < n. Then a0 = b0c0. Since p | a0 but p2 ∤ a0, p divides one of b0, c0 but not

both. Say p | b0, p ∤ c0. p can’t divide every b j since then it would divide an, so let k be the least

integer s.t. p ∤ bk. So

ak = bkc0 + bk−1c1 + · · · + b1ck−1 + b0ck.

p | b0, . . . , bk−1 but p ∤ bk and p ∤ c0 ⇒ p ∤ ak. This is a contradiction of one of the hypotheses.

∴ f (x) is irreducible. �
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3.2 Extension Fields

Suppose F ⊂ K, F,K fields. Then K is a vector space over F.

Definition 3.2.1. The degree of K over F, written [K : F] is the dimension of K as a v.s. /F. If

[K : F] < ∞ we say K is a finite extension of F.

Proposition 3.2.2. Suppose F ⊂ K ⊂ L finite extensions of fields. Then

[L : F] = [L : K][K : F].

Proof. Let [K : F] = n, and let w1, . . . ,wn ∈ K form a basis for K over F. Let [L : K] = t, and let

v1, . . . , vt ∈ L form a basis for L over K. Check that {wiv j}i=1,...,n, j=1,...,t forms a basis for L over F:

1. Let ℓ ∈ L. v1, . . . , vt a basis implies

ℓ = k1v1 + k2v2 + · · · ktvt

for some k1, . . . , kt ∈ K. w1, . . . ,wn a basis implies

k j = f j1w1 + f j2w2 + · · · f jnwn

for some f j1, . . . , f jn ∈ F. Hence

ℓ = f11(w1v1) + f12(w2v1) + · · · + f1n(wnv1) + f21(w1v2) + · · ·
+ f2n(wnv2) + · · · + ft1(w1vt) + · · · + ftn(wnvt).

∴ ℓ is a linear comb. of {wiv j} with coeffs. in F, so {wiv j} spans L.

2. {wiv j}i=1,...,n, j=1,...,t is linearly independent: Suppose

0 = f11v1w1 + · · · + f1nv1wn + · · · + fi jv jwi + · · · + ftnvtwn

= ( f11w1 + f12w2 + · · · + f1nwn)v1 + · · · + ( ft1w1 + ft2w2 + · · · ftnwn)vt

Since v1, . . . , vt is a basis for L over K,

f j1w1 + · · · + f jnwn = 0 ∀ j = 1, . . . , t.

Since w1, . . . ,wn is a basis for K over F, f ji = 0 ∀ j = 1, . . . , t, i = 1, . . . , n.

∴ { f jwi}i=1,...,n; j=1,...,t is linearly independent.
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�

Corollary 3.2.3. If F ⊂ K ⊂ L with L a finite extension of F then [K : F] | [L : F].

eg. If [L : F] is prime then ∄K lying strictly between F and L.

Suppose F ⊂ K extension of fields. Let a ∈ K. Let

F(a) =
⋂
{M | M is a field with a ∈ M and F ⊂ M ⊂ K}.

Proposition 3.2.4. F(a) is a field.

∴ F(a), the field obtained from F by adjoining a, is the smallest subfield of K containing both F

and a. Explicitly,

F(a) =

{
p(a)

q(a)
| p(x), q(x) ∈ F[x], q(a) , 0 in K

}
.

Proof. Let

M =

{
p(a)

q(a)
| p(x), q(x) ∈ F[x], q(a) , 0 in K

}
.

Let x =
p(a)

q(a)
∈ M. Since F(a) is a field and a ∈ F(a), field axioms⇒ p(a) and q(a) ∈ F(a). q(a) , 0

⇒ 1
q(a)
∈ F(a), so x ∈ F(a). Hence M ⊂ F(a).

It is easy to check that M is a field and clearly a ∈ M, so F(a) ⊂ M. �

Definition 3.2.5. a ∈ K is called algebraic over F if ∃ a polynomial q(x) ∈ F[x] s.t. q(a) = 0 in K.

We say that a satisfies the equation q(x) = 0 or say a is a root of q(x) if q(a) = 0 in K.

Definition 3.2.6. K is called algebraic over F if every element of K is algebraic over F.

Definition 3.2.7. If a ∈ K is not algebraic over F then a is called transcendental over F.

Note:

1. We will show that a algebraic /F ⇒ [F(a) : F] < ∞. However, K alg. /F ; [K : F] < ∞.

For example, let K = {x ∈ R | x is algebraic over Q}. We will show later that K is a field, and

by construction, K is alg. over Q. But [K : Q] = ∞.

2. Existence of elts. x ∈ R s.t. x is transcendental over Q is easily established by a counting

argument, because we will see that {x ∈ R | x is algebraic over Q} is countable. However,

showing that any particular elt. of R is transcendental is not easy. eg. “π is transcendental” is

true but nontrivial to prove.
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Suppose a is algebraic over F. A polynomial q(x) ∈ F[x] is called a minimum polynomial for a

over F if q(a) = 0 and ∄q′(x) s.t. q′(a) = 0 with deg q′ < deg q.

Given a min. polynomial for a over F, dividing by the lead coeff. gives a monic min. polynomial

for a over F. A monic min. poly. of a over F is unique.

Proof. Suppose q(x), r(x) are two monic min. polys. of a. By minimality, their degrees are equal. But

then s(x) = q(x) − r(x) has smaller degree and s(a) = 0 − 0 = 0. �

∴We refer to “the min. polynomial of a”.

Lemma 3.2.8. The min. polynomial of a is irreducible.

Proof. Let p(x) be the min. poly. of a. If p(x) = q(x)r(x) with deg q < deg p and deg r < deg p then

since p(a) = 0, either q(a) = 0 or r(a) = 0. This is a contradiction. Hence p(x) is irreducible. �

Theorem 3.2.9. Suppose F ⊂ K, a ∈ K. Then a is algebraic over F ⇐⇒ [F(a) : F] < ∞. More

precisely, [F(a) : F] = degree of the min. poly. of a.

Proof.

⇒: Suppose [F(a) : F] = n < ∞. Consider

S = {1, a, a2, . . . , an}

|S | = n + 1. But dim F(a) = n as a v.s. /F. So the elts. of S are linearly dependent.

ie. ∃ relation

c0 + c1a + c2a2
+ · · · cnan

= 0

where c j ∈ F and not all c j are 0. Hence a satisfies q(x) = 0 where

q(x) = c0 + c1x + c2x2
+ · · · cnxn.

∴ a is algebraic over F.

⇐: Suppose a is alg. over F. Let

p(x) = p0 + p1x + · · · + xn

be the min. poly. of a over F.

Claim. B = {1, a, a2, . . . , an−1} forms a basis for F(a) over F.

Proof. If B were linearly dependent then (as above) there would be a polynomial of degree n−1

or less satisfied by a, contradicting defn. of p(x).
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Show B spans F(a): p(a) = 0 so

an
= −p0 − p1a − · · · − pn−1an−1

and thus, an ∈ spanB.

an+1
= a · an

= −p0a − p1a2 − · · · − pn−2an−1 − pn−1an

= −p0a − p1a2 − · · · − pn−2an−1 − pn−1(−p0 − p1a − · · · − pn−1an−1)

∈ spanB

etc. ie. By induction, as ∈ spanB ∀s, so F[a] ⊂ spanB.

So to finish the proof, it suffices to show:

Lemma 3.2.10. F(a) = F[a].

Proof. F[a] ⊂ F(a) is trivial. Conversely, let x ∈ F(a), x =
q(a)

r(a)
where q(a), r(a) ∈ F[a] and r(a) , 0.

p(x) ∤ r(x) since r(a) , 0. Since p(x) is irreducible, this implies p(x), r(x) have no common factors,

ie. gcd(p(x), r(x)) = 1. So, ∃ polynomials s(x), t(x) s.t.

s(x)p(x) + t(x)r(x) = 1.

∴ 1 = s(a)p(a) + t(a)r(a) = t(a)r(a). Thus, 1
r(a)
= t(a) and

x =
q(a)

r(a)
= q(a)t(a) ∈ F[a].

∴ F(a) ⊂ F[a]. �

Corollary 3.2.11. Suppose F ⊂ K. Suppose a ∈ K is algebraic over F and let q(a) ∈ F[x] be the

min. poly. of a over F. Then

F(a) � F[x]/(q(x)).

Proof. Let φ : F[x] 7→ F(a) be given by

φ(p(x)) = p(a).

Since F(a) = F[a], φ is onto.

Claim. ker φ = (q(x)).
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Proof. Let ker φ = (q′(x)) where q′ is monic. Then since q(a) = 0, q′(x) | q(x). But q(x) is irreducible,

so either q′(x) = 1 or q′(x) = q(x). Since q′(a) = 0, q′(x) , 1 so q′(x) = q(x).

Thus, by 1st isomorphism theorem,

F(a) = ℑφ � F[x]/ ker φ = F[x]/(q(x).

�

Theorem 3.2.12. Suppose F ⊂ K are fields. Let

M = {x ∈ K | x is algebraic over F}.

Then M is a field.

Proof. Let a, b ∈ M. Must show a ± b, ab, a/b ∈ M. Suppose [F(a) : F] = m and [F(b) : F] = n. So

b satisfies a degree n poly. p(x) with coeffs in F ⊂ F(a). p(x) can be thought of as a polynomial in

F(a)[x], giving

[F(a)(b) : F(a)] ≤ n.

Hence

[F(a)(b) : F] ≤ nm.

Since a + b ∈ F(a)(b),

F ⊂ F(a + b) ⊂ F(a)(b).

∴ [F(a + b) : F] ≤ nm, and so a + b is algebraic over F. Similarly, a − b, ab, a/b ∈ F(a)(b) so the

same argument applies. �

Notation: F(a, b) = F(a)(b). Observe that F(a, b) = F(b, a) is the smallest subfield of K containing

F, a, b.

Corollary 3.2.13. Suppose F ⊂ K ⊂ L. If K is algebraic over F and L is algebraic over K then L is

algebraic over F.

Proof. Let z ∈ L. L algebraic over K ⇒ z satisfies p(z) = 0 where

p(x) = xn
+ c1xn−1

+ · · · + cn−1x + cn

has coeffs. in K. So F ⊂ F(c1, . . . , cn) ⊂ K ⊂ L. Since K is algebraic over F, each c j is algebraic over

F.

If m j is the degree of the min. poly. of c j over F then, as above,

[F(c1, . . . , cn) : F] ≤ m1 · · ·mn < ∞.
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Since z satisfies the polynomial p(x) whose coeffs. lie in F(c1, . . . , cn),

[F(c1, . . . , cn, z) : F(c1, . . . , cn)] < ∞.

∴ [F(c1, . . . , cn, z) : F] < ∞. But F ⊂ F(z) ⊂ F(c1, . . . , cn, z) so [F(z) : F] < ∞. Thus, z is algebraic

over F.

This is true for all z ∈ L, so L is algebraic over F. �

Example 3.2.14. Let

M = {x ∈ C | x is algebraic over Q}.
Our theorems show that M is a field, and by construction, it is algebraic over Q. However, in Q[x],

there are irreducible polynomials of arbitrarily large degree, and by definition, the roots of these

polynomials are in M. So [M : Q] is unbounded.
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3.3 Roots

Let F be a field and let p(x) ∈ F[x]. p might have no roots in F.

Question. Given p(x) ∈ F[x], can we always find an extension field K ⊃ F in which p(x) has a

root?

Theorem 3.3.1 (Remainder Theorem). Let K be a field. Let p(x) ∈ K[x] and let b ∈ K. Then ∃q(x)

s.t. p(x) = (x − b)q(x) + p(b), and deg q(x) = (deg p(x)) − 1.

Proof. By division algorithm, p(x) = (x−b)q(x)+r(x) where deg r < deg(x−b) = 1. ie. r(x) = r ∈ K.

Setting x = b,

p(b) = (b − b)q(b) + r = r.

Comparing degrees of LHS and RHS, deg q(x) = (deg p(x)) − 1. �

Corollary 3.3.2 (Factor Theorem). a is a root of p(x) ⇐⇒ (x − a) | p(x).

Proof. p(x) = (x − a)q(x) + p(a). If p(a) = 0 then p(x) = (x − a)q(x) so (x − a) | p(x). Conversely, if

p(x) is a multiple of x − a then p(a) = 0. �

Definition 3.3.3. The multiplicity of a root a of p(x) is the largest power of (x−a) which divides p(x).

Corollary 3.3.4. A polynomial of degree n over a field K can have at most n roots (counted with

multiplicity).

Proof. A polynomial of degree 1 has exactly one root, so the result follows from the Factor Thm. by

induction. �

Theorem 3.3.5. Let p(x) ∈ F[x] be a poly of degree n where F is a field. Then ∃ an extension field K

of F with [K : F] ≤ n in which p(x) has a root.

Proof. Let q(x) be an irred. factor of p(x). Since any root of q(x) is a root of p(x) we will find an

extension field in which q(x) has a root. Let

K = F[x]/(q(x)).

q(x) irreducible⇒ K is a field. F ֒→ K by c 7→ [c], so K is an extension field of F.

In K, q([x]) = [q(x)] = 0. So a = [x] is a root of q(x). Since q(x) is irreducible over F, q(x) is the

min. poly. of a over F.

∴ K = F(a) and

[K : F] = [F(a) : F]

= deg(min. poly of a)

= deg q

≤ deg p = n.

�
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Example 3.3.6. Let F = F2 � Z/2Z. (x2
+ x + 1) is irred. in F2[x]. Let

K =
F2[x]

(x2 + x + 1)
.

Let w = [x] ∈ K, so w2
+ w + 1 = [x2

+ x + 1] = 0.

In K we have four elements: 0, 1,w,w + 1. Multiplication is as follows:

Mult. by 0 and 1 is obvious.

w2
= −w − 1 = w + 1

w(w − 1) = w2
+ 1 = w + 1 + w = 1

(w − 1)2
= w2

+ 2w + 1 = w + 1 + 1 = w

Note 1
w
= w − 1 and 1

w−1
= w (every nonzero elt. has an inverse).

K = F4

(finite field with 4 elements).

By induction on the previous result, we get

Corollary 3.3.7. Let p(x) ∈ F[x] be a poly. of degree n (F a field). Then ∃ an extension field K of F

with [K : F] ≤ n! in which p(x) has n roots. ie. In K we can factor p(x) completely as

p(x) = λ(x − a1)(x − a2) · · · (x − an).

Example 3.3.8.

1. F = Q, p(x) = x3 − 2. Let E1 = F(2
1
3 ) Then [E1 : F] = 3. In E1,

p(x) = (x − 2
1
3 )(x2

+ 2
1
3 x + 2

2
3 ).

Let K = E1(
√

3i). Then [K : E1] = 2 so [K : F] = 3 · 2 = 6. In K,

p(x) = (x − 2
1
3 )

x +
2

1
3 (1 −

√
3i)

2


x +

2
1
3 (1 +

√
3i)

2

 .

2. F = Q, p(x) = x3 − 12x + 8. Let M = −4 + 4
√

3i. Let z = M
1
3 (that is, z is any one of the three

elts. s.t. z3
= −4 + 4

√
3i). Let a = z + z.

So z
3
= M and

zz = (MM)
1
3 = (16 + 48)

1
3 = 64

1
3 = 4.
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Thus

a3
= (z + z)3

= M + M + 3z2z + 3zz
2

= M + M + 3(zz)(z + z)

= M + M + 3zza

= −8 + 3 · 4 · a
= −8 + 12a

∴ a3 − 12a + 8 = 0. Let E1 = Q(a), so [E : F] = 3. Let b = a2−8
2
∈ E1. Then

b3
=

a6 − 12a4
+ 3 · 64a2 − 83

8

=
(12a − 8)2 − 24a(12a − 8) + 3 · 64a2 − 83

8

=
16(9a2 − 12a + 4) − 24(12a2 − 8a) + 3 · 64a2 − 83

8

= 18a2 − 24a + 8 − 36a2
+ 24a + 24a2 − 64 = 6a2 − 56

12b − 8 = 12

(
a2 − 8

2

)
− 8

= 6(a2 − 8) − 8

= 6a2 − 48 − 8

= 6a2 − 56

∴ b3 − 12b + 8 = 0. Note that this second root is already in E1. Let c be the third root. Then

a + b + c = coeff. of x2 in p(x) = 0.

∴ c = −a − b ∈ E1. So all 3 roots lie in E1. In E1, x3 − 12x + 8 factors as (x − a)(x − b)(x − c).

Definition 3.3.9. Let p(x) ∈ F[x]. An extension field K of F is called a splitting field for p(x) over F

if p(x) factors completely in K into linear factors

p(x) = λ(x − a1)(x − a2) · · · (x − an)

and p(x) does not factor completely in any proper subfield of K.

113



ie. K is a minimal extension of F containing all roots of p(x). By an earlier theorem, a poly. of

degree n in F[x] has a splitting field K s.t. [K : F] ≤ n!.

Proposition 3.3.10. Suppose F ⊂ M ⊂ K. Let p(x) ∈ F[x] and suppose that K is a splitting field of

f (x) over F. Then regarding p(x) as an elt. of M[x], K is also a splitting field of p(x) over M.

Proof. Trivial. �

Example 3.3.11.

1. p(x) = x3 − 2, F = Q. 2
1
3 is a root of p(x) but Q(2

1
3 ) is not a splitting field for p(x). K =

Q(2
1
3 ,
√

3i) is a splitting field for p(x), and [K : Q] = 6.

2. p(x) = x3 − 12x + 8, F = Q. a = z + z where z3
= −4 + 4

√
3i. a is a root of p(x) and K = Q(a)

is a splitting field for p(x). In this case, [K : Q] = 3.

Proposition 3.3.12. Let K ⊃ F be a splitting field for p(x) ∈ F[x]. Suppose that in K,

p(x) = λ(x − a1)(x − a2) · · · (x − an),

where λ ∈ K. Then

K = F(a1, . . . , an).

Proof. By defn of a1, . . . , an they lie in K so F(a1, . . . , an) ⊂ K. However, if all of a1, . . . , an lay in

some proper subfield of K then the factorization

p(x) = λ(x − a1)(x − a2) · · · (x − an)

would be valid in that subfield, contradicting the minimality of K. �

Recall that if a ∈ K is a root of an irreducible poly. p(x) ∈ F[x] then

F(a) � F[x]/(p(x))

where the isomorphism ψ : F[x]/(p(x))
�7−→ F(a) is given by ψ(x) = a. Suppose τ : F

�7−→ F′. τ
extends to

τ̃ : F[x]
�7−→ F′[x]

x 7−→ x

f 7−→ τ( f ) ∀ f ∈ F.
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Theorem 3.3.13. Let p(x) ∈ F[x] be irreducible. Let p′ = τ̃(p) ∈ F′[x]. Let a, a′ be roots of

p(x), p′(x) lying in extension fields of F, F′ respectively. Then τ can be extended to an isomorphism

φ : F(a)
�7−→ F(a′)

s.t. φ(a) = a′.

Proof. We have

F(a)
�←− ψ

F[x]

(p(x))

�−→ τ̃
F′[x]

(p′(x))

�−→ ψ′F′(a′)

Let φ = ψ′ ◦ τ̃ ◦ ψ−1. �

Example 3.3.14. F = F′ = Q, τ = 1Q, p(x) = p′(x) = x3 − 2. a = 2
1
3 , a′ = 2

1
3

(
1−
√

3i

2

)
. Using a3

= 2,

elts. of Q(a) can be expressed in the form α + βa + γa2, α, β, γ ∈ Q. φ : Q(a)
�7−→ Q(a′) is given by

φ(α + βa + γa2) = α + βa′ + γ(a′)2.

Theorem 3.3.15. Let p(x) ∈ F[x]. Let p′ = τ̃(p) ∈ F′[x]. Let E, E′ be splitting fields of p(x), p′(x)

respectively. Then τ can be extended to an isomorphism φ : E
�7−→ E′.

In particular, letting F′ = F and τ = 1F shows that any two splitting fields of p(x) are isomorphic,

by an isomorphism which fixes F.

Proof. Use induction on [E : F]. If [E : F] = 1 then E = F so p(x) splits into linear factors in F. But

then p′(x) splits into linear factors in F′ so E′ = F′, and use φ = τ.

Now let [E : F] = n > 1. Assume by induction that the theorem holds whenever [E : F] < n.

More precisely, assume that the following statement holds: let q(x) ∈ M[x] be a poly. over a field M,

σ : M
�7−→ M′, q′ = σ̃(q). Let N,N′ be splitting fields of q, q′ respectively. If [N : M] < n then σ can

be extended to an iso. φ : N
�7−→ N′.

Let s(x) be a non-linear irreducible factor of p(x) in F[x]. Let deg s(x) = r > 1. Let v ∈ E be a

root of s(x). Let w ∈ E′ be a root of τ̃(s). By prev. thm. ∃ iso. σ : F(v)
�7−→ F′(w) s.t. σ|F = τ and

σ(v) = w. Since deg s(x) = r, [F(v) : F] = r, so

[E : F(v)] =
[E : F]

[F(v) : F]
=

n

r
< n.

From an earlier proposition, E is a splitting field for p(x) considered as a poly. in F(v)[x], and like-

wise, E′ is a splitting field for p′(x) considered as a poly. in F′(w)[x]. So by the induction hypothesis,

∃ iso. φ : E
�7−→ E′ s.t. φ|F(v) = σ. Thus φ|F = σ|F = τ as required. �
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3.4 Characteristic

Theorem 3.4.1. Let R be an integral domain. Let H be the additive subgroup of R generated by 1.

Then either H � Z or H � Z/pZ for some prime p.

Proof. Define φ : Z 7→ F to be the group homomorphism determined by φ(1) = 1. Then

H = Imφ � Z/ ker φ.

ker φ is an ideal in Z so ker φ = (n) for some n. If n = 0 then H � Z. Otherwise, H � Z/nZ (as

groups), and by replacining n by −n if necessary, we may assume n > 0.

If a, b ∈ Z, a, b > 0 then in R,

φ(a)φ(b) =

a times︷         ︸︸         ︷
(1 + · · · + 1)

b times︷         ︸︸         ︷
(1 + · · · + 1) =

ab times︷         ︸︸         ︷
(1 + · · · + 1) = φ(ab).

So H � Z/nZ as rings, and R is an integral domain, so p must be prime. �

Definition 3.4.2. If the additive subgroup of an integral domain R generated by 1 is Z/pZ, we say

that R has characteristic p, and denote char R = p. If this subgroup is Z, we say char R = 0.

If F is a field with char F = p, we can define

θ : Z/pZ 7→ F

1 7→ 1

as an inclusion of fields. If char F = 0, we can define

θ : Q 7→ F

1 7→ 1

s

t
7→

s times︷         ︸︸         ︷
(1 + · · · + 1) /

t times︷         ︸︸         ︷
(1 + · · · + 1)

The image of θ is a subfield of F (isomorphic to either Z/pZ = Fp or Q), called the prime field of F.

Proposition 3.4.3. If char F = p then in F,

(a + b)pk

= apk

+ bpk

.
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Proof.

(a + b)pk

=

pk∑

i=0

(
pk

i

)
aibpk−i

= apk

+ bpk

+

pk−1∑

i=1

(
pk

i

)
aibpk−i.

If 1 ≤ i ≤ pk − 1 then

(
pk

i

)
=

pk!

i!(pk − i)!

=
pk(pk − 1) · · · (pk − i + 1)

1 · 2 · 3 · · · i
=

(
pk

i

) (
pk − 1

1

) (
pk − 2

2

)
· · ·

(
pk − i + 1

i − 1

)
.

For 1 ≤ j < pk, the number of factors of p in j = the number of factors of p in pk − j. However, since

i < pk, pk has more factors of p than i does. Hence, the numerator has more factors of p than the

denominator. ie. p ||
(

pk

i

)
for 0 < i < pk. Since char F = p,

pk−1∑

i=1

(
pk

i

)
aibpk−i

= 0.

�
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3.5 Repeated Roots

Notation: For f (x) = anxn
+ an−1xn−1

+ · · · + a1x + a0, set

f ′(x) := nanxn−1
+ (n − 1)an−1xn−1

+ · · · + a1.

f ′(x) is called the derivative of f (x).

Note: If char F = p , 0 then f ′(x) = 0 ; f (x) is constant. For example, f (x) = xp has f ′(x) = 0.

Theorem 3.5.1. f (x) has a repeated root (in some extension field of F) ⇐⇒ f (x), f ′(x) have a

common factor.

Proof. Let K be the splitting field of f .

Note that f (x), f ′(x) have a common factor ⇐⇒ gcd( f , f ′) , 1. Moreover, as seen before, the

g.c.d. is the same whether taken in F[x] or K[x].

⇒: Suppose f (x) has a repeated root. In K[x], f (x) = (x − α)2q(x), so

f ′(x) = 2(x − α)q(x) + (x − α)2q′(x) = (x − α)(2q(x) + (x − α)q′(x)).

∴ gcd( f , f ′) , 1 in K and thus in F.

⇐: Suppose f (x), f ′(x) have a common factor. If f (x) has no repeated root then by (WLOG) taking

f (x) to be monic, in K[x],

f (x) = (x − α1)(x − α2) · · · (x − αn)

where α j , αk for j , k. So

f ′(x) =

n∑

i=1

(x − α1) · · · ̂(x − αi) · · · (x − αr).

If (x − α j) is also a factor of f ′(x) then α j would be a root of f ′(x) giving

0 =
∏

j,i

(α j − αi).

But then α j − αi = 0 for some i, which is a contradiction. Thus, f (x) has a repeated root.

�

Corollary 3.5.2. Let f (x) ∈ F[x] be irreducible. Then
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1. If char F = 0 then f (x) has no repeated roots.

2. If char F = p > 0 then f (x) has a repeated root ⇐⇒ f (x) = g(xp) for some g.

Proof. If f (x) has a repeated root then f (x), f ′(x) have a common factor. But f (x) is irreducible and

deg f ′(x) < deg f (x). Thus f ′(x) = 0.

If char F = 0 then f ′(x) = 0⇒ f (x) is constant, in which case, f (x) does not have a repeated root

after all.

If char F = p, let

f (x) = a0 + a1x + · · · + apxp
+ ap+1xp+1

+ · · · + anxn.

Since f ′(x) = 0, ak = 0 for every k which is not a multiple of p. So

f (x) = apxp
+ a2px2p

+ · · · = g(xp).

�
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3.6 Finite Fields

Proposition 3.6.1. Let F be a field with q elements. Suppose F ⊂ K is a finite extension with

[K : F] = n. Then K has qn elements.

Proof. As a vector space, K � Fn, so |K| = |F|n = qn. �

Corollary 3.6.2. Let K be a finite field. Then K has pm elements for some m where p = char F.

Proof. Let F be the prime field of K. Since K is finite, F cannot be Q, so char F = p, a prime. Hence

K has pm elements where m = [K : F]. �

Corollary 3.6.3 (Fermat). Let F be a finite field with pm elements. Then apm

= a for all a ∈ F.

Proof. If a = 0 then apm

= 0. If a , 0 then a ∈ F − {0}, which forms a group under multiplication,

and

|F − {0}| = pm − 1.

By Lagrange, apm−1
= 1, so apm

= a. �

Theorem 3.6.4. Let F be a finite field with pn elements. Then in F[x], xpn − x factors as

xpn − x =
∏

α∈F

(x − α).

Proof. By the previous corollary, every elt. of F is a root of xpn − x. Since deg(xpn − x) = pn, and

F has pn elements, we have all the roots. �

Corollary 3.6.5. If F has pn elements then F is the splitting field of xpn − x over Fp.

Corollary 3.6.6. Any two finite fields with the same number of elts. are isomorphic.

Proof. Any two splitting fields of the same polynomial are isomorphic. �

Theorem 3.6.7. For every prime p and every positive integer n, ∃! a field with pn elts.

Proof. We have already shown that ∃ at most one field with pn elts. So, show that one exists.

Let K be the splitting field of f (x) = xpn − x over Fp. Let

F = {a ∈ K | apn

= a}.

f ′(x) = −1, which is relatively prime to f (x). So the roots of f (x) are distinct, ie. F has pn elts., and

it suffices to show that F is a field.
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Suppose a, b ∈ F. Then

(a + b)pn

= apn

+ bpn

= a + b

so a + b ∈ F. Similarly, (a − b)pn

= a − b.

(ab)pn

= apn

bpn

= ab

and similarly, (a
b
)pn

=
a
b
. Hence F is a field. �

Theorem 3.6.8. Let G be a finite abelian group s.t. ∀n ∈ Z, there are at most n elts. of G satisfying

gn
= e. Then G is a cyclic group.

Proof. By the structure theorem for finitely generated abelian groups, we can write

G � G1 ×G2 × · · · ×Gk

where |G j| = p
t j

j
for some p j with p j , p j′ if j , j′. Since Cn × Cm � Cnm when gcd(n,m) = 1, it

suffices to show that each G j is a cyclic group.

Pick j and write p for p j and t for t j. Let a ∈ G j be an elt. whose order is maximal. Then

|a| || |G j| = pt

so |a| = pr for some r ≤ t. Within G j,

S = {a, a2, · · · , apr−1, e}

are the distinct roots of gpr

= e, by construction of a. Since there are pr of them, by the hypothesis,

gpr

has no other solutions in G, and in particular, no other solutions in G j.

Now let b ∈ G j. Then |b| = ps for some s ≤ r.

bpr

=

(
bps

)pr−s

= epr−s

= e.

Thus, b ∈ S , ie. b = ai for some i.

Hence G j is cyclic, so G is cyclic. �

Corollary 3.6.9. Let F be a field. Then any finite subgroup of the multiplicative group of F − {0} is

cyclic.

Proof. Since F is a field, a polynomial of degree n in F[x] has at most n roots in F. �

Corollary 3.6.10. If F is a finite field then the multiplicative group F − {0} is cyclic.
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3.7 Separable Extensions

Definition 3.7.1. Suppose F ⊂ K is a finite extension. Then α ∈ K is called separable over F if its

irreducible polynomial over F has no repeated roots. K is called separable over F if α is separable

over F ∀α ∈ K.

Proposition 3.7.2. If char F = 0 then every finite extension of F is separable over F.

Example 3.7.3. Let E be any field with char E = p. Let F = E(z), the field of fractions of E[z]. Let

K = F(z
1
p ), and let a = z

1
p ∈ K. Then the min. poly. of a over F is xp − z = (x − a)p. Hence, z

1
p is not

separable over F.

Theorem 3.7.4. Suppose F ⊂ K is separable. Then ∃γ ∈ K s.t. K = F(γ).

Proof.

Case 1: F is finite.

Since F ⊂ K is a finite extension, K is also a finite field. Let c be a generator for the cyclic

group K − {0}.
ie. K − {0} = {c, c2, · · · , cpm−1, e}.

∴ Any field containing c contains all of K − {0}. ∴ K = F(c).

Case 2: |F| = ∞.

Since [K : F] < ∞, let K = F(a1, . . . , an) for some a1, . . . , an. Using induction, it suffices to

consider the case n = 2. ie. Suppose K = F(a, b) and show that ∃c s.t. F(a, b) = F(c).

Let f (x), g(x) be the min. polynomials of a, b respectively. Let M be the splitting field of

f (x)g(x). In M,

f (x) = (x − a1) · · · (x − am) where a1 = a

g(x) = (x − b1) · · · (x − bn) where b1 = b.

Since K is separable, ai , a j for i , j and bi , b j for i , j. Consider the equation

ai + λb j = a1 + λb1

where j > 1 and λ ∈ F. The solution for λ is

λ =
ai − a1

b1 − b j

Since F is finite, choose γ ∈ F s.t. γ , ai−a1

b1−b j
and γ ,

b j−b1

a1−a j
for any i and j. So ai + γb j , a + γb

unless i = j = 1. Set c := a + γb.

Claim. F(a, b) = F(c).
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Proof. c ∈ F(a, b) so F(c) ⊂ F(a, b). So show F(a, b) ⊂ F(c), ie. show a ∈ F(c) and b ∈ F(c).

Let h(x) = f (c − γx) ∈ F(c)[x]. Then

h(b) = f (c − γb) = f (a) = 0.

By construction, c − γb j , ai unless i = j = 1. So if j > 1 then c − γb j , ai for any i and so

c − γb j is not a root of f (x).

∴ If j > 1 then h(b j) = f (c − γb j) , 0. Hence b = b1 is the only common root of g(x) and h(x).

ie. In K[x],

gcd(g(x), h(x)) = x − b.

But g(x) ∈ F[x] ⊂ F(c)[x] and h(x) ∈ F(c)[x], so by an earlier proposition,

x − b = gcd(g(x), h(x)) ∈ F(c)[x].

In particular, x − b ∈ F(c)[x]; that is, its coefficients lie in F(c). So b ∈ F(c).

Similarly, using γ ,
b j−b1

a1−ai
for any i and j gives a ∈ F(c). Thus F(a, b) ⊂ F(c) as required.

�
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3.8 Automorphism Groups

Definition 3.8.1. An isomorphism from a field to itself is called an automorphism. Explicitly, an

automorphism σ : F
�7−→ F must satisfy:

1. σ is a bijection,

2. σ(a + b) = σ(a) + σ(b), and

3. σ(ab) = σ(a)σ(b).

Let Aut(F) denote the set of all automorphisms of F. This forms a group under composition.

Theorem 3.8.2. Let σ1, . . . , σn be distinct automorphisms of F. Then σ1, . . . , σn are linearly inde-

pendent in the vector space homabel. grps.(F, F).

ie. If a1, . . . , an ∈ F such that

a1σ1(u) + a2σ2(u) + · · · + anσn(u) = 0 ∀u ∈ F

then a1 = a2 = · · · = an = 0.

Note: This proof works equally well to show that distinct homomorphisms from a ring A to a field F

are linearly independent in the F-vector space homabel. grps.(A, F).

Proof. Suppose σ1, . . . , σn are not linearly independent in homabel. grps.(F, F). Find a relation having

as few terms as possible. Renumber the σ’s so that the terms appearing in the relation come first. So

the relation is

a1σ1 + · · · + akσk = 0

with a j , 0 for j = 1, . . . , k, and no relation exists involving fewer than k terms. That is, for all u ∈ F,

a1σ1(u) + · · · + akσk(u) = 0 (1)

If k = 1 then a1σ(u) = 0 ∀u ∈ K, so a1 = 0 (since σ1(u) , 0 unless u = 0), which is a

contradiction. Since σ1 , σk, ∃c ∈ F s.t. σ1(c) , σk(c). Then for all u ∈ F,

0 = a1σ1(cu) + · · · + akσk(cu)

= a1σ1(c)σ1(u) + · · · + akσk(c)σk(u) (2)

Combining (1) and (2), for all u ∈ F,

a2(σ2(c) − σ1(c))σ2(u) + · · · + ak(σk(c) − σ1(c))σk(u) = 0

ak , 0 and σk(c) − σ1(c) , 0 so the last coefficient is nonzero. So this is a relation among σ1, . . . , σn

having fewer than k terms, which is a contradiction. Thus, σ1, . . . , σk are lin. indep. �
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Theorem 3.8.3. Let K be a field. Let S = {σα} be a set of automorphisms of K. Let

F = {x ∈ K | σ(x) = x ∀σ ∈ S }.

Then F is a field.

F is called the fixed field of S in K, written F = KS .

Proof. Suppose a, b ∈ F. Then ∀σ ∈ S ,

σ(a + b) = σ(a) + σ(b) = a + b.

∴ a + b ∈ F. Similarly, a − b, ab ∈ F and if b , 0, a
b
∈ F. �

Notation: Suppose F ⊂ K. Set

G(K, F) := {σ ∈ Aut(K) | σ(α) = α ∀α ∈ F}.

G(K, F) forms a subgroup of Aut(K).

This gives us two functors:

Extension of fields Subgroup of automorphisms of larger field

F ⊂ K  G(K, F)

and

Field, subgroup of its automorphisms Extension of fields

K,G KG ⊂ K

Are these inverse processes? In general, no. Given F ⊂ K,

G(K, F) = {σ ∈ K | σ(x) = x∀x ∈ F}

∴ KG(K,F)
= {x ∈ K | σ(x) = x∀σ ∈ G(K, F)} ⊃ F. But KG(K,F) can be strictly larger than F.

Example 3.8.4.

1. K = C, F = R. Let σ ∈ G(C,R). σ(x) = x ∀x ∈ R. So σ is determined by σ(i).

σ(i)2
= σ(i2) = σ(−1) = −1.

∴ σ(i) = ±i. So there are two elts. in G(C,R):

σ1(i) = i⇒ σ1(a + bi) = a + bi identity of G(C,R),

σ2(i) = −i⇒ σ2(a + bi) = a − bi complex conjugation.
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∴ G(C,R) � Z/2Z.

Conversely,

CG(C,R)
= {z ∈ C | σ(z) = z ∀σ ∈ G(C,R)}
= {z ∈ C | z = σ1(z) = z and z = σ2(z) = z}
= R

In this case, we get our starting field back.

2. F = Q, K = Q(a) where a = 2
1
3 . Let σ ∈ G(K, F). Since σ(x) = x ∀x ∈ Q, σ is determined by

σ(a).

σ(a)3
= σ(a3) = σ(2) = 2,

so σ(a) is a cube root of 2. Since Q(a) contains only real numbers, it contains only one cube

root of 2, namely a. So σ(a) = a and σ is the identity. Thus,

G(Q(2
1
3 ),Q) = 1.

∴ Q(2
1
3 )G(Q(2

1
3 ),Q)
= Q(2

1
3 ), which is strictly larger than Q.

Let f (x) ∈ F[x] and let G = G(K, F) where K is the splitting field of f (x). Let α1, . . . , αn ∈ K be

the roots of

f (x) = c0 + c1x + · · · + cnxn (c j ∈ F).

Let σ ∈ G(K, F), so σ(c j) = c j. Then

f (σ(αi)) = c0 + c1σ(αi) + · · · + cn(σ(αi))
n

= σ(c0 + c1x + · · · + cnxn)

= σ( f (αi)) = σ(0) = 0.

∴ σ(αi) is also a root of f (x), ie. σ(αi) = αi′ for some i′ = 1, . . . , n. If i , j then σ(αi) , σ(α j), since

σ is (1-1). So σ permutes the roots of f (x). This map

σ 7→ σ|{α1,...,αn}

is a group homomorphism G ֒→ S n.

Theorem 3.8.5. |G(K, F)| ≤ [K : F].
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Proof. Let [K : F] = n and let u1, . . . , un be a basis for K over F. Suppose G(K, F) has n+1 elements

σ1, . . . , σn+1. Consider the system of equations

σ1(u1)x1 + σ2(u1)x2 + · · · + σn+1(u1)xn+1 = 0

σ1(u2)x1 + σ2(u2)x2 + · · · + σn+1(u2)xn+1 = 0

...

σ1(un)x1 + σ2(un)x2 + · · · + σn+1(un)xn+1 = 0.

This consists of n equations and n + 1 variables, so ∃ a solution

x1 = a1, x2 = a2, . . . , xn+1 = an+1,

with not all a j = 0. So, for all j = 1, . . . , n,

a1σ1(u j) + a2σ2(u j) + · · · + an+1σn+1(u j) = 0.

Since u1, . . . , un form a basis,

(a1σ1 + · · · + an+1σn+1)(t) = 0 ∀t ∈ K.

But then σ1, . . . , σn+1 are linearly dependent in homabel. grps.(F, F), contradicting an earlier theorem.

Hence, G(K, F) does not have n + 1 elements, ie. |G(K, F)| ≤ [K : F]. �
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3.9 Elementary Symmetric Polynomials

Let F be a field.

Notation:

F(x1, . . . , xn) := field of fractions of F[x1, . . . , xn]

=

{
p(x1, . . . , xn)

q(x1, . . . , xn)
|| p, q ∈ F[x1, . . . , xn], q , 0

}

This is called the field of rational functions in n variables over F.

Let K = F(x1, . . . , xn). Given σ ∈ S n, setting σ̃(x j) = xσ( j) and σ̃(a) = a ∀a ∈ F determines an

automorphism of K s.t.

σ ∈ G(K, F) ⊂ Aut(K).

In this way, S n becomes a subgroup of Aut(K).

Let S = KS n . S is called the field of symmetric rational functions in n variables over F, and

S ∩ F[x1, . . . , xn] is called the ring of symmetric polynomials in n variables over F.

Definition 3.9.1. Let

s(t) = (t + x1)(t + x2) · · · (t + xn) ∈ F[x1, . . . , xn][t].

For k = 1, . . . , n, the coefficient of tn−k in s(t) is called the kth elementary symmetric polynomial in n

variables, denoted sk(x1, . . . , xn).

For example:

s1(x1, . . . , xn) = x1 + x2 + · · · + xn

s2(x1, . . . , xn) = x1x2 + x1x3 + · · · + x1xn + x2x3 + · · · + x2xn + · · · xn−1xn

s3(x1, . . . , xn) = x1x2x3 + · · · + xn−2xn−1xn

sn(x1, . . . , xn) = x1 · · · xn

In general,

sk =

∑

i1<i2<···<ik

xi1 xi2 · · · xik .

Theorem 3.9.2.

1. S = F(s1, . . . , sn).

2. [F(x1, . . . , xn) : S ] = n!.
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3. G(F(x1, . . . , xn), S ) = S n.

4. F(x1, . . . , xn) is the splitting field of s(t) over S .

Proof. σ(sk) = sk ∀σ ∈ S n, so F(s1, . . . , sn) ⊂ S . Conversely, S n ⊂ G(F(x1, . . . , xn), S ), so

[F(x1, . . . , xn) : S ] ≥ |G(F(x1, . . . , xn), S )| ≥ |S n| = n!.

∴ To show 1, 2 and 3, it suffices to show

[F(x1, . . . , xn) : F(s1, . . . sn)] ≤ n!

since this simultaneously shows

[S : F(s1, . . . sn)] = 1⇒ 1.

and

[F(x1, . . . , xn) : S ] = n!⇒ 2.

and

|G(F(x1, . . . , xn), S )| = n!⇒ 3.

The polynomial

s(t) = (t + x1)(t + x2) · · · (t + xn)

factors linearly as shown in F(x1, . . . , xn). But its coefficients are s1, . . . , sn, which lie in S . s(t) cannot

split in any proper subfield of F(x1, . . . , xn) since its roots are −x1, . . . ,−xn.

So F(x1, . . . , xn) is the splitting field of s(t) over F(s1, . . . , sn). By an earlier corollary, the degree

fo a splitting field extension of a polynomial of degree n is at most n!. Hence,

[F(x1, . . . , xn) : F(s1, . . . , sn)] ≤ n!.

�

129



3.10 The Galois Group

Let F ⊂ K be a separable finite extension of fields. We observed earlier that F ⊂ KG(K,F).

Definition 3.10.1. K is called a normal extension (or Galois extension) of F if F = KG(K,F).

eg. R ⊂ C is normal, Q ⊂ Q(2
1
3 ) is not.

Theorem 3.10.2. Let F ⊂ K be a normal extension and let H be a subgroup of G(K, F). Then

1. [K : KH] = |H|.

2. H = G(K,KH).

Corollary 3.10.3. If F ⊂ K is normal then [K : F] = |G(K, F)|.
Proof of corollary. Let H = G(K, F). Then

[K : F] = [K : KG(K,F)] = |G(K, F)|.
�

Proof of theorem. ∀σ ∈ H, x ∈ KH, σ(x) = x. So H ⊂ G(K,KH). Thus

[K : KH] ≥ |G(K,KH)| ≥ |H|.
Since F ⊂ K is separable, so is KH ⊂ K. Hence, ∃a ∈ K s.t. K = KH(a).

By an earlier theorem, the min. poly. of a has degree [K : KH]. Let

H = {σ1, . . . , σh},
where σ1 = 1. Let

s1(x1, . . . , xh), . . . , sh(x1, . . . , xh)

be the elementary symmetric polynomials in h variables. Let

α j = s j(σ1(a), σ2(a), . . . , σh(a)) ∈ K.

Let

p(x) = (x − σ1(a))(x − σ2(a)) . . . (x − σh(a)) = xh − α1xh−1
+ α2xh−2

+ · · · + (−1)hαh ∈ K[x].

In any group, left multiplication by any element permutes the elements of the group. By construction,

each α j is invariant under permutations of the σ’s. So for all j, σ(α j) = α j ∀σ ∈ H, so α j ∈ KH.

Hence p(x) ∈ KH[x]. Since a = σ1(a) is a root of p(x),

|H| = h = deg p(x) ≥ deg(min. poly. of a over KH) = [K : KH].

∴ |H| = |G(K,KH)| = [K : KH], showing 1, and also H ⊂ G(K,KH), showing 2. �
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Theorem 3.10.4. Suppose K is separable over F. Then F ⊂ K is a normal extension ⇐⇒ K is the

splitting field of some polynomial in F.

Proof.

⇒: Suppose F ⊂ K is a normal extension. K = F(a) for some a ∈ K. Let

G(K, F) = {σ1, σ2, . . . , σn},

where σ1 = 1. Let

p(x) = (x − σ1(a))(x − σ2(a)) · · · (x − σn(a))

= xn − α1xn−1
+ α2xn−2

+ · · · + (−1)nαn,

where α j = s j(σ1(a), . . . , σn( j)) ∈ K. As in the preceding proof, σ(α j) = α j ∀σ ∈ G(K, F), so

α j ∈ KG(K,F)
= F,

by normality.

So p(x) ∈ F[x] and p(x) splits in K. a = σ1(a) is a root of p(x). By defn. of F(a), a lies in

no proper subfield of K = F(a) which contains F. So p(x) does not split in any subfield of K.

Thus, K is the splitting field of p(x).

⇐: Let K be the splitting field of some f (x) ∈ F[x].

Lemma 3.10.5. Let p(x) ∈ F[x] be an irreducible factor of f (x) and let α1, . . . , αr ∈ K be the

roots of p(x). Then ∀ j = 1, . . . , r, ∃σ j ∈ G(K, F) s.t. σ j(α1) = α j.

Proof of lemma. By Theorem 3.3.13, ∃ an isomorphism

τ j : F(α1)
�7−→ F(α j)

s.t. τ j(α1) = α j and τ j(z) = z ∀z ∈ F. Hence, τ j( f (x)) = f (x).

K can be regarded as the splitting field of f (x) over both F(α1) and F(α j). So by Theorem

3.3.15, τ j can be extended to

σ j : K
�7−→ K.

Since σ j extends τ j, σ j ∈ G(K, F) and σ j(α1) = α j, as required. �
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Proof of theorem (continued). Assume by induction that if K1 is the splitting field of some

polynomial f1 ∈ F1[x] and [K1 : F1] < [K : F] then K1 is normal over F1. If [K1 : F1] = 1 then

K1 = F1 is normal over F1, to start induction.

So suppose [K : F] > 1. Then f (x) has a non-linear irreducible factor p(x). Let

deg p(x) = r > 1.

Let α1, . . . , αr ∈ K be the roots of p(x). Regarding K as the splitting field of f (x) over F(α1),

induction implies that K is a normal extension of F(α1). Show KG(K,F)
= F.

F ⊂ F(α1), so G(K, F(α1)) ⊂ G(K, F). ie. σ ∈ G(K, F(α1)) ⇒ σ(z) = z ∀z ∈ F(α1), and in

particular, σ(z) = z ∀z ∈ F. Thus,

KG(K,F) ⊂ KG(K,F(α1))
= F(α1),

because F(α1) ∈ K is normal.

Let z ∈ KG(K,F). We must show z ∈ F. Since z ∈ F(α1),

z = λ0 + λ1α1 + · · · + λr−1α
r−1,

for some λ0, . . . , λr−1 ∈ F. For j = 1, . . . , r, choose σ j ∈ G(K, F) s.t. σ(α1) = α j. Then

z = σ j(z) = λ0 + λ1α j + · · · + λr−1α
r−1
j

Let

q(x) = λr−1xr−1
+ · · · + λ1x + (λ0 − z) ∈ K[x]

Then α j is a root of q(x) ∀ j = 1, . . . , r. But deg q(x) ≤ r − 1 and α1, . . . , αr are distinct. This is

a contradiction unless all coefficients of q(x) are zero. In particular, z = λ0 ∈ F.

�

Definition 3.10.6. Let f (x) ∈ F[x]. Let K be the splitting field of f over F and suppose that K

is separable over F. The Galois group of f (x) over F is G(K, F). This will sometimes be denoted

Gal( f (x)).

Theorem 3.10.7 (Fundamental Theorem of Galois Theory). Let f (x) ∈ F. Let K ⊃ F be the splitting

field of f (x) over F. Suppose K is separable over F and let G = G(K, F) be the Galois group of f (x)

over F. Then the associations

M G(K,M)

KH
f H

set up a bijection between fields M s.t. F ⊂ M ⊂ K and subgroups of G. It has the following

properties:
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1. M = KG(K,M).

2. H = G(K,KH).

3. [K : M] = |G(K,M)|, and [M : F] = G : G(K,M) (the index of the subgroup G(K,M) in G).

4. M is a normal extension of F ⇐⇒ G(K,M) is a normal subgroup of G.

5. If M is a normal extension of F then G(M, F) � G/G(K,M).

Proof.

1. K is the splitting field of f (x) over F, so F can be regarded as the splitting field of f (x) over M.

So M ⊂ K is normal, ie. M = KG(K,M).

2. This is just Theorem 3.10.2. 1 and 2 say that the associations are inverse bijections.

3.

|G(K,M)| = [K : KG(K,M)] by Theorem 3.10.2

= [K : M] by 1.

and

[M : F] =
[K : F]

[K : M]
=
|G(K, F)|
|G(K,M)| = G : G(K,M).

4.

Lemma 3.10.8. M is normal ⇐⇒ σ(M) ⊂ M ∀σ ∈ G.

Proof of lemma.

⇒: Suppose M is normal. Let σ ∈ G. Let q(x) ∈ F[x] be a polynomial whose splitting field is

M. So in M,

q(x) = (x − α1)(x − α2) · · · (x − αr).

By an earlier proposition, M = F(α1, α2, . . . , αr). Since σ ∈ G,

q(σ(α j)) = σ(q(α j)) = σ(0) = 0.

∴ σ(α j) is a root of q(x). But M contains the full set of roots of q(x), so σ(α j) ∈ M. Thus,

σ(M) ⊂ M.
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⇐: Suppose σ(M) ⊂ M ∀σ ∈ G. Let z ∈ MG(M,F), and check that z ∈ F. Let σ ∈ G. Since

σ(M) ⊂ M, σ|M ∈ G(M, F). So,

σ(z) = σ|M(z) = z,

since z ∈ MG(M,F). So z ∈ MG ⊂ KG
= F.

�

Proof of 4.

⇒: Suppose M is a normal extension of F. Let σ ∈ G, τ ∈ G(K,M). Then ∀m ∈ M,

σ−1τσ(m) = σ−1τ(σ(m))

= σ−1σ(m), since σ(m) ∈ M and τ|M = id

= m.

∴ σ−1τσ ∈ G(K,M). Hence G(K,M) is a normal subgroup of G.

⇐: Suppose G(K,M) is a normal subgroup of G. Let σ ∈ G, z ∈ M. Then ∀τ ∈ G(K,M),

σ−1τσ ∈ G(K,M), so

σ−1τσ(z) = z.

∴ τσ(z) = σ(z). Thus σ(z) ∈ KG(K,M)
= M (by 1). So σ(M) ⊂ M and M is normal over F

by the lemma.

5. Suppose M is normal over F. Given σ ∈ G(K, F), define ψ(σ) = σ|M. By the lemma,

σ(M) ⊂ M,

so ψ(σ) ∈ G(M, F). If σ ∈ kerψ then σ|M = idM, ie. σ ∈ G(K,M). Hence, kerψ = G(K,M).

So by 1st isomorphism theorem,

G/G(K,M) = G/ kerψ � Imψ ⊂ G(M, F).

But |G/G(K,M)| = [M : F] = |G(M, F)|, so

G/G(K,M) � G(M, F).

�

Theorem 3.10.9. Let F ⊂ K be an extension field. Let f (x) ∈ F[x]. Then the Galois group of f (x)

over K is isomorphic to a subgroup of the Galois group of f (x) over F.
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Proof. Let L be the splitting field of f (x) over K and E the splitting field of f (x) over F. Since f (x)

splits in L, E ⊂ L. Let r1, . . . , rn ∈ E be the roots of f (x).

For σ ∈ G(L,K), σ is determined by its action on r1, . . . , rk. Define ψ : G(L,K) 7→ G(E, F) by

ψ(σ) = σ|E. If ψ(σ) = ψ(τ) then σ|E = τ|E, so

σ(r j) = τ(r j) ∀ j.

∴ σ = τ. Hence ψ is a monomorphism. �

Example 3.10.10. Let E be the finite field with pn elements, which was shown to be the splitting field

of xpn − x over Fp. Define φ ∈ Aut(E) by

φ(x) = xp.

Then it is clear that the automorphisms φ, φ2, . . . , φn
= id are distinct. But |G(E,Fp)| = [E : Fp] = n,

and thus,

G(E,Fp) = {φ, φ2, . . . , φn}.
In particular, this shows that G(E,Fp) is cyclic.
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3.11 Constructions with Ruler and Compass

Let S ⊂ C � R2 be a finite subset. Let

S ′ := {z ∈ C | z can be constructed from the points of S using a ruler and compass}.

More precisely:

Let S 0 = S . Using a ruler and compass, we can join pts. in S 0 with lines or can construct circles

centred at a point in S 0 and passing through another point in S 0. Let S̃ 0 be the set of points which are

the intersections of these lines and circles.

Let S 1 = S 0 ∪ S̃ 0, S 2 = S 1 ∪ S̃ 1, . . . , S n = S n−1 ∪ S̃ n−1. Then let

S ′ =
⋃

n

S n.

Let P0 = 0 = (0, 0), P1 = 1 = (1, 0). Let F = {P0, P1}′. We say z is constructible if z ∈ F. Show

F is a field.

Proposition 3.11.1. If z1, z2 ∈ S ′ then z1+z2

2
∈ S ′.

Proof.

c

1c

2z

1z
2

2

2

z +z

A

1

B

Let c1 := Cz1
(z2), the circle centred at z1 through z2, and let c2 := Cz2

(z1). Let A, B be the two

intersection points of c1 and c2. Then L(A, B), the line through A and B, intersects L(z1, z2) at z1+z2

2
. �

Proposition 3.11.2. If z1, z2 ∈ F then z1 + z2 ∈ F.

Proof. C z1+z2
2

(0) meets L
(
0, z1+z2

2

)
at z1 + z2 (and 0). �

Proposition 3.11.3. If z ∈ F then −z ∈ F.
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Proof. Intersect L(0, z) with C0(z). �

Proposition 3.11.4. z = (x, y) ∈ F ⇐⇒ (x, 0) ∈ F and (0, y) ∈ F.

Proof.

⇒: Suppose z = (x, y) ∈ F. Cz(0) meets L(0, P1) at (2x, 0), so (2x, 0) ∈ F. By Prop. 3.11.1,

(x, 0) ∈ F. Hence also,

(0, y) = (x, y) − (x, 0) ∈ F.

⇐: If (x, 0), (0, y) ∈ F then by Prop. 3.11.2,

(x, y) = (x, 0) + (0, y) ∈ F.

�

Let

L := {lines joining two points in F}.

Proposition 3.11.5. Let L ∈ L, A ∈ F. Then the line parallel to L through A lies in L.

Proof. Let P,Q ∈ F be distinct points lying on L. Let

R = P − Q + A ∈ F.

Then the line parallel to L through A is L(A,R). �

Proposition 3.11.6. Let L ∈ L, A ∈ F. Then the line through A perpendicular to L lies in L.

Proof.

Case 1: A < L. Let C be the other point where CA(B) meets L and let D = B+C
2

. (If CA(B) happens to be

tangent to L at B then let D = B).
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B

D

C

A

Then D ∈ F and L(A,D) is the line perependicular to BC through A.

Case 2: A ∈ L. Since L has at least two points of F, let A , B ∈ L. Let C be the other point where

CA(B) meets L.

CB

A

Then A = B+C
2

and the construction of Prop. 3.11.1 produces the line through A perpendicular

to L.

�

Proposition 3.11.7. Let z = reiθ. Then z ∈ F ⇐⇒ r ∈ F and eiθ ∈ F.
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Proof.

⇒: Suppose z ∈ F. C0(z) meets L(0, P1) at (r, 0), ie. r ∈ F. eiθ is the point where L(0, reiθ) crosses

C0(P1). Hence eiθ ∈ F.

⇐: Let r ∈ F and eiθ ∈ F. Then reiθ is the point where L(0, eiθ) meets the circle centred at 0 through

(r, 0).

�

Proposition 3.11.8. ∃P,Q,R ∈ F s.t. ∠PQR = θ ⇐⇒ eiθ ∈ F.

Proof.

⇒: Suppose P,Q,R ∈ F s.t. ∠PQR = θ. Let

P′ = P − Q,R′ = R − Q ∈ F.

P = (1,0)
1

A

R

P
1

O

B
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Let A be the point where C0(P1) meets L(0,R′). Let B be the point where the perpendicular to

L(0, P′) through A meets L(O, P′). Then

cos θ = |0B| ∈ F.

Also, letting z = A − B,

sin θ = |AB| = |z| ∈ F.

Then the y-axis is in L by Prop. 3.11.6, and i sin θ is the point where C0(sin θ) meets the y-axis,

whence i sin θ ∈ F. So

eiθ
= cos θ + i sin θ ∈ F.

⇐: Suppose eiθ ∈ F. Let

P = (0, 1), Q = 0, R = eiθ
= (cos θ, sin θ).

Then ∠PQR = θ.

�

Proposition 3.11.9. Let (cos θ, sin θ) ∈ F and (cos τ, sin τ) ∈ F. Then (cos(θ + τ), sin(θ + τ)) ∈ F.

Proof.

−(2  + (  −  ))

=  −(  +   )
P

+

2
−2

sin 

cos O

S = 2R

Q
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Let P = (cos θ, sin θ), so (cos θ, 0) ∈ F. Let Q = (2 cos θ, 0) ∈ F. Let R be the point where L(Q, P)

meets the line joining 0 to (cos τ, sin τ). Let S = 2R. Then Q,R, S ∈ F and ∠QRS = θ + τ. So

(cos(θ + τ), sin(θ + τ)) ∈ F.

�

Proposition 3.11.10. If z1, z2 ∈ F then z1z2 ∈ F.

Proof. Let z1 = r1eiθ1 , z2 r2eiθ2 . Then z1 ∈ F ⇒ (r1, 0) ∈ F and z2 ∈ F ⇒ (r2, 0) ∈ F.

r r
2

r
2

1
r

1

O 1

The line joining (r1, 0) to (0, r1r2) is parallel to that joining (1, 0) to (0, r2), so it lies in L. Hence,

its intersection with the y-axis lies in F, ie. (0, r1r2) ∈ F.

z1 ∈ F ⇒ (cos θ1, sin θ1) ∈ F and z2 ∈ F ⇒ (cos θ2, sin θ2) ∈ F by Prop. 3.11.7. So by

Prop. 3.11.9,

P = (cos(θ1 + θ2), sin(θ1 + θ2)) ∈ F.

L(0, P) meets the circle centred at 0 through (0, r1r2) at z1z2. �

Proposition 3.11.11. If z ∈ F then 1
z
∈ F.

Proof. Let z = reiθ.
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z

1
r

1

r

z

O 1

1

As above, z ∈ F ⇒ (0, r) ∈ F ⇒ the line joining (1, 0) to (0, r) lies in L. So the line joining (1
r
, 0)

to (0, 1) lies in L, and thus, (1
r
, 0) ∈ F.

eiθ ∈ F, so by Props. 3.11.3 and 3.11.4, e−iθ ∈ F. By Prop. 3.11.10,

1

z
=

1

r
e−iθ ∈ F.

�

Thus, F is a field.

Proposition 3.11.12. If z2 ∈ F then z ∈ F.

Proof. z =
(

z+1
2

)2 −
(

z−1
2

)2
.
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r +1

r +1
2

1
P =1

2

r +1
2 2O

C

AB

Let z = reiτ, so z2
= r2ei2τ ∈ F. Then (r2, 0) ∈ F so A = (r2, 0) + (1, 0) ∈ F. Let B = A

2
∈ F. Let C

be the point where CB(A) meets the perpendicular to L(0, A) through (1, 0). By Pythagoras,

|P1C|2 = |BC|2 − |P1B|2 =
(
r + 1

2

)2

−
(
r − 1

2

)2

.

∴ C = (1, r) so r ∈ F.

Let θ = 2τ. r2e2iτ ∈ F ⇒ ei2τ ∈ F, ie. Q = (cos θ, sin θ) ∈ F. Let

S = Q − P1

= (cos 2τ − 1, sin 2τ)

= (2 cos2 τ, 2 cos τ sin τ)

= 2 cos τ(cos τ, sin τ).

So, if cos τ , 0 then ∠P10S = τ, ie. L(0, S ) bisects ∠P10Q. If cos τ = 0 then τ = ±π
2

and it is

obvious that a line with angle τ is in L. The circle centred at 0 passing through (r, 0) meets this line

at reiτ ∈ F. �

Theorem 3.11.13. F is the smallest subfield of C which is closed under square roots and complex

conjugation.

Proof. By earlier propositions, F is closed under square roots and complex conjugation. Conversely,

let K be a subfield of C closed under square roots and complex conjugation. Since S 0 = {0, 1} ∈ K, if

we can show that K′ = K, it will follow that F ⊂ K.

143



Lemma 3.11.14. The equation of a line joining two points in K can be written in the form

ax + by = c

where a, b, c ∈ K ∩ R.

Proof. Let L join P = (p1, p2) to Q = (q1, q2), where p1, p2, q1, q2 ∈ K ∩ R. (Since K is closed under

complex conjugation, it is clear that this can be done for any elements P,Q ∈ K). Then L has the

equation

(q1 − p1)(y − p2) = (q2 − p2)(x − p1),

which has the desired form. �

Lemma 3.11.15. The equation for a circle centred at a point of K passing through another point of

K can be written in the form

x2
+ y2
+ ax + by + c = 0

where a, b, c ∈ K ∩ R.

Proof. Let C be the circle centered at P = (p1, p2) passing through Q = (q1, q2)., where p1, p2, q1, q2 ∈
K ∩ R. Then the radius of C is

r =

√
(q2 − pq)2 + (q1 − p1)2 ∈ K ∩ R.

So C has the equation

(x − p1)2
+ (y − p2)2

= r2,

which has the desired form. �

Proof of Theorem (continued).

1. The intersection of ax + by = c, a′x + b′y = c′ is the solution of the simultaneous equations,

which is given by a quotient of determinants involving a, b, c, a′, b′, c′. So the intersection is

z = (p, q) where p, q ∈ K ∩ R. Hence z = p + iq ∈ K.

2. The intersection(s) of ax + by = c and x2
+ y2
+ a′x + b′y + c′ = 0:

x2
+

(
c − ax

b

)2

+ a′x + b′
(
c − ax

b

)
+ c′ = 0.

(consider b = 0 separately: exercise). This is a quadratic, so if there is a solution then by

quadratic formula, it lies in K ∩ R. Similarly, the solution for y lies in K ∩ R.
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3. Intersection(s) of x2
+ y2
+ ax + by + c = 0 and x2

+ y2
+ a′x + b′y + c′ = 0:

By subtracting the equations, get

(a − a′)x + (b − b′)y + c − c′ = 0

so the intersection pts. are the same as that of the line (a − a′)x + (b − b′)y + c − c′ = 0 and the

circle x2
+ y2
+ ax + by + c = 0, which transposes into case 2.

�

Theorem 3.11.16. If z ∈ F then z is algebraic over Q and [Q(z) : Q] is a power of 2.

Proof. By the last theorem, if z ∈ F then we can create a field K s.t. z ∈ K by a finite number of

extensions, each of which adjoins the square root of some element. That is,

Q ⊂ Q(z) ⊂ K

where Q ⊂ K is a composition of some sequence of degree 2 extensions. So

[K : Q] = 2t

for some t, and [Q(z) : Q] divides 2t, so it is a power of 2. �

Example 3.11.17. It is impossible by ruler and compass to trisect 60◦.

Proof. Using earlier techniques, we can construct equilateral triangles and thus cos 60◦, sin 60◦ ∈ F.

If 60◦ could be trisected, then α = cos 20◦ would be in F.

In general,

cos 3θ = 4 cos3 θ − 3 cos θ.

For θ = 20◦, cos 3θ = cos 60 = 1
2
. So

1

2
= 4α3 − 3α

or

8α3 − 6α − 1 = 0.

But 8x3 − 6x − 1 is irreducible over Q, so

[Q(α) : Q] = 3,

which is not a power of 2. Hence α < F. So 60◦ cannot be trisected using ruler and compass. �

Example 3.11.18. It is impossible by ruler and compass to “double” the cube (ie. to construct a cube

whose volume is twice that of a given cube). (Historically, this was called “duplicating” the cube).

Proof. Suppose the volume of the original cube is 1. Then the length of the edge of the new cube

is 2
1
3 , whose min. poly. is x3 − 2. Since 3 is not a power of 2, 2

1
3 is not constructible, so we cannot

duplicate the cube. �
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3.12 Solvability by Radicals

g(x) = x2
+ bx + c ⇒ x = −b±

√
b2−4c

2
. So if b, c ∈ Q, then we can form the splitting field of f (x) by

adjoining to Q the square root of some elt. of Q.

g(x) = x3
+ ax2

+ bx + c. We shall see, ∃ a formula where, by successively adding roots (cube

roots and square roots) to our field, we can produce the splitting field of g(x). ∃ a similar formula for

quartics.

Given a field F and a polynomial p(x) ∈ F[x], we say that p(x) is solvable by radicals over F if

we can find a sequence of fields satisfying:

F0 = F

F1 = F0(w1) where w
r1

1
∈ F0 for some r1

F2 = F1(w2) where w
r2

2
∈ F1 for some r2

...

Fn = Fn−1(wn) where wrn

n ∈ Fn−1 for some rn

such that p(x) splits in Fn. (We do not require that Fn be the splitting field of p(x); it could be larger.

Thus, Fn might not be normal.)

Let F = K(a1, . . . , an) be the field of fractions in n variables. The general polynomial of degree n

over K,

p(x) = xn
+ a1xn−1

+ · · · + an−1x + an

can be regarded as an elements of F[x]. Finding a “formula” involving roots for the general polyno-

mial of degree n over K means showing that p(x) ∈ F[x] is solvable by radicals. We shall show that

that this is not true if n ≥ 5.

Note: This does not mean that it is impossible for some specific 5th degree polys. in K[x] to be

solvable by radicals.

Theorem 3.12.1. Suppose char F = 0. Let p(x) = xn − 1 ∈ F[x]. Then F
(
e

2πi
n

)
is the splitting field of

p(x) over F, and the Galois group of p(x) over F is abelian.

Proof. Let w = e
2πi
n . Then all roots of p(x) are powers of w, so F(w) is the splitting field for p(x) over

F.

Let σ, τ ∈ G = G(F(w), F). σ is determined by σ(w), since σ( f ) = f ∀ f ∈ F. σ(w) is a root of

xn − 1, so let

σ(w) = w j, for some j.

Similarly,

τ(w) = wk, for some k.
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So

στ(w) = σ(wk) = (σ(w))k
= (w j)k

= w jk
= τσ(w).

ie. στ = τσ. So G is abelian. �

Theorem 3.12.2. Suppose char F = 0 and suppose w = e
2πi
n ∈ F. Let u be a root of p(x) = xn − a

lying in an extension field of F. Then F(u) is the splitting field of p(x) over F and the Galois group of

xn − a over F is cyclic, with order dividing n.

Proof. Let F ⊂ K be an extension s.t. u ∈ K. Then the n roots of xn − a are

u,wu,w2u, . . . ,wn−1u,

which all lie in F(u). So F(u) is the splitting field of p(x) over F.

Let G = G(F(u), F). Let σ ∈ G. Then σ(u) is a root of p(x), so σ(u) = w ju for some j, and σ is

determined by σ(u). Define ψ : G 7→ Z/nZ by

ψ(σ) = j where σ(u) = w ju.

If ψ(τ) = k then

στ(u) = σ(wku) = σ(wk)σ(u) = wkw ju = w j+ku.

∴ ψ(στ) = j+ k = ψ(σ)+ψ(τ), so ψ is a group homomorphism. If ψ(σ) = ψ(τ) then σ(u) = σ(τ) and

thus σ = τ. Hence ψ is a monomorphism. Thus,

G � subgroup of a cyclic group of order n,

so G is cyclic with order dividing n. �

Theorem 3.12.3. Let p be prime. Suppose ∃p distinct elts. z1, . . . , zn ∈ F s.t.

z
p

j
= 1 ∀ j.

Let F ⊂ E be normal s.t. G = G(E, F) is cyclic of order p. Then E = F(u) where up ∈ F.

Proof. Let c ∈ E − F. Since [E : F] = |G| = p, there are no fields lying strictly between F and E, so

E = F(c). Let σ be a generator of G. Let

c1 = c, c2 = σ(c), c3 = σ(c2), . . . , c j = σ(c j−1).

Let

a j = c1 + c2z j + c3z2
j + · · · + cpz

p−1

j
.
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Then, using the fact that z
p

j
= 1,

σ(a j) = c2 + c3z j + · · · + cpz
p−2

j
+ c1z

p−1

j
=

a j

z j

.

So σ(a
p

j
) = (σ(a j))

p
=

a
p

j

z
p

j

= a
p

j
. Thus, g(a

p

j
) = a

p

j
∀g ∈ G, ie. a

p

j
∈ F. Letting

M =



1 z1 z2
1
· · · z

p−1

1

1 z2 z2
2
· · · z

p−1

2
...

1 zp z2
p · · · z

p−1
p


,

we have

M



c1

...

cp

 =



a1

...

ap

 .

Since M has entries in F and

det M =
∏

i< j

(zi − z j) , 0,

we can write c = c1 as an F-linear combination of a1, . . . , ap. Since c < F, not all a j are in F.

Let u = a j s.t. a j < F. Then E = F(u) (by the same reasoning that showed E = F(c)) and

up
= a

p

j
∈ F. �

Theorem 3.12.4. Let p(x) ∈ F[x] be solvable by radicals over F, where char F = 0. Then ∃ a

sequence of field extensions

F = L0 ⊂ L1 ⊂ · · · ⊂ Lk = L

where Lλ = Lλ−1(αλ), s.t. α
sλ
λ
∈ Lλ−1 for some sλ and L is normal over F and contains the splitting

field of p(x).

Proof. By definition, ∃ a sequence

F = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

where K j = K j−1(w j) with w
r j

j
∈ K j−1 for some r j, and p(x) splits in K.

Write K = F(a) and let L be the splitting field of the min. poly. of a over F. Thus L is normal over

F. Let

G = G(L, F) = {σ0, . . . , σt−1}, where |G| = t.
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Since K = F(w1,w2, . . . ,wm),

L = F(σ0w1, σ1w1, . . . , σt−1w1, σ0w2, . . . , σt−1w2, . . . , σ0wm, . . . , σt−1wm).

Label these generators αλ, ie. let αλ = σiw j+1 where

λ − 1 = i + t j, 0 ≤ i ≤ t − 1, 0 ≤ j ≤ m − 1.

Inductively define L0 := F, Lλ = Lλ−1(αλ) for 1 ≤ λ ≤ tm.

Given λ, write λ − 1 = i + t j where 0 ≤ i ≤ t − 1, 0 ≤ j ≤ m − 1. Then

α
r j+1

λ
= (σiw j+1)r j+1 = σi

(
w

r j+1

j+1

)
∈ σi(K j) = F(σiw1, . . . , σiw j) ⊂ Lλ−1.

Thus, setting sλ = r j+1 satisfies the statement of the theorem. �

Theorem 3.12.5. Let F be a field with char F = 0 and let f (x) ∈ F[x]. Then f (x) is solvable by

radicals ⇐⇒ the Galois group of f (x) over F is a solvable group.

Proof.

⇒: Suppose f (x) is solvable by radicals. Then ∃ a sequence of field extensions

F = L0 ⊂ L1 ⊂ · · · ⊂ Lk = L

where L j = L j−1(α j), s.t. α
r j

j
∈ L j−1 and L is normal over F and f (x) splits in L. Since L is

normal, L is the splitting field of some g(x) ∈ F[x]. Let n = lcm{r1, . . . , r j} and let

w = e
2πi
n .

Let G = G(L, F) and H = G(L(w), F). L is normal over F, so by the Fund. Thm. (part 5),

G � H/G(L(w), L).

G(L(w), L) is abelian, so to show G is solvable, it suffices to show that H is solvable.

Let

H0 = G(L(w), F)

and for i ≥ 1,

Hi = G(L(w), Li−1(w)).

Then H0 = H and Hk+1 = {e}. F(w) is normal over F, and by Theorem 3.12.2, Li(w) is normal

over Li−1(w) for each i. So by the Fund. Thm. (parts 4 and 5), Hi+1 ⊳ Hi and

Hi/Hi+1 � G(Li(w), Li−1(w)),
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for i ≥ 1, whereas

H0/H1 � G(F(w), F).

By Theorem 3.12.2, G(Li(w), Li−1(w)) is cyclic and thus abelian. G(F(w), F) is also abelian.

Hence, H is solvable, and so G is solvable.

⇐: Suppose that the Galois group of f (x) over F is a solvable group. Let E be the splitting field of

f (x) over F. Let G = G(E, F) and let n = |G|. Let F0 = F and F1 = F0(w) where w = e
2πi
n . Let

K = E(w). By the Fund. Thm. (part 5),

G(K, F)/G � G(E(w), E),

which is abelian, so G(K, F) is solvable. By Theorem 3.10.9, G(K, F1) is isomorphic to a

subgroup H of G(K, F), so it too is solvable.

So ∃ subgroups

{e} = Hr+1 ⊳ Hr ⊳ · · · ⊳ H2 ⊳ H1 = H

s.t. H j/H j+1 is cyclic of prime order.

By the Fund. Thm., corresponding to this is a sequence of fields

F1 ⊂ F2 ⊂ · · · ⊂ Fr+1

where F j = KH j , so that H j = G(K, F j). F j is normal over F j+1 with cyclic Galois group

of prime order p j. Since p j
|| |G| = n and e

2πi
n ∈ F j, F j contains all the pth

j
roots of 1. By

Theorem 3.12.3, this implies that

F j+1 = F j(α j)

where α
p j

j
∈ F j. Since Fr+1 = K contains the splitting field of f (x), f (x) is solvable by radicals

over F.

�

Theorem 3.12.6. The Galois group of p(x) = xn
+ a1xn+1

+ · · · + an−1x + an over K(a1, . . . , an)[x] is

S n.

Proof. Let r1, . . . , rn be the roots of p(x) in some extension field M of K(a1, . . . , an). Then the splitting

field of p(x) is K(r1, . . . , rn), and

a j = ±s j(r1, . . . , rn) (the jth symmetric poly.).

∴ The Galois group of p(x) is S n by Theorem 3.9.2. �

Corollary 3.12.7. The general nth order polynomial is not solvable by radicals if n ≥ 5.
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3.13 Calculation of Galois Groups: Cubics and Quartics

Let f (x) ∈ F[x]. Let E be the splitting field of f (x) over F. Suppose E is separable over F. Let

G = G(E, F) be the Galois group of f (x) over F and let α1, . . . , αn ∈ E be the roots of f (x).

As noted earlier, each σ ∈ G permutes α1, . . . , αn, and this association yields a homo.

G ⊂ S n.

What properties must this subgroup have?

Definition 3.13.1. A subgroup G ⊂ S n is called transitive if ∀i, j ∃σ ∈ G s.t. σ(i) = j.

Example 3.13.2. {e, (1 2 3 4), (1 3)(2 4), (1 4 3 2)} ⊂ S 4 is transitive.

{e, (1 2), (3 4), (1 2)(3 4)} ⊂ S 4 is not transitive.

If k < n then S k ⊂ S n cannot be transitive. So, to have a chance for G to be transitive in S deg f (x),

f (x) must have distinct roots.

Theorem 3.13.3. Let n = deg f (x). Then G ⊂ S n is transitive ⇐⇒ f (x) is irreducible in F[x].

Proof.

⇐: Suppose f (x) is irreducible. Then by Theorem 3.3.15, for any pair of roots α, β of f (x), ∃σ ∈ G

s.t. σ(α) = β. So G is transitive.

⇒: Suppose G is transitive. If f (x) is reducible, write

f (x) = g(x)h(x)

where g(x) is irreducible. Let α be a root of g(x). If β is any root of f (x), then find σ ∈ G

s.t. σ(α) = β. Since g ∈ F[x] and σ fixes F, this means that β is also a root of g(x). This shows

that every root of f (x) is a root of g(x). But G transitive ⇒ the roots of f (x) are distinct, so

roots of h(x) are not roots of g(x), which is a contradiction. Hence f (x) is irreducible.

�

Let h(y1, . . . , yn) ∈ F[y1, . . . , yn]. Let

H = {σ ∈ S n | σh = h}

where σ acts by permuting the variables, ie.

h · σ = (σ−1h)(y1, . . . , yn) := h(yσ(1), . . . , yσ(n)).

H ≤ S n is called the isotropy subgroup of h.
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Example 3.13.4. n = 4, h = y1 + y2. Then H = {e, (1 2), (3 4), (1 2)(3 4)}.

Let δ = h(α1, . . . , αn) ∈ E. If σ ∈ G ∩ H then σ(δ) = δ, so

σ ∈ G(E, F(δ)).

When is G(E, F(δ)) = G ∩ H?

Example 3.13.5.

1. n = 3,

h(y1, y2, y3) = (y1 − y2)(y1 − y3)(y2 − y3).

Then H = {e, (1 2 3), (1 3 2)} = A3. Let f (x) be an irreducible cubic over F with roots α1, α2, α3.

Assume char F , 2. Let

∆ = h(α1, α2, α3).

For σ ∈ G, if σ ∈ H then σ(∆) = ∆. If σ < H then σ(∆) = −∆ , ∆. So

σ(∆) = ∆ ⇐⇒ σ ∈ G ∩ H.

∴ G ∩ H = G(E, F(∆)).

2. n = 4, h = y1 + y4. Let f (x) = x4 − x2
+ 1 over F = Q. Then

H = {e, (1 4), (2 3), (1 4)(2 3)}.

Also,

f (x) = x4−x2
+1 = (x2

+1)2−3x2
= (x2

+1+
√

3x)(x2
+1−

√
3x) = (x2

+

√
3x+1)(x2−

√
3x+1).

So the roots are
−
√

3 ±
√

3 − 4

2
,

√
3 ±
√

3 − 4

2
.

Let

α1 =
−
√

3 + i

2
, α2 =

−
√

3 − i

2
, α3 =

√
3 + i

2
, α4 =

√
3 − i

2
,

and with this numbering of the roots, H ⊂ G. So

δ = h(α1, α2, α3, α4) = α1 + α4 = 0.

Consider complex conjugation σ. σ ∈ G and acts on the roots as σ = (1 2)(3 4), so σ < H. But

σ(0) = 0. So in this case,

H = G ∩ H ⊆� G(E, F(δ)) = G(E, F(0)) = G(E, F).
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More generally, suppose

δ j = h j(α1, . . . , αn) ∈ E

for j = 1, . . . , k, where h j ∈ F[y1, . . . , yn]. Define the isotropy subgroup by

H = {σ ∈ S n | σh j = h j ∀ j = 1, . . . , k}.

In general:

Theorem 3.13.6. Let

δ j = h j(α1, . . . , αn) ∈ E

where h j(y1, . . . , yn) ∈ F[y1, . . . , yn]. Let H ⊂ S n be the isotropy subgroup of {h j}. Suppose that for all

σ ∈ G − H, ∃ j s.t. σ(δ j) , δ j. Then

G(E, F(δ1, . . . , δn)) = G ∩ H.

Proof. G ∩ H ⊂ G(E, F(δ1, . . . , δn)) in general. Suppose σ ∈ G(E, F(δ1, . . . , δn)) ⊂ G(E, F) = G.

Then σ(δ j) = δ j ∀ j so σ ∈ H, since if σ < H then ∃ j s.t. σ(δ j) , δ j. �

Note: It is often not so easy to check whether or not the condition σ(δ) , δ ∀σ ∈ G − H is satisfied.

3.14 Cubics

3.14.1 Galois Theory of Cubics

Let

k(z) = z3
+ az2

+ bz + c

be irreducible, a, b, c ∈ F. Assume char F , 2, 3. Let z = x − a
3

to get

f (x) = x3
+ px + q

where p = 3b−a2

3
, q = 2a3−9ab+27c

27
. This adds a

3
to each root, but does not affect the Galois group since

a
3
∈ F.

Let E be the splitting field of f and let G = G(E, F) be the Galois group of f . Since G ⊂ S 3, and

G is transitive, there are only 2 possibilities: G = S 3 or G = A3.
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G=A3G=S3

1F(   ) = E

1

21F(    ,    ) = E

F

3
F(   )

3

F

Either or

2

ie. Depending on a, b, c, either F(α1) already contains α2 and α3 so that E = F(α1) and G = A3 or

it does not and we have a further degree 2 extension. How do we tell which?

Let

∆ = (α1 − α2)(α1 − α3)(α2 − α3).

f (x) is irreducible and char F , 3⇒ the roots are distinct⇒ ∆ , 0.

H = {e, (1 2 3), (1 3 2)} = A3 ⊂ G.

If σ < H then σ(∆) = −∆ , ∆.. The theorem implies G(E, F(∆)) = G ∩ H = A3. So in either case we

have: E

F

?

F(   )

3
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If ∆ ∈ F then F(∆) = F so

G(E, F) = G(E, F(∆)) = A3.

If ∆ < F then [F(∆) : F] > 1 so [E : F] > 3, so G = S 3.

Note: σ(∆) = ±∆ ∀σ ∈ G so

σ(∆2) = ∆2 ∀σ ∈ G.

∴ ∆
2 ∈ F in any case. (This also shows that if ∆ < F then [F(∆) : F] = 2, confirming what we already

know from above).

3A

= F(   )E

F = F(   )

E

3

1 2 1E = F(    ,    ) = F(   ,    )

1E
{e, (2 3)}

= F(   ) 2

{e, (1 3)}

= F(   )E 3

{e, (1 2)}

E = F(   )

3G = A 3G = S

2 2
23

F

3 3 3
2

So, how to tell if ∆ ∈ F? For a general polynomial f (x) ∈ F[x], let it factor in its splitting field as

f (x) =

n∏

i=1

(x − αi).

Let

∆ =

∏

i< j

(αi − α j).

The sign of ∆ depends on our choice of the order of the roots. Set D = ∆2. Then D is fixed by

all permutations of {α j}, (since for each permutation σ, σ(∆) = ±∆). So D ∈ F. D is called the

discriminant of f (x).

n = 2: f (x) = x2
+ bx + c;

α1 =
−b +

√
b2 − 4c

2
, α2 =

−b −
√

b2 − 4c

2
.

∴ ∆ = α1 − α2 =

√
b2 − 4c and D = b2 − 4c.
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n = 3: f (x) = x3
+ ax2

+ bx + c. As before, let x = y − a
3

to get

g(y) = y3
+ py + q

where p = 1
3
(3b − a2) and q = 1

27
(2a3 − 9ab + 27c).

g(y) = (y − α)(y − β)(y − γ)

in an extension field.

s1 = α + β + γ = 0,

s2 = αβ + βγ + αγ = p,

s3 = αβγ = −q.

Then

3y2
+ p = g′(y)

= (y − α)(y − β) + (y − α)(y − γ) + (y − β)(y − γ)

∴ g′(α) = (α − β)(α − γ)

g′(β) = (β − α)(β − γ)

g′(γ) = (γ − α)(γ − β)

∴ D = −g′(α)g′(β)g′(γ).

That is,

D = −(3α2
+ p)(3β2

+ p)(3γ2
+ p)

= −27α2β2γ2 − 9p(α2β2
+ α2γ2

+ β2γ2) − 3p2(α2
+ β2
+ γ2) − p3

= −27s2
3 − 9p(s2

2 − 2s1s3) − 3p2(s2
1 − 2s2) − p3

= −27q2 − 9p(p2 − 0) − 3p2(−2p) − p3

= −4p3 − 27q2

= −4a3c + a2b2
+ 18abc − 4b3 − 27c2.

3.14.2 Solution of Cubics

0 = x3
+ px + q = (x − α1)(x − α2)(x − α3).
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That is,

α1 + α2 + α3 = 0

α1α2 + α1α3 + α2α3 = p

α1α2α3 = −q

Find α1, α2, α3.

Let

∆ = (α1 − α2)(α1 − α3)(α2 − α3) =
√
−4p3 − 27q2.

Let ω = e
2πi
3 so that ω3

= e2πi
= 1, ie. ω satisfies

0 = ω3 − 1 = (ω − 1)(ω2
+ ω + 1).

Explicitly,

ω =
−1 +

√
−3

2
.

Let

z1 = α1 + ωα2 + ω
2α3

z2 = α1 + ω
2α2 + ωα3

z3 = α1 + α2 + α3 = 0

ie. 
z1

z2

0

 = A


α1

α2

α3

 where A =


1 ω ω2

1 ω2 ω

1 1 1

 .

If we can find z1, z2 then


α1

α2

α3

 = A−1


z1

z2

0

. Explicitly,

α1 =
1

3
(z1 + z2)

α2 =
1

3
(ω2z1 + ωz2)

α3 =
1

3
(ωz1 + ω

2z2).
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To find z1, z2:

z3
1 =α

3
1 + ω

3α3
2 + ω

6α3
3 + 3ωα1α2 + 3α1ω

2α2
2

+ 3ω2α2
1α3 + 3ω4α1α

2
3 + 3ω4α2

2α3 + 3ω5α2α
2
3 + 6ω3α1α2α3.

Using the facts that α3
j
= −pα j − q, ω3

= 1, and ω2
= −ω − 1, this becomes

z3
1 = −pα1 − q − pα2 − q − pα3 − q

+ 3ω(α2
1α2 + α1α

2
3 + α

2
2α3) + 3ω2(α1α

2
2 + α

2
1α3 + α2α

2
3) + 6α1α2α3

= −p(α1 + α2 + α3) − 3q − 3ω(α2
1 + α1α

2
3 + α

2
2α3) + 3ω2(α1α

2
2 + α

2
1α3 + α2α

2
3) − 6q

= −9q + 3ωu + 3ω2v

where

u = α2
1α2 + α1α

2
3 + α

2
2α3 and

v = α1α
2
2 + α

2
1α3 + α2α

2
3.

Now,

0 = (α1 + α2 + α3)3

= α3
1 + α

3
2 + α

3
3 + 3α2

1α2 + 3α2
1α3 + 3α2

2α3 + 3α1α
2
2 + 3α1α

2
3 + 3α2α

2
3 + 6α1α2α3

= −pα1 − q − pα2 − q − pα3 − q + 3u + 3v − 6q

= −9q + 3u + 3v.

∴ u + v = 3q. Also,

∆ = (α1 − α2)(α1 − α3)(α2 − α3)

= α2
1α2 − α2

1α3 − α1α
2
2 + α1α

2
3 + α

2
2α3 − α2α

2
3

= u − v.

Using the equations u + v = 3q and u − v = ∆, get

u =
3

2
q +
∆

2

v =
3

2
q − ∆

2
.
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So

z3
1 = −9q + 3ωu + 3ω2v

= −9q + ω
9

2
q + ω

3

2
∆ + ω2 9

2
q − ω2 3

2
∆

= −9q + ω
9

2
q + ω

3

2
∆ − ω9

2
q − 9

2
q − ω3

2
∆ +

3

2
∆

= −27q

2
+ 3ω∆ +

3

2
∆

= −27q

2
+

3

2
∆(2ω + 1)

= −27q

2
+

3
√

3i

2
∆.

Similarly, we find

z3
2 = z1

3
= −27q

2
− 3
√

3i

2
∆.

∴ z1 = (− 27q

2
+

3
√

3i

2
∆)

1
3 and z2 = (− 27q

2
− 3

√
3i

2
∆)

1
3 . This determines α1, α2, α3 in terms of p and q.

To illustrate the Galois theory, we now find a formula for α2 in terms of α1, that makes is obvious

that α2 ∈ F(α1) ⇐⇒ ∆ ∈ F.

∆ = (α1 − α2)(α1 − α3)(α2 − α3)

= (α1 − α2)(2α1 + α2)(α1 + 2α2), since α1 + α2 + α3 = 0

= 2α3
1 + 5α2

1α2 + 2α1α
2
2 − 2α2

1α2 − 5α1α
2
2 − 2α3

2

= −2α1 p − 2q + 3α2
1α2 − 3α1α

2
2 + 2α2 p + 2q

= −2α1 p + 3α2
1α2 − 3α1α

2
2 + 2α2 p.

Also,

q = −α1α2α3 = α1α2(α1 + α2) = α2
1α2 + α1α

2
2 ⇒ α1α

2
2 = q − α2

1α2.

So,

∆ = −2α1 p + 3α2
1α2 − 3q + 3α2

1α2 + 2α2 p

= −2α1 p + 6α2
1α2 − 3q + 2α2 p.

∴ 6α2
1
α2 + 2α2 p = ∆ + 2α1 p + 3q. This gives

α2 =
∆ + 2α1 p + 3q

2(3α2
1
+ p)

. (*)
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Thus, if ∆ ∈ F then α2 ∈ F(α1). Conversely, if α2 ∈ F(α1) then (*)⇒ ∆ ∈ F(α1). But

[F(α1) : F] = 3

and ∆2 ∈ F, so this implies that ∆ ∈ F.

3.15 Quartics

3.15.1 Solution of Quartics

We want to solve

z4
+ a1z3

+ a2z2
+ a3z + a4 = 0.

Let z = x − a
4

to get the form

x4
+ px2

+ qx + r = 0.

Let the roots be r1, r2, r3, r4, so

s1 = r1 + r2 + r3 + r4 = 0

s2 = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 = p

s3 = r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 = −q

s4 = r1r2r3r4 = r.

Suppose we can determine

(r1 + r2)(r3 + r4) = θ1

(r1 + r3)(r2 + r4) = θ2

(r1 + r4)(r2 + r3) = θ3.

Then letting a = r1 + r2, b = r3 + r4, get ab = θ1 and a + b = 0. So −a2
= ab = θ1, so

a =
√
−θ1, b = −

√
−θ1,

where
√
−θ1 is one of the square roots of −θ1 in C.

Similarly,

r1 + r3 =

√
−θ2, r2 + r4 = −

√
−θ2,

r1 + r4 =

√
−θ3, r2 + r3 = −

√
−θ3,
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for choices of
√
−θ2,

√
−θ3. So

√
−θ1 +

√
−θ2 +

√
−θ3 = r1 + r2 + r1 + r3 + r1 + r4

= 2r1 + r1 + r2 + r3 + r4

= 2r1.

∴ r1 =

√
−θ1 +

√
−θ2 +

√
−θ3

2
.

Similarly, we can solve for r2, r3, r4 if we know θ1, θ2, θ3. So it suffices to find θ1, θ2, θ3.

Consider the cubic equation

f (x) = (x − θ1)(x − θ2)(x − θ3) = 0.

If we can write the coefficients of this eqn. in terms of p, q, r, then we can use the soln. of cubics

to determine θ1, θ2, θ3 in terms of p, q, r and thus write r1, r2, r3, r4 in terms of p, q, r.

Consider the action of S 4 as permutations of r1, r2, r3, r4. Consider first the transposition σ which

interchanges r1 and r2:

σ(θ1) = θ1 σ(θ2) = θ3 σ(θ3) = θ2.

∴ σ( f (x)) = f (x).

Similarly, σ( f (x)) = f (x) for every transposition in S 4. Since S 4 is generated by transpositions,

σ( f (x)) = f (x) ∀σ ∈ S 4. That is, the coeffs. of f (x) are left fixed by all permutations of r1, r2, r3, r4.

So the coeffs. of f (x) are symmetric polynomials in r1, r2, r3, r4, and so can be expressed in terms

of p, q, r. This gives:

Theorem 3.15.1. The coefficients of f (x) are polynomials in p, q, r.

To find the coefficients:

Method 1: Expand

f (x) = (x − (r1 + r2)(r3 + r4))(x − (r1 + r3)(r2 + r4))(x − (r1 + r4)(r2 + r3))

= big mess

= poly. in p, q, r, x.

Or

Method 2: Geometric method using conics.
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3.15.2 Conics (over R)

Definition 3.15.2. A conic is a polynomial of degree ≤ 2 in two variables (over R),

q(x, y) = ax2
+ bxy + cy2

+ dx + ey + f .

To conic q(x, y), associate the 3-variable quadratic form:

Q(X,Y,Z) = aX2
+ bXY + cY2

+ dXZ + cYZ + f Z2.

ie. Q(X,Y,Z) = Z2q( X
Z
, Y

Z
). The associated matrix to q is

Mq =


a b

2
d
2

b
2

c e
2

d
2

e
2

f

 ,

and this gives

Q(X,Y,Z) =
(

X Y Z
)

Mq


X

Y

Z

 .

Mq is symmetric, so it is diagonalizable. ie. ∃U s.t.

U−1MqU =


λ1 0 0

0 λ2 0

0 0 λ3

 .

This corresponds to change of variables


X

Y

Z

 = U


X′

Y ′

Z′

 .

In the new basis,

Q′(X′,Y ′,Z′) = λ1X′2 + λ2Y ′2 + λ3Z′2.

det Mq = λ1λ2λ3. If det Mq = 0 then Q = 0 degenerates into a product of lines.

e.g. Suppose λ3 = 0. If λ1, λ2 have the same sign then Q′ = 0 ⇐⇒ X′ = 0,Y ′ = 0, giving one

line. If λ1, λ2 have different signs then

0 = Q′ = λ1X′2 + λ2Y ′2

factors into linear factors, giving two planes. So q(x, y) degenerates when det Mq = 0.
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Conversely, if q(x, y) factors as a product

q(x, y) = (αx + βy + γ)(δx + ǫy + ϕ)

then Q factors as

(αX + βY + γZ)(δX + ǫY + ϕZ),

and by inspection, this can only happen when one of the λi’s is 0. So q(x, y) is degenerate ⇐⇒
det Mq = 0.

Consider the quartic

x4
+ px2

+ qx + r = 0.

Let y = x2. Then solving x4
+ px2

+ qx + r = 0 is equivalent to solving the system

q1 = y2
+ py + qx + r = 0,

q2 = y − x2
= 0.

∴ Look for the intersection of 2 conics.

y = x
q  = 02

1q  = 0P3

2

2

P

4P

1P

Let the intersection points be

P1 = (r1, r
2
1), P2 = (r2, r

2
2), P3 = (r3, r

2
3), P4 = (r4, r

2
4).

Consider the family of conics qt = q1−tq2. Then qt(P j) = 0 regardless of t. Since Mqt
is a 3×3 matrix,

det Mqt
= 0 is a cubic eqn. in t. Let α1, α2, α3 be the roots of det Mqt

. We will show that α1, α2, α3 are

θ1, θ2, θ3.
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For j = 1, 2, 3, det Mqα j
= 0, so qα j

is a product of lines. We know that P1, P2, P3, P4 satisfy

qt = 0 ∀t so they must lie on the lines. So the lines have to be those joining the points P j. Let Li j = 0

be the line joining Pi to P j. Then (upon renumbering if necessary),

qα1
= L12L34, qα2

= L13L24, qα3
= L14L23.

L12 is

y − r2
1 =

(
r2

2
− r2

1

r2 − r1

)
(x − r1) = (r2 + r1)(x − r1) = (r1 + r2)x − r1r2 − r2

1

That is, L12 is y − (r1 + r2)x + r1r2 = 0. Similarly, L34 is y − (r3 + r4)x + r3r4 = 0.

To show α1 = θ1:

q1 − α1q2 = qα1

= (y − (r1 + r2)x + r1r2)(y − (r3 + r4)x + r3r4)

= y2 − (r1 + r2 + r3 + r4)xy + (r1 + r2)(r3 + r4)x2 − (r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4)x

+ (r1r2 + r3r4)y + r1r2r3r4

= y2
+ θ1x2

+ qx + (p − r1r3 − r1r4 − r2r3 − r2r4)y + r

= y2
+ θ1x2

+ qx + py − (r1 + r2)(r3 + r4)y + r

= y2
+ θ1x2

+ qx + py − θ1y + r

= q1 − θ1q2.

∴ α1 = θ1. Similarly, α2 = θ2 and α3 = θ3. So to find θ1, θ2, θ3, we must solve det Mqt
= 0

qt = q1 − tq2 = y2
+ py + qx + r − t(y − x2) = y2

+ tx2
+ qx + (p − t)y + r.

So

det Mqt
=

∣∣∣∣∣∣∣∣

t 0
q

2

0 1
p−t

2
q

2

p−t

2
r

∣∣∣∣∣∣∣∣

= tr − q2

4
−

(
p − t

2

)2

t

= tr − q2

4
− p2t

4
+

2pt2

4
− t3

4

=
1

4
(t3 − 2pt2

+ (p2 − 4r)t + q2)

So det Mqt
= 0 ⇐⇒ t3 − 2pt2

+ (p2 − 4r)t + q2
= 0.

Summary: To solve

z4
+ a1z3

+ a2z2
+ a3z + a4 = 0,
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1. Let z = x − a
4

to get the form

x4
+ px2

+ qx + r = 0.

2. Solve the cubic

t3 − 2pt2
+ (p2 − 4r)t + q2

= 0

to get θ1, θ2, θ3.

3. r1 =

√
−θ1+

√
−θ2+

√
−θ3

2
for some choice of square roots of −θ1,−θ2,−θ3, and similar formulae for

the other roots.

Notice that

θ1 − θ2 = (r1 + r2)(r3 + r4) − (r1 + r3)(r2 + r4)

= r1r3 + r1r4 + r2r3 + r2r4 − r1r2 − r1r4 − r2r3 − r3r4

= −(r1 − r4)(r2 − r3).

Similarly, θ1 − θ3 = −(r1 − r3)(r2 − r4) and θ2 − θ3 = −(r1 − r2)(r3 − r4). So

Dcubic =

∏

i, j

(θi − θ j) =
∏

i, j

(ri − r j) = Doriginal quartic.

Thus

D = −4(−2p)3q2
+ (−2p)2(p2 − 4r)2

+ 18(−2p)(p2 − 4r)q2 − 4(p2 − 4r)3 − 27(q2)2

= 32p3q2
+ 4p4 − 32p4r + 64p2r2 − 36p3q2

+ 144pq2r − 4p6
+ 48p4r − 192p2r2

+ 256r3 − 27q4

= 16p4r − 4p3q2 − 128p2r + 144pq2r − 27q4
+ 256r3

= −128b2d2 − 4a3g3
+ 16x4d − 4b3c2 − 27a4d2

+ 18abc3
+ 144a2bd2 − 192acd2

+ a2b2c2 − 4a2b3d

− 6a2c2d + 144bc2d + 256d3 − 27c4 − 80ab2cd + 18a3bcd.

3.15.3 Galois Theory of Quartics

Let

f (x) = x4
+ px2

+ qx + r

be irreducible, char F , 2, 3. Let E be the splitting field of f (x) over F. Let G = G(E, F) be the Galois

group.

G ⊂ S 4 is transitive. The transitive subgroups of S 4 are:

1. S 4.
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2. A4.

3. The Sylow 2-subgroups, isomorphic to D8:

{e, (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 3), (2 4), (1 2)(3 4), (1 4)(2 3)},
{e, (1 3 2 4), (1 2)(3 4), (1 4 2 3), (1 2), (3 4), (1 3)(2 4), (1 4)(2 3)},
{e, (1 2 4 3), (1 4)(2 3), (1 3 4 2), (1 4), (2 3), (1 2)(3 4), (1 3)(2 4)}.

4. Groups isomorphic to C3:

{e, (1 2 3 4), (1 3)(2 4), (1 4 3 2)}, {e, (1 3 2 4), (1 2)(3 4), (1 4 2 3)}, {e, (1 2 4 3), (1 4)(2 3), (1 3 4 2)}.

5. {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} � C2 ×C2 = V .

Let

g(x) = (x − θ1)(x − θ2)(x − θ3) = x3 − 2px2
+ (p2 − 4r)x + q2,

where

θ1 = (r1 + r2)(r3 + r4),

θ2 = (r1 + r3)(r2 + r4),

θ3 = (r1 + r4)(r2 + r3).

Let

∆ =

∏

i< j

(ri − r j) = −(θ1 − θ2)(θ1 − θ3)(θ2 − θ3).

char F , 2 and f irreducible⇒ roots are distinct, so ∆ , 0. The discriminant is

D = ∆2 ∈ F.

Let K = F(θ1, θ2, θ3) be the splitting field of g(x). θ j ∈ E for j = 1, 2, 3 so K ⊂ E. Notice that

V � C2 ×C2 is the isotropy group of

{θ1, θ2, θ3}.
ie. If σ ∈ V then σ(θ j) = θ j, but if σ ∈ S 4 − V then for some j, σ(θ j) , θ j. According to Theorem

3.13.6, this implies G(E,K) = G ∩ V .
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G    V

1 2

E

3K = F(    ,    ,    )

Gg

G

F
By the Fund. Thm.,

Gg = G(K, F) � G/(G ∩ V).

We can calculate Gg from the section on cubics. Will this determine G? By inspection:

G G/(G ∩ V)

1 S 4 S 3

2 A4 C3

3 D8 C2

4 C4 C2

5 V {e}
So Gg = G/(G ∩ V) will tell us G unless Gg � C2, in which case it cannot distinguish between D8

and C4.

Study Gg = C2 more closely to obtain a method of distinguishing. So assume Gg � C2. Since g(x)

is a cubic and |C2| = 2, this means that one root of g(x), say θ1, already lies in F. ie. In F, g(x) factors

as

g(x) = (x − θ1)g1(x)

where g1(x) is an irreducible quadratic (with roots θ2, θ3, which are not in F).

Suppose G = C4.
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4 3212C
C

E

2E   = F(    ) = F(    ,    ,    ) = F(   )

1F = F(    )

2

2

Recall (r1 + r2)2
= −θ1 so [F(r1 + r2) : F] ≤ 2. If r1 + r2 ∈ F then r1 + r2 is fixed by all σ ∈ G. But

G = C4 contains a 4-cycle, and no 4-cycle fixes r1+r2. e.g. Say σ = (1 2 3 4). Then σ(r1+r2) = r2+r3.

Thus r1 + r2 < F, and so

[F(r1 + r2) : F] = 2.

C4 has a unique subgroup of index 2, so E has a unique subfield of order 2 over F. So

F(r1 + r2) = EC2 = F(θ2) = F(∆).

Hence r1 + r2 = a + b∆ for some a, b ∈ F.

−θ2
1 = (r1 + r2)2

= a2
+ 2ab∆ + b2

∆
2
= a2

+ b2D + 2ab∆

where D = ∆2 ∈ F. So

2ab∆ = −θ1 − a2 − b2D ∈ F.

But ∆ < F, so either a = 0 or b = 0. b , 0, since b = 0 puts r1 + r2 = a ∈ F, so a = 0. Thus

−θ1 = b2D

∴
−θ1

D
is a square in F.

In conclusion, G = C4 ⇒ −θ1

D
is a square in F.

Conversely, suppose −θ1

D
= b2 for some b ∈ F. Then

(r1 + r2)2
= b2D = b2

∆
2

so r1 + r2 = ±b∆ ∈ F(∆).
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Suppose that G = D8. Then by inspection, G contains 2 disjoint transpositions. (1 2) < G,

since this contradicts r1 + r2 = ±b∆ (any transposition applied to ∆ produces −∆). So, some other

transposition, say (1 3) lies is G (since G contains 2 disjoint transpositions, one of them must include

1).

r3 + r2 = (1 3) · (r1 + r2) = (1 3)(±b∆) = ∓b∆.

So

−θ3 = (r3 + r2)2
= b2
∆

2
= b2D ∈ F.

This is a contradiction, so G 6� D8, and thus, G � C4. ie. G � C4 ⇐⇒ − θ1

D
is a square in F.

Summary: To compute G,

1. Compute

g(x) = x3 − 2px2
+ (p2 − 4r)x + q2.

2. Factor g(x) in F:

Case I: g(x) factors completely in F. Then Gg = {e}, so G = V .

Case II: g(x) has one linear factor in F,

g(x) = (x − θ)g1(x).

(a) The factorization determines θ ∈ F.

(b) Compute D ∈ F, the discriminant of g, by earlier formula.

(c) If − θ

D
is a square in G, then G = C4; otherwise, G = D8.

Case III: g(x) is irreducible over F.

(a) Compute D ∈ F as above.

(b) If D is a square in F then Gg = C3 = A3, so G = A4. Otherwise, Gg = S 3 so G = S 4.
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For G = S 4:

r1 + r2 , 0, since θ1 , 0 (g is irreducible when G = S 4). Similarly, ri + r j , 0 ∀i, j. So

r1 + r2 , ri + r j

unless i = 1, j = 2 or j = 1, i = 2. Hence σ(θ j) , θ j if σ ∈ isotropy group of θ1, which is D8. Thus,

G(E, F(θ1)) � D8.

Let

H = isotropy group of r1 + r2 = {e, (1 2), (3 4), (1 2)(3 4)} � C2 ×C2.

21= F(r +r )E
H

4A

E = F(   )

E
S3

1= F(r )
1

E
D8

= F(    )

2C   = {e, (3 4)}

= F(r ,r )1 2
E

1 2 3E
V

= F(    ,    ,    )

2C   = {e, (1 2)(3 4)}

E
3C   = <(1 2 3)>

E

C4

E

E

F

2
3

4

22 2

2

2

2

2

2

2

2

3

3

3 4
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For G = A4:

In this case,

V = G(E, F(θ1)) = isotropy group of θ1.

F = F(   )

1E
V

= F(    )

C2

= F(r +r )1 2
E

A3

3

E = F(r )1 2

4

3 2

E

For G = D8:

2 3

V

E = F(   ) = F(    ) = F(    )

1F = F(    )

31= F(r +r )
<(1 3)(2 4)>

E
1= F(r )

<(3 4)>

E

2= F(r +r )

2

1

<(1 2), (3 4)>

E
C4

E

E

2 2

2 2

222

171



For G = C4:

411

21

2C

E = F(   ) = F(r +r )

3

E

= F(r +r ) = F(r +r  )

1F = F(    )

2

2

For G = C2 ×C2:

321F = F(    ,    ,    ) = F(   )

E 1= F(r +r  )4

<(1 4)(2 3)>

= F(r +r  )1E

2

3

<(1 3)(2 4)>

E
<(1 2)(3 4)>

21= F(r +r  )

E

2

2

2
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3.16 Resultants and Discriminants

Let F be a field. Let f (x) = anxn
+ · · · + a0 and g(x) = bmxm

+ · · · + b0 belong to F[x].

Let d(x) = gcd( f (x), g(x)). Suppose deg d(x) > 0. Write

f (x) = b(x)d(x),

g(x) = a(x)d(x),

with deg b(x) < n, deg a(x) < m. Then

a(x) f (x) = a(x)b(x)d(x) = b(x)g(x).

Conversely, suppose ∃a(x), b(x) s.t. deg a(x) < m, deg b(x) < n. and

a(x) f (x) = a(x)b(x)d(x) = b(x)g(x).

So f (x) | b(x)g(x). If gcd( f (x), g(x)) = 1 then f (x) | b(x), contradicting deg b < deg f . Thus:

Proposition 3.16.1. f (x), g(x) have a common factor ⇐⇒ ∃a(x), b(x) s.t.

a(x) f (x) = b(x)g(x),

with deg a < deg g and deg b < deg f .

Let a(x) f (x) = b(x)g(x) with

a(x) = α0 + α1x + · · · + αm−1xm−1,

b(x) = β0 + β1x + · · · + βn−1xn−1,

(coeffs. α j, β j ∈ F, possibly are 0). So

n+m−1∑

k=0


k∑

j=0

αk− ja j

 xk
= a(x) f (x) = b(x)g(x) =

n+m−1∑

k=0


k∑

j=0

βk− jb j

 xk.

That is,
k∑

j=0

αk− ja j −
k∑

j=0

βk− jb j = 0 for k = n + m − 1, n + m − 2, . . . , 0.

Treat this as a system of n + m equations in the n + m variables {αm−1, . . . , α0, βn−1, . . . , β0}. Then the

existence of a common factor of f (x), g(x) is equivalent to the existence of a non-zero solution to this
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system.

∴ Common factor exists ⇐⇒ determinant of this system is zero.

The determinant of the system is

Det =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an 0 · · · 0 −bm 0 · · · 0

an−1 an
. . .

... −bm−1 −bm
. . .

...
...

. . . 0
...

. . . 0

a0 an

−b0 −bm

0
. . .

... 0
. . .

...
...

. . .
. . .

...
...

. . .
. . .

...

0 · · · 0 a0 0 · · · 0 −b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Multiply by (−1)m and transpose to get:

Proposition 3.16.2. f (x), g(x) have a common factor ⇐⇒

R( f , g) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 · · · a0

an a0

. . .
. . .

an · · · · · · a0

bm bm−1 · · · b0

bm b0

. . .
. . .

bm · · · · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

R( f , g) is called the resultant of f and g. Denote

R =



an an−1 · · · a0

an a0

. . .
. . .

an · · · · · · a0

bm bm−1 · · · b0

bm b0

. . .
. . .

bm · · · · · · b0



,
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so that R( f , g) = det R.

R



xn+m−1

xn+m−2

...

x

1



=



anxn+m−1
+ an−1xn+m−2

+ · · · + a0xm−1

anxn+m−2
+ an−1xn+m−3

+ · · · + a0xm−2

...

anxn
+ · · · + a0

bmxn+m−1
+ · · · + b0xn−1

...

bmxm
+ · · · + b0



=



xm−1 f (x)

xm−2 f (x)
...

f (x)

xn−1g(x)
...

g(x)



. (*)

Let R̃ be the matrix of cofactors of R. That is,

(R̃)i j = det
(
(n + m − 1) × (n + m − 1) matrix formed by deleting row j and column i from R

)
.

So R̃R = RR̃ = (det R)I. Apply R̃ to (*) gives

(det R)



xn+m−1

xn+m−2

...

x

1



= R̃



xm−1 f (x)

xm−2 f (x)
...

f (x)

xn−1g(x)
...

g(x)



=



∗
...

∗
γ1xm−1 f (x) + · · · + γm f (x) + γm+1xn−1g(x) + · · · + γn+mg(x)


,

where

R̃ =



∗ · · · ∗
...

...

∗ · · · ∗
γ1 · · · γn+m


.

Equating the bottom row gives

det R = r(x) f (x) + s(x)g(x)

for some polynomials r(x), s(x).

Let r1, . . . , rn be the roots of f (x) and let t1, . . . , tm be the roots of g(x). If ri = t j for any i and j

then in an extension field, f (x) and g(x) have a common factor, so det R = 0. For all i, j, ri − t j divides

det R in the splitting field of f (x)g(x). By comparing degrees, up to a scalar multiple λ,

det R = λ
∏

i, j

(ri − t j).

By comparing the lead coefficient, find λ = am
n bn

m. Thus:
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Theorem 3.16.3. R( f , g) = det R = am
n bn

m

∏
i, j(ri − t j).

Since f (x) = an

∏n
i=1(x − ri) and g(x) = bn

∏m
j=1(x − t j), we get:

Corollary 3.16.4.

1. R( f , g) = am
n bn

m

∏n
i=1

∏m
j=1(ri − t j) = am

n

∏n
i=1

(
bm

∏m
j=1(ri − t j)

)
= am

n

∏n
i=1 g(ri), and

2. R( f , g) = (−1)nmbn
m

∏m
j=1

(
an

∏n
i=1(t j − ri)

)
= (−1)nmbn

m

∏m
j=1 f (t j).

Let f (x) be monic and let g(x) = f ′(x).

f ′(x) =

n∑

k=1

(x − r1)(x − r2) · · · ̂(x − rk) · · · (x − rn).

So

f (ri) =
∏

{ j| j,i}
(ri − r j).

Hence

R( f , f ′) =
n∏

i=1

f ′(ri) =
∏

i

∏

{ j| j,i}
(ri − r j) = (−1)

n(n−1)
2

∏

(i, j)|i< j

(ri − r j)
2
= (−1)

n(n−1)
2 D,

where D is the discriminant. So,

D = (−1)
n(n−1)

2 R( f , f ′).

Example 3.16.5.

n = 2: f (x) = x2
+ bx + c.

D = (−1)

∣∣∣∣∣∣∣∣

1 b c

2 b 0

0 2 b

∣∣∣∣∣∣∣∣
= −(b2

+ 4c − 2b2) = b2 − 4c.
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n = 3: f (x) = x3
+ px + q.

D = (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 p q 0

0 1 0 p q

3 0 p 0 0

0 3 0 p 0

0 0 3 0 p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣

1 0 p q

0 p 0 0

3 0 p 0

0 3 0 p

∣∣∣∣∣∣∣∣∣∣∣
− 3

∣∣∣∣∣∣∣∣∣∣∣

0 p q 0

1 0 p q

3 0 p 0

0 3 0 p

∣∣∣∣∣∣∣∣∣∣∣

= −p

∣∣∣∣∣∣∣∣

1 p q

3 p 0

0 0 p

∣∣∣∣∣∣∣∣
+ 3p

∣∣∣∣∣∣∣∣

1 p q

3 p 0

0 0 p

∣∣∣∣∣∣∣∣
− 3q

∣∣∣∣∣∣∣∣

1 0 q

3 0 0

0 3 p

∣∣∣∣∣∣∣∣

= 2p

∣∣∣∣∣∣∣∣

1 p q

3 p 0

0 0 p

∣∣∣∣∣∣∣∣
− 3q

∣∣∣∣∣∣∣∣

1 0 q

3 0 0

0 3 p

∣∣∣∣∣∣∣∣

= 2p2

∣∣∣∣∣∣
1 p

3 p

∣∣∣∣∣∣ + 9q

∣∣∣∣∣∣
1 q

3 p

∣∣∣∣∣∣
= 2p2(−2p) + 9q(−3q)

= −4p3 − 27q2.
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3.17 Reduction Mod p

Theorem 3.17.1. Let f (x) ∈ Z[x] be monic with n = deg f . Let E be the splitting field of f (x) over

Q. Let p be a prime not dividing the discriminant d of f . (In particular, d , 0 or no such p exists.)

Let fp(x) ∈ Fp[x] be the reduction of f (x) modulo p. Let Ep be the splitting field of fp(x) over Fp.

Let R and Rp be the set of roots of f (x), fp(x) in E, Ep respectively. Let D ⊂ E be the smallest subring

of E containing R. Then

1. ∃ a ring homo. ψ : D 7→→ Ep.

2. Any such ψ gives a bijection R
1-17−→ Rp.

3. If ψ, ψ′ are two ring homos. satisfying 1 then ∃σ ∈ G(E,Q) s.t. ψ′ = ψσ.

Proof. 1. In E, write

f (x) = (x − r1) · · · (x − rn)

with R = {r1, . . . , rn}. The ri’s are distinct since d , 0. Let

D = Z[r1, . . . , rn] = Z-linear span in E of elts. r
e1

1
· · · ren

n .

Since f (r j) = 0, rn
j

can be expressed as a Z-linear comb. of rm
j

with m < n; so we may use the

span of elts. of the above form with e j < n ∀ j. D is torsion-free, since D ⊂ E, and so it is a f.g.

torsion free Z-module. So

D = Zu1 ⊕ · · · ⊕ ZuN ,

for some basis u1, . . . , uN .

Claim. {u j} forms a basis for E over Q.

Proof. Any relation over Q among the u j’s gives, after clearing denominators, a relation over Z.

Hence {u j} is linearly indep. over Q.

Let

S = Qu1 ⊕ · · · ⊕ QuN .

S is a subring of E containing Q, and every elt. of S is algebraic over Q. So the inverse of each

elt. is a poly. in that elt. So S is a field. Since r j ∈ S ∀ j, S = E.

Proof of theorem (cont.) By the claim, [E : Q] = N. Let

pD = Z(pu1) ⊕ Z(pu2) ⊕ · · · ⊕ Z(puN) ⊂ D,
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so p ∈ Ann(D/pD). pD is an ideal in D and |D/pD| = pN . Let M be a maximal ideal of D

containing pD. Then
D/pD

M/pD
� D/M,

so |D/M| divides pN , and p ∈ Ann(D/M). Thus the field D/M has characteristic p.

Z[r1, . . . , rn] = D
ψ7−→→ D/M.

So D/M � (Z/p)[r1, . . . , rn], where r j := ψr j.

∴ ψ( f (x)) = (x − r1) · · · (x − rn)

is a factorization of fp(x) in the extension field D/M of Fp. Hence D/M = Ep.

Let ψ : D 7→ Ep be a homomorphism. ψ|Z is reduction mod p, so

fp(x) = ψ( f (x)) = (x − ψ(r1)) · · · (x − ψ(rn)).

Hence {ψ(r j)} are the roots of fp(x). That is, {ψ(r j)} = Rp, so ψ : R
1-17−→ Rp.

Let ψ : D 7→ Ep. Let σ ∈ G = G(E,Q). σ permutes roots, so σ : D 7→ D. If σ , σ′ then σ,σ′

are different permutations of the roots, so since ψ is a bijection on roots, ψσ , ψσ′.

Let

G = {σ1, . . . , σN}.
Then ψ1 = ψσ1, . . . , ψN = ψσN are N distinct ring homomorphisms. Suppose

ψ′ : D 7→ Ep

is a ring homo distinct from ψ1, . . . , ψN . Then {ψ1, . . . , ψN , ψ
′} are linearly independent in homZ(D, Ep)

(by Theorem 3.8.2).

However,

x1ψ1(u j) + x2ψ2(u j) + · · · + xNψN(u j) + xN+1ψ
′(u j) = 0 1 ≤ j ≤ N

forms a system of N equations in N+1 variables in Ep, so it has a nontrivial solution (a1, . . . , aN+1)

in Ep. For an arbitrary element y = η1u1 + η2u2 + · · · + ηNuN ∈ D,

ψi(y) = η1ψiu1 + η2ψiu2 + · · · + ηNψiuN .
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∴ a1ψ1(y) + a2ψ2(y) + · · · + aNψN(y) + an+1ψ
′(y) =

∑
j

∑
i η jaiψi(u j) =

∑
j η j · 0 = 0. Hence,

a1ψ1 + a2ψ2 + · · · + aNψN + aN+1ψ
′
= 0

in homZ(D, Ep), contradicting the linear independence of {ψ1, . . . , ψN , ψ
′}.

So ψ1, . . . , ψN is the complete list of ring homos. from D to Ep. ie. Any ring homo. ψ′ : D 7→ Ep

equals ψσ for some σ ∈ G.

�

Theorem 3.17.2. Let f (x) ∈ Z[x] be monic. Let p be prime s.t. p ∤ discriminant of f (x). Suppose

that in (Z/p)[x], fp(x) factors as

fp(x) = g1g2 · · · gr,

where g j is irreducible. Let n j = deg g j, so n = deg f = n1 + · · · + nr. Then in G = Gal( f (x)) ⊂ S n,

there is a permutation whose cycle decomposition (after suitably ordering the roots) is

(1 2 · · · n1)(n1 + 1 · · · n1 + n2)(n1 + n2 + 1 · · · n1 + n2 + n3) · · · (n1 + · · · + nr−1 + 1 · · · n1 + · · · + nr).

Example 3.17.3.

1. Let f (x) = x3 − 2. For p = 5,

f5(x) = (2 + x)(4 + 3x + x2)

∴ G contains (using some ordering of the roots) the permutation (1)(2 3), usually written

just (2 3). ie. G contains a transposition.

For p = 7, f7(x) = x3
+5, which is irreducible. So G contains (using some ordering of the roots,

not necessarily the same one as before) the cycle (1 2 3). ie. G contains a 3-cycle.

This identifies G as S 3 since no proper subgroup of S 3 contains both a 3-cycle and a transposi-

tion.

2. Let f (x) = x3 − 12x + 8. For all primes, either f (x) is irreducible mod p (yielding a 3-cycle

(1 2 3) ∈ G) or f (x) splits linearly (corresponding to the identity in G). For no prime does

it factor as an irreducible quadratic and a linear factor.

Proof. Let φ : Ep 7→ Ep be the Frobenius automorphism φ(x) = xp, as seen in Example 3.10.10.

Let ψ : D 7→ Ep be a ring homomorphism. Then so is φψ. By the preceding theorem, ∃σ ∈ G

s.t. φψ = ψσ.

Restricted to R = {roots}, ψ has an inverse, so we get

σ = ψ−1φψ,
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when restricted to R. ie. The action of φ as a permutation on R corresponds to that of φ on Rp under

the bijection ψ. So the cycle decompositions are the same. φ maps one root of each g j to another root

of the same g j (and its restriction to those roots is transitive, since φ generates Gal(Ep,Fp)). ie. The

cycle decomposition of φ is as shown, and therefore so is that of σ. �

Example 3.17.4. Let f (x) = x5 − 5x + 12. Since f is irreducible, G contains a 5-cycle.

f3(x) = x(2 + x + x2)(2 + 2x + x2).

∴ G contains a product of 2-cycles, (1 2)(3 4) (in some ordering).

We can search for other primes which might give other decompositions, but we don’t find any

(except for complete factorizations into linear pieces, corresponding to e ∈ G). How do we know when

to stop? According to Chebotorev Density Theorem, every decomposition that appears must appear at

least once for some prime ≤ 70(log d)2, where d is the discriminant. In this case, 70(log d)2 ≈ 22616,

which by the Prime Number Thm. includes approximately the first 2256 ≈ log(22616) primes. In fact,

the 2526th prime is 22619 > 22616. So if we haven’t found any other cycle decompositions in the first

2525 primes then there aren’t any others. Since the only subgroups of S 5 containing only the 5-cycles,

products of two 2-cycles, and the identity are the copies of D5, G = D5 for

f (x) = x5 − 5x + 12.
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Chapter 4

Representations of Groups

4.1 Definitions and Elementary Properties

Let G be a group and K a commutative ring.

A (linear) representation of G consists of a K-module V and an action G × V 7→ V satisfying

g · (av + bw) = ag · v + bg · w ∀g ∈ G, a, b ∈ K, v,w ∈ W.

Equivalently, a rep. is a group homomorphism G 7→ AutK(V).

Another formulation: Define a ring K[G], called the group ring, as follows. As an abelian group,

K[G] = {free K-module with basis G}.

Multiplication is determined by g · h = gh (the left defines multiplication in K[G]; the right is multi-

plication in G). Then a rep. of G on V is a ring homomorphism K[G] 7→ EndK(V). This makes V a

left K[G]-module.

Note that as rings,

K[G × H] = K[G] ⊗Z K[H].

K[G] is commutative ⇐⇒ G is abelian.

Let G be finite. For a conjugacy class C, let

NC :=
∑

x∈C
x ∈ K[G].

Definition 4.1.1. Let R be a ring. The center of R is

Z(R) = {a ∈ R | ax = xa ∀x ∈ R}.
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Proposition 4.1.2. If G is finite then Z(K[G]) is the free K-module

KNC1
⊕ · · · ⊕ KNCk

,

where C1, . . . ,Ck are the conjugacy classes of G.

Proof. For g ∈ G, and C = C j,

g−1NCg =
∑

x∈C
g−1xg =

∑

y∈g−1Cg

y = NC,

since g−1Cg = C. Thus,
k⊕

j=1

KN j ⊂ Z(K[G]).

Conversely, let

x =
∑

g∈G
agg ∈ Z(K[G]).

Then for all h ∈ G,
∑

g∈G
agg = x

= h−1xh

=

∑

g∈G
agh−1gh

=

∑

t∈G
ahth−1 t.

∴ ag = ahgh−1 ∀h, g. ie. All elements of a given conjugacy class have the same coefficient in x. Thus,

x =
∑

a jNC j

where a j = ag for any g ∈ C j. So x ∈
⊕k

j=1
KNC j

. �

4.1.1 New Representations from Old

1. Direct sum of reps.

Given reps.

G × V 7→ V G ×W 7→ W,
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form rep. of G on V ⊕W by

g · (v,w) = (g · v, g · w).

eg. If K is a field, n = dim V,m = dim W, then for g ∈ G, ρ(g) ∈ GLn(K), τ(g) ∈ GLm(K). The

direct sum action is given by (
ρ(g) 0

0 τ(g)

)
.

Note: Sometimes write kV for

k times︷        ︸︸        ︷
V ⊕ · · · ⊕ V .

2. Tensor product of reps.

Given reps.

G × V 7→ V G ×W 7→ W,

form rep of G on V ⊗K W determined by

g · (v ⊗ w) = (g · v) ⊗ (g · w).

This is the tensor product of V and W in the Hopf alg. sense. ie. The action is

K[G] ⊗ V ⊗W
ψ7−→ K[G] ⊗ K[G] ⊗ V ⊗W 7→ K[G] ⊗ V ⊗ K[G] ⊗W

µV⊗µW7−→ V ⊗W,

where ψ(g) = g ⊗ g is induced by the diagonal map G 7→ G ×G.

Let R be a ring. Recall that an R-module V is simple if it has no proper R-submodules except 0.

In this context, such modules will often be called irreducible.

Definition 4.1.3. An R-module V , 0 is called indecomposable if ∄ R-modules V1 , 0,V2 , 0 s.t.

V � V1 ⊕ V2.

When R = K[G], we talk of “indecomposable reps.” and “irreducible” (or “simple”) reps.

Clearly, irreducible ⇒ indecomposable. The reverse is not true. eg. Suppose K is a field. If

the action of each elt. g of G has the form

(
P(g) Q(g)

0 R(g)

)
,

(where P(g) is n × n, Q(g) is n × m, R(g) is m × m), then ∃ an n-dim. subrepresentation g 7→ P(g), so

not irreducible. But it might still be indecomposable if Q(g) , 0. In particular, take G = Z, n = m = 1,

let P(k) = R(k) = 1 and Q(k) = k for all k ∈ Z.

Goal: Let G be finite, K a field.
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1. Show that there is (up to iso.) a finite list V1, . . . ,Vk of indecomposable K[G]-modules and find

them.

2. Given a rep. V of G, show that the decomposition

V � V
n1

1
⊕ V

n2

2
⊕ · · · ⊕ V

nk

k

into irreducible is unique, and give a method of determining the mult. nk of each Vk.

3. In particular, find the decomposition

K[G] � V
n1

1
⊕ V

n2

2
⊕ · · · ⊕ V

nk

k
.

Question. Given G, to what extent does this answer change with K? Does it depend on more that

just char K?
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4.2 Semisimple Rings

Note: Unless otherwise noted, module means left module.

Definition 4.2.1. An R-module V is called semisimple if it is a direct sum of simple modules. R is

called a semisimple ring if R is semisimple as a (left) R-module.

Proposition 4.2.2. If V is a semisimple module and U ⊂ V then V � U ⊕W for some W.

Proof. Consider

S = {submodules U′ ⊂ V s.t. U ∩ U′ = 0}.
By Zorn’s lemma, let W ⊂ V be maximal s.t. U ∩W = 0. If U ⊕W ⊆� V , choose v < U ⊕W. Write

v = v1 + · · · + vn, where vi ∈ Vi and Vi ⊂ V is simple. Then v j < U ⊕W for some j. So

V j ∩ (U ⊕W) ⊆� V j

and since V j is simple,

V j ∩ (U ⊕W) = 0.

But then U ∩ (W ⊕ V j) = 0, so W is not maximal. Thus, V = U ⊕W. �

Definition 4.2.3. V is completely splittable if U ⊂ V ⇒ V = U ⊕W for some W.

So V is semisimple ⇒ V is completely splittable. Recalling Proposition 2.4.6, we see that V

is completely splittable ⇐⇒ whenever U ⊂ V , if i : U ֒→ V is the inclusion then ∃σ : V 7→ U a

homo. s.t. σi = 1U ; σ is called a splitting of i.

Example 4.2.4. Let K be a field, R = Mn×n(K),

V =



∗ 0 · · · 0
...

...
...

∗ 0 · · · 0

 .

Claim. V is a simple R-module.

Proof of claim. Suppose 0 ⊆� W ⊂ V . Let

0 , x =



x1 0 · · · 0
...

...
...

xn 0 · · · 0

 ∈ W,
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and suppose x j , 0. Then W contains



0 · · · 1 · · · 0
...

...

0 · · · 0

 x =



x j 0 · · · 0

0
...

...

0 · · · 0


.

By dividing by x j, W contains 

1 0 · · · 0

0
...

...

0 · · · 0


.

Thus, W contains 

0 · · · 0
...

1
...

...

0 · · · 0



,

which is a basis of V . Hence W = V . �

Now,

R =



∗ 0 · · · 0
...

...
...

∗ 0 · · · 0

 ⊕



0 ∗ 0 · · · 0
...

...
...

0 ∗ 0 · · · 0

 ⊕ · · · ⊕



0 · · · 0 ∗
...

...
...

0 · · · 0 ∗

 .

So R is semisimple.

Proposition 4.2.5. Z(Mn×n(K)) = KI.

Proof. Exercise. �

Let R be a ring, x, y ∈ R. The commutator of x and y is

[x, y] := xy − yx ∈ R.

The commutator subspace is

[R,R] = {[x, y] | x, y ∈ R}.
Note: [R,R] is not an R-submodule of R, in general.
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Example 4.2.6. Let R = Mn×n(K). Then



1 0 · · · 0

0 0
...

...
. . .

0 · · · 0





0 1 0 · · · 0

0 0
...

...
. . .

0 · · · 0


−



0 1 0 · · · 0

0 0
...

...
. . .

0 · · · 0





1 0 · · · 0

0 0
...

...
. . .

0 · · · 0



=



0 1 0 · · · 0

0 0
...

...
. . .

0 · · · 0


−



0 · · · 0
...

...

0 · · · 0



=



0 1 0 · · · 0

0 0
...

...
. . .

0 · · · 0


.

Similarly, denoting by ei j the matrix with 1 in the (i, j)th position and 0 elsewhere,

ei j ∈ [R,R] ∀i , j.

Also,



0 1 0 · · · 0

0 0
...

...
. . .

0 · · · 0





0 0 · · · 0

1 0
...

0
...

. . .

0 · · · 0



−



0 0 · · · 0

1 0
...

0
...

. . .

0 · · · 0





0 1 0 · · · 0

0 0
...

...
. . .

0 · · · 0


=



1 0 · · · 0

0 0
...

...
. . .

0 · · · 0



Similarly, 

1 0 · · · 0

0 0
. . .

0
... −1

...

0
. . .

0 · · · 0



∈ [R,R].
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These matrices generate {M | TrM = 0} as a vector space. That is,

[R,R] = ker Tr : R 7→ K.

In particular, dim[R,R] = n2 − 1 and dim(R/[R,R]) = 1.

Lemma 4.2.7. If V is completely splittable and U ⊂ V then U is completely splittable.

Proof. Let T ⊂ U. Then

T ⊂
i

> U ⊂
j

> V
HHHHHHHHHHHHH

1T

j
T

∃σ

∨

Since V is completely splittable, ∃σ s.t. σ ◦ ji = 1T , as in the diagram. So σ ◦ j is a splitting of i. �

Theorem 4.2.8. If V is completely splittable then every submodule of V is semisimple.

Corollary 4.2.9. V is semisimple ⇐⇒ V is completely splittable.

Corollary 4.2.10. If V is semisimple then every submodule of V is semisimple.

Proof of Theorem. Let U ⊂ V . Consider sets {S i}i∈I of simple U-submodules which are “linearly

independent”, ie.

〈S i〉i∈I =

⊕

i∈I

S i.

By Zorn’s lemma, there is a maximal such set, {S i}i∈I . Let

S =
⊕

i∈I

S i.

By the lemma, S is completely splittable, so ∃T s.t. U = S ⊕ T . If T , 0, pick 0 , x ∈ T . By

Zorn’s lemma,

{T ′ ⊂ T | x < T ′}
has a maximal element, T0. By the lemma, let T1 be s.t.

T = T0 ⊕ T1.

If T1 is not simple then let T1 = A⊕ B. x can’t be in both T0 ⊕A and T0 ⊕ B since their intersection

is T0. This contradicts the maximality of T0, so T1 is simple.

But T1 can be added to {S i}i∈I to get a still-linearly independent set of simple submodules. This

contradicts the maximality of {S i}i∈I .

So T = 0 and U = S =
⊕

i∈I
S i is semisimple. �
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Corollary 4.2.11. Let

0→ U → V → W → 0

be a short exact sequence of R-modules. If V is semisimple then U,W are semisimple.

Proof. V � U ⊕W, so U ⊂ V and V has a submodule isomorphic to W. So by the theorem, U and W

are semisimple. �

Theorem 4.2.12 (Maschke). If K is a field, G a finite group s.t. char K ∤| |G| then K[G] is semisimple.

Proof. Write V = K[G], as a module over itself. Suppose U is a K[G]-submodule, and show that

there exists a K-module splitting p : V 7→ U.

As vector spaces, ∃U0 s.t. V � U ⊕U0 (U0 is not necessarily a K[G]-module). This yields a linear

map p0 : V 7→ U (p0 is not necessarily a K[G]-homomorphism).

Define p : V 7→ U by

p(v) =
1

|G|
∑

g∈G
g−1 p0(gv).

Then for g′ ∈ G,

p(g′v) =
1

|G|
∑

g∈G
g−1 p0(gg′v)

=
1

|G|
∑

f∈G
g′ f −1 p0( f v)

= g′
1

|G|
∑

f∈G
f −1 p0( f v)

= g′p(v).

So p is a K[G]-homomorphism.

Also, if u ∈ U then

p(u) =
1

|G|
∑

g∈G
g−1 p0(gu)

=
1

|G|
∑

g∈G
g−1(gu)

=
1

|G|
∑

g∈G
u

= u.

∴ p is a splitting. �
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Note: If K is not a field then the same proof works, provided |G| is invertible in R and ∃ an R-module

splitting p0 : V 7→ U.

Let R be a semisimple ring,

R �
⊕

i∈I

Vi

where each Vi is simple.

Proposition 4.2.13. Ever simple R-module appears (up to isomorphism) as Vi for some i.

Proof. Let W be a simple R-module and 0 , w ∈ W. Then

R
φ7−→ W

1 7−→ w

is not zero, so it is onto (since W is simple).

So W is a summand of R. Furthermore,

0 , φ ∈ homR(R,W) �
⊕

i∈I

homR(Vi,W),

so homR(Vi,W) , 0 for some i. But any non-zero homo. between simple R-modules is an isomor-

phism, so W is isomorphic to some Vi. �

Proposition 4.2.14. Let R be semisimple, I ⊂ R a left ideal. Then ∃ an idempotent e ∈ R s.t. I = Re.

Note: If V is a simple R-module then Rv = V , for any v ∈ V . Moreover, since R is semisimple,

R 7→→Rv splits, so V is isomorphic to a left ideal of R.

Proof. Since R is semisimple, ∃J s.t. R = I ⊕ J. Write 1 = e + f where e ∈ I, f ∈ J.

e ∈ I ⇒ Re ⊂ I. Conversely, given x ∈ I, x = xe + x f . x f = x − xe ∈ I and since f ∈ J, x f ∈ J.

Thus

x f ∈ I ∩ J = 0⇒ x = xe.

∴ I = Re.

Now, x = xe ∀x ∈ I, and in particular, e = e2. �
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4.3 Artinian Rings

Recall that an R-module V is Noetherian if for any chain

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · ·

of submodules, ∃N s.t. Vn = VN ∀n ≥ N. Likewise:

Definition 4.3.1. An R-module V is Artinian if for any chain

V0 ⊃ V1 ⊃ · · · ⊃ Vn ⊃ · · ·

of submodules, ∃N s.t. Vn = VN ∀n ≥ N. R is an Artinian ring if R is Artinian as a (left) R-module.

Example 4.3.2. Z is Noetherian (in fact, it is a PID) but not Artinian, since we have:

2Z ⊃ 4Z ⊃ 8Z ⊃ · · · ⊃ 2nZ ⊃ · · · .

When G is finite and K is a field, K[G] is both Noetherian and Artinian (by counting dimensions,

can’t have a strictly increasing chain longer than |G| + 1).

Proposition 4.3.3. Let

0→ U → V → W → 0

be a short exact sequence of R-modules. Then V is Noetherian (respectively Artinian) ⇐⇒ U,W are

Noetherian (resp. Artinian).

Corollary 4.3.4. If

V =

n⊕

i=1

Vi

then V is Noetherian (resp. Artinian) ⇐⇒ Vi is Noetherian (resp. Artinian) ∀i.

Proposition 4.3.5. If

V =
⊕

i∈I

Vi

with Vi , 0 and V is finitely generated then |I| < ∞.

Proof. Each generator has only finitely many non-zero components. �

Corollary 4.3.6. If V is finitely generated and semisimple then V is both Noetherian and Artinian.
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Proof. By the hypothesis,

V =

n⊕

i=1

Vi

where each Vi is simple. So for each i, the only chain is 0 ⊂ Vi. Thus Vi is both Noetherian and

Artinian. �

Corollary 4.3.7. If R is semisimple then R is both Noetherian and Artinian.

Proof. As an R-module, R is generated by the single element 1. �

Proposition 4.3.8. Let G be finite, K Noetherian (resp. Artinian). Then K[G] is Noetherian (resp. Ar-

tinian).

Proof. If K is Noetherian (or Artinian) then, as a K-module, so is K |G|, which is isomorphic, as a K-

module, to K[G]. But every K[G]-submodule of K[G] is a K-submodule, so if K[G] is Noetherian

(or Artinian) as a K-module then it has the same property as a K[G]-module. �

Lemma 4.3.9 (Schur). Let V be a simple R-module. Then:

1. EndR(V) forms a division ring.

2. If R is a finite dimensional algebra (eg. R = K[G] with G finite) over an algebraically closed

field K then EndR(V) � K.

Proof.

1. If f : V 7→ V is nonzero then Im f = V so V is onto. Also, since f , 0, ker f , V , so ker f = 0.

Hence f is an isomorphism, so it has an inverse. ie. EndR(V) is a division ring.

2. Let f ∈ EndR(V), and show f = λI for some λ ∈ K. For any 0 , x ∈ V , Rx forms a finite

dimensional subspace of V (its dimension is ≤ dim R). Since V is simple, Rx = V , so V is finite

dimensional.

So ∃ an eigenvector 0 , v ∈ V for f , so that f v = λv. Since V is simple, Rv = V . Hence

∀w ∈ V , w = rv so

f (w) = r f (v) = λrv = λw.

ie. f = λI.

�
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4.4 Wedderburn’s Theorem

Let R be semisimple. Then

R � n1V1 ⊕ n2V2 ⊕ · · · ⊕ nkVk

where V1, . . . ,Vk is the list of simple R-modules (one from each isomorphism class). (This is a finite

decomposition by Proposition 4.3.5)

For a ring A,

A
φ7−→ EndA(A)

A 7−→ φa

φa(b) = ba

is a bijection, since every endomorphism f is equal to φ f (1). Then

φaφb(1) = φa(b) = ba = φba(1).

∴ φ is a ring isomorphism

φ : Aopp 7→ EndA(A),

where Aopp is the ring with the same group structure as A but a(·opp)b = ba.

Set D j = EndR(V j), a division ring. Then

R � (EndR(R))opp

�

k∏

j=1

(
EndR(n jV j)

)opp

�

k∏

j=1

(
Mn j×n j

(EndR(V j)
)opp

�

k∏

j=1

(
Mn j×n j

(D j)
)opp

�

k∏

j=1

Mn j×n j
(D

opp

j
)

where on the last line, the isomorphism is given by the transpose map.
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Under this isomorphism, V j ⊂ n jV j ⊂ R corresponds to

homR(n jV j,V j) �



∗ 0 · · · 0
...

...
...

∗ 0 · · · 0

 ⊂ Mn j×n j
(D

opp

j
).

In particular, suppose R is an algebra over a field K and D j � K (eg. if K is algebraically closed).

Then:

1. dim V j = n j for each j.

2. dim R =
∑k

j=1 n2
j .

Example 4.4.1.

1. R = C(S 2)

By Maschke’s Theorem, char K = 0⇒ K[G] is semisimple. Here,

2 = 12
+ 12

and there are no other possibilities, so R has 2 indecomposable reps., each on a 1-dimensional

space.

They are: Let dim V = 1 with basis v. S 2 = {e,T }, with T 2
= e. The trivial rep. is:

e · v = v,

T · v = v.

The sign rep. is:

e · v = v,

T · v = −v.

2. R = C(S 3)

Either

6 = 12
+ 12
+ · · · + 12 or 6 = 12

+ 12
+ 22.

Easy to see that the trivial rep. and the sign rep. (σ · v = (−1)sgnσv, sgn is the homomorphism

ǫ : S n 7→ {1,−1} used to define An in section 1.6.2) are the only possible reps. of R on a 1-dim. V.

Hence R has 3 indecomposable reps.: trivial rep., sign rep., a 2-dim. rep.
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The 2-dim. rep. is:

(1 2) 7→
(
−1 −1

0 1

)
,

(1 3) 7→
(

0 1

1 0

)
,

(1 2 3) = (1 2)(1 3) 7→
(
−1 −1

0 1

) (
0 1

1 0

)
=

(
−1 −1

1 0

)
.

3. R = C(S 4)

24 = 12
+ 12
+ (a)2

+ · · · + ( )2, a ≥ 2.

Looking at congruence mod 4, need 32 (22, 42 are divisible by 4, but 24 − 12 − 12 is not).

Hence, the only possibility is

24 = 12
+ 12
+ 22
+ 32
+ 32.

ie. two 1-dim. reps., one 2-dim. rep., two 3-dim. reps.

Theorem 4.4.2. Let G be a finite group, K an algebraically closed field of characteristic 0. Then the

number of isomorphic simple K[G]-modules is equal to the number of conjugacy classes of G.

Proof. As seen earlier,

Z(K[G]) = Free K-module on


∑

g∈C
g | C a conj. class

.

So the number of conjugacy classes is equal to dim Z(K[G]). Also,

K[G] =

k∏

j=1

Mn j×n j
(K).

Now, Z(Mn×n(K)) = KI, which has dimension 1. Thus,

dim Z(K[G]) = k = # nonisomorphic simple K[G]-modules.

�
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4.5 Changing the Ground Ring

Example 4.5.1. Let G = C3 = {e, t, t2}, K = R. Then using V = R2,

ρ : K[G] 7→ M2(R)

t 7→
(

cos 2π
3
− sin 2π

3

sin 2π
3

cos 2π
3

)
.

(ρ is rotation by 2π
3

.) Then ρ is indecomposable. But if we use K = C, and ρ̃ : C[G] 7→ M2(C)

induced by the same representation, then ρ̃ is decomposable since over C, we can change basis and

diagonalize:

ρ̃(t) =

(
e

2πi
3 0

0 e
4πi
3

)
,

in an appropriate basis.

Given f : R 7→ S a ring homomorphism, f induces a functor

{(left) R-mods.} 7→ {(left) S -mods.}
V 7→ VS := S ⊗R V.

The map f makes S a two-sided R-module (and in particular, a right module), so S ⊗R V makes sense.

S ⊗R V is an S -module via the action

s′(s ⊗ v) = (s′s) ⊗ v.

If

0→ U → V → W → 0

is a short exact sequence of left R-modules and M is a right R-module then

M ⊗R U → M ⊗R V → M ⊗R W → 0

is exact, although the first map may not be injective. However, if M is a free R-module, M � Rn then

M ⊗R N � Nn, and so

M ⊗R U ֒→ M ⊗R V

in this case.

In particular, if f : R ֒→ S makes S into a free R-module then when

0→ U → V → W → 0
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is exact, so is

0→ US → VS → WS → 0,

ie. (V/U)S � VS /US .

In particular, if K ⊂ M is a field extension then M is a free K-module.

f : K 7→ M induces K[G] 7→ M[G], and thus

K[G]-mods. 7→ M[G]-mods.

V 7→ VM

ie. (mg)(m′ ⊗ v) = (mm′ ⊗ gv), defines M[G]-action on VM.

Note: If v = kv′ then m′ ⊗ v = m′ f (k) ⊗ v′, but then

mg(m′ ⊗ v) = mm′ ⊗ gv = mm′ ⊗ kgv′ = mm′ f (k) ⊗ gv′ = mg(m′ f (k) ⊗ v′),

so the action is well-defined. Also,

g(m(m′ ⊗ v)) = g(mm′ ⊗ v) = mm′ ⊗ gv = m(m′ ⊗ gv) = mg(m′ ⊗ v),

so the action of g is M-linear.

If K ⊂ M is a field extension and n = dim V < ∞,

ρ : K[G] 7→ EndK(V) � Mn×n(K)

then dim VM = n and for the induced map

ρ̃ : M[G] 7→ EndM(VM),

the matrix ρ̃(g) for the action of g is just ρ(g), regarded as a matrix in M (whose entries happen to lie

in K).

As we have seen, V simple 6⇒ VM is simple.
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4.6 Composition Series

Let V be an R-module.

Definition 4.6.1. A composition series for V consists of a chain of submodules

0 = Vn ⊂ Vn−1 ⊂ · · · ⊂ V1 ⊂ V0 = V

s.t. V j−1/V j is simple ∀ j = 1, . . . , n.

The composition series

0 = Vn ⊂ · · · ⊂ V0 = V

and

0 = Wm ⊂ · · · ⊂ W0 = V

are called equivalent if n = m and ∃σ ∈ S n s.t.

V j−1/V j � Wσ( j)−1/Wσ( j) ∀ j.

ie. the list of “composition factors” (including multiplicities) is the same, although the order may

be different.

Proposition 4.6.2. V has a composition series ⇐⇒ V is both Artinian and Noetherian. In this case,

any series can be refined to a composition series.

Proof.

⇐: Suppose V is Artinian and Noetherian. Let V0 = V . Since V is Noetherian, V contains a maxi-

mal (proper) submodule, V1 (by Theorem 2.6.2). Continuing, so long as V j , 0, get

V0 ⊇� V1 ⊇� · · · ⊇� V j ⊇� · · ·

s.t. V j+1 is maximal in V j, ie. V j/V j+1 is simple. Since V is Artinian, the chain must terminate.

⇒: Suppose

0 = Vn ⊂ · · · ⊂ V0 = V

is a composition series. Then we have the exact sequence

0→ V1 → V → V/V1 → 0.

Since V1 is simple, V1 is Artinian and Noetherian. V/V1 has a composition series of length n−1,

so by induction, V/V1 is Artinian and Noetherian. Thus, V is Artinian and Noetherian.
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Finally, given any series

0 = Vn ⊂ · · · ⊂ V0 = V,

each Vi−1/Vi is Noetherian and Artinian, so it has a composition series. Using each of these series, we

may refine the given series to a composition series. �

Theorem 4.6.3. Any two comp. series for V are equivalent.

Proof. Let

0 = Vn ⊂ · · · ⊂ V0 = V

and

0 = Wm ⊂ · · · ⊂ W0 = V

be comp. series. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, set

Vi j := Vi + (Vi−1 ∩W j) and W ji := W j + (W j−1 ∩W j).

Claim.
Vi, j−1

Vi j

�
Vi−1 ∩W j−1

(Vi ∩W j−1) + (Vi−1 ∩W j)
�

W j,i−1

W ji

.

Proof of claim. Consider

φ : Vi−1 ∩W j−1 ֒→ Vi + (Vi−1 ∩W j − 1) 7→→ Vi + (Vi−1 ∩W j−i)

Vi + (Vi−1

∩W j) =
Vi, j−i

Vi j

.

Vi ⊂ Vi j, so every element of Vi, j−1 is congruent modulo Vi j to one in Vi−1 ∩W j−1. ie. φ is surjective.

Clearly, Vi−1 ∩W j ⊂ Vi j, so

Vi−1∩W j
⊂ ker φ.

Also, V j ∩W j−1 ⊂ Vi ⊂ Vi j, so

Vi ∩W j−1 ⊂ ker φ.

Hence,

(Vi−1 ∩W j) + (Vi ∩W j−1) ⊂ ker φ.

Conversely, suppose x ∈ Vi−1 ∩W j−1 lies in

ker φ = (Vi−1 ∩W j−1) ∩ (
Vi + (Vi−1 ∩W j)

)
.

Write x = y + z where y ∈ Vi and z ∈ Vi−1 ∩W j. Since x ∈ W j−1 and z ∈ W j ⊂ W j−1, it follows that

y ∈ W j−1. So

x = y + z

exhibits x as an elt. of (Vi ∩W j−1) + (Vi−1 ∩W j). �
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Notice that since Vi−1/Vi and W j−1/W j are simple,

Vi−1 ∩W j−1

(Vi ∩W j−1) + (Vi−1 ∩W j)

is either 0 or simple.

So we have

V = V0 = V10 ⊃ V11 ⊃ · · · ⊃ V1m = V1 = V20 ⊃ · · · ⊃ · · · ⊃ Vn−1 = Vn0 ⊃ · · · ⊃ Vnm = 0. (*)

and similarly,

V = W0 = W10 ⊃ W11 ⊃ · · · ⊃ W1n = W1 = W20 ⊃ · · · ⊃ · · · ⊃ Wm−1 = Wm0 ⊃ · · · ⊃ Wmn = 0. (**)

Notice that both chains have the same length, and by the claim, there is a bijection between the

quotient modules, each of which is either simple or 0. So by shortening the chains by deleting entries

which equal their predecessors, all the 0-quotient modules are deleted, and what is left are composition

series. The number of 0-quotients deleted is the same (they are paired), so the resulting comp. series

have the same length and same quotients, ie. they are equivalent.

But (*) reduces to

Vn ⊂ · · · ⊂ V0

and (**) reduces to

Wm ⊂ · · · ⊂ W0,

since they are respectively refinements of these series, and you can’t refine a comp. series any further.

So these two comp. series are equivalent. �
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4.7 Characters

Let

ρ : K[G] 7→ EndK(V)

be a rep. of K on a free K-module V . Define

χ
ρ : K[G] 7→ K,

the character of ρ by χρ = Tr(ρ(x)).

Since Tr(A+ B) = Tr(A)+Tr(B), χρ is determined by its values on the basis G for K[G], so some-

times write χρ : G 7→ K.

Recall that Tr is preserved under change of basis, since

Tr(A−1BA) = Tr(AA−1B) = Tr(B).

So, if h = x−1gx then

ρ(h) = ρ(x)−1ρ(g)ρ(x)

and thus, χρ(h) = χρ(g).

Proposition 4.7.1. Let

0→ U → V → W → 0

be a short exact sequence of K[G]-modules, each of which is free as a K-module. Then

χ
V = χU + χW .

Proof. Since U is a K[G]-submodule, for all g ∈ U, the matrix for ρ(g) has the form

ρV(g) =

(
ρU(g) ∗

0 ρW(g)

)
.

�

Proposition 4.7.2. χV⊗W = χV
χ

W .

Proof. Let {ei}, { f j} be bases for V,W respectively. Then {ei ⊗ f j} is a basis for V ⊗W, and

(A ⊗ B)(ei ⊗ f j) = aiib j j(ei ⊗ f j) + other terms.

So,

Tr(A ⊗ B) =

n∑

i=1

n∑

j=1

aiib j j = (TrA)(TrB).

�
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Proposition 4.7.3. Viewing K[G] as a left K[G]-module,

χ
K[G](g) =


|G|, g = e,

0, g , e.

Proof. In the basis {g}g∈G for K[G], the action of any elt. of G is given by a permutation matrix. So,

by the definition of the trace,

χ
K[G](g) = |{x ∈ G | gx = x}|

=


|G|, g = e,

0, g , e.

�

Corollary 4.7.4. Suppose

K[G] � V1 ⊕ · · · ⊕ Vr

and K is a field s.t. char K ∤ |G|. Thus χK[G] =
∑r

i=1
χ

i where χi = χVi
.

Let y =
∑

g∈G cgg ∈ K[G]. Then for any g,

cg =
1

|G|

r∑

i=1

χ
i(yg−1).

Proof. Pick g ∈ G.

y =
∑

h∈G
chh = cgg +

∑

h,g

chh.

∴ yg−1
= cge +

∑
h,g chhg−1. Applying χK[G] =

∑r
i=1
χ

i,

r∑

i=1

χ
i(yg−1) = χK[G](yg−1)

= cg
χ

K[G](e) +
∑

h,g

ch
χ

K[G](hg−1)

= |G|cg + 0.

�

Set CFK(G) := { f : G 7→ K | f (y−1xy) = f (x) ∀x, y ∈ G}. CFK(G) is a ring using addition and

multiplication of functions. It is called the ring of class functions.
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RK(G) is the abelian group generated by iso. classes of f.d. reps. of G, with the relation

[V] = [V ′] + [V ′′]

for every short exact sequence

0→ V ′ → V → V ′′ → 0.

Define multiplication on RK(G) by

[V][W] = [V ⊗W].

Then the preceeding implies that

θ : RK(G) 7→ CFK(G)

[ρ] 7→ χ
ρ

is a ring homomorphism.

Set ChK(G) := Imθ, the “ring of generalized K-characters of G”, or simply the “character ring

of G over K”.

Lemma 4.7.5. Let V,W be K[G]-modules and let f ∈ homK(V,W). Define f̃ : V 7→ W by

f̃ (v) =
∑

g∈G
g−1 f (gv).

Then f̃ ∈ homK[G](V,W).

If V = W then Tr f̃ = |G|Tr( f ).

Proof. For x ∈ G,

f̃ (xv) =
∑

g∈G
g−1 f (gxv) =

∑

h∈G
xh−1 f (hv) = x f̃ (v).

Now suppose V = W. Then,

f̃ =
∑

g∈G
M−1

g f Mg

where Mg represents the action of g on V . Hence,

Tr( f̃ ) =
∑

g∈G
Tr(M−1

g f Mg)

=

∑

g∈G
Tr( f )

= |G|Tr( f ).

�
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Let K be a field.

Lemma 4.7.6. Let α : G 7→ AutK(V), β : G 7→ AutK(W) be non-isomorphic simple reps. Pick bases

v1, . . . , vn and w1, . . . ,wm for V and W. Let [αi j(g)] and [βi j(g)] denote matrices for α(g), β(g) in these

bases. Then for any i, j, k, t, 1 ≤ i, j ≤ n, 1 ≤ k, t ≤ m,

∑

g∈G
βi j(g

−1)αkt(g) = 0.

Proof. Let f : V 7→ W be the linear transformation which in chosen bases for V and W is given

by the matrix E which is 1 in the ( j, k)th position and 0 elsewhere. By the previous lemma, f̃ ∈
homK[G](V,W) = 0 (since V,W are non-isomorphic and simple). The (i, t)th position of the matrix for

f̃ is

0 =
∑

g∈G

∑

r,s

βir(g
−1)Eisαst(g)

=

∑

g∈G
βi j(g

−1)αkt(g),

since Ers = 0 except when r = j, s = k. �

Corollary 4.7.7. Let V,W be non-isomorphic simple K[G]-modules. Then

∑

g∈G

χ
V(g)χW(g−1) = 0.

Proof. Let α(g), β(g) be the matrices for the reps. Then

∑

g∈G

χ
V(g)χW(g−1) =

∑

g

∑

t

∑

i

αtt(g)βii(g
−1) = 0.

�

Theorem 4.7.8. Let α : G 7→ AutK(V) be a simple G-rep. If K is algebraically closed and char K = 0

then dim Z | |G| and ∑

g∈G
αi j(g

−1)αkt(g) = δ jkδit

|G|
dim V

.

Proof. Let f : V 7→ V be the linear transformation which in a chosen basis for V is given by the matrix

E which is 1 in the ( j, k)th position and 0 elsewhere. So f̃ ∈ homZ[G](V,V). Since V is simple,

homK[G](V,V) = K, and thus, homZ[G](V,V) = Z. That is, f̃ = cI for some c ∈ Z.
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As above, the (i, t)th entry of the matrix for f̃ is
∑

g∈G
αi j(g

−1)αi j(g
−1)αkt(g).

Now, Tr( f̃ ) = Tr(cI) = c dim V . On the other hand, by the earlier lemma, Tr( f̃ ) = |G|Tr(E). Thus,

c dim V = |G|Tr(E),

c =
|G|Tr(E)

dim V
.

If j , k then Tr(E) = 0, so c = 0. Also, if i , t then the (i, t)th entry of f̃ is 0, regardless of c.

Hence, ∑

g∈G
αi j(g

−1)αkt(g) = 0 unless i = t and j = k.

When i = t and j = k, Tr(E) = 1 so

|G|
dim V

= c =
∑

g∈G
αi j(g

−1)αkt(g),

and in particular, dim V | |G|. �

Corollary 4.7.9. Let V be a simple K[G]-module where K is algebraically closed and char K = 0.

Then ∑

g∈G

χ
V(g)χV(g−1) = |G|.

Proof. Let α(g) be the matrix for V . Set s := dim V . Then

∑

g∈G

χ
V(g)χV(g−1) =

∑

g∈G

s∑

t=1

s∑

i=1

αtt(g)αii(g
−1)

=

s∑

t=1

s∑

i=1

∑

g∈G
αtt(g)αii(g

−1)

=

s∑

t=1

s∑

i=1

δit

|G|
s

= s
|G|
s

= |G|.

�
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If char K = 0, can define an inner product on ChK(G) via

〈χV , χW〉 :=
1

|G|
∑

g∈G

χ
V(g)χW(g−1).

If K is algebraically closed, have just shown that {χV | V simple} forms an orthonormal set in ChK(G).

Since K[G] is semisimple, every rep. is a sum of simple ones, so this is in fact a basis.

In particular:

Corollary 4.7.10. If char K = 0 then

RK(G) � ChK(G).

If K is algebraically closed, then

ChK(G) = CFK(G).

Proof. We have just shown that {χV | V simple} is an orthonormal set in ChK(G) ⊂ CFK(G) (the

inner product extends in the obvious way to CFK(G)). Thus, this set is linearly independent, so

θ : RK(G) 7→ ChK(G) is injective. By construction, RK(G) 7→ ChK(G) is onto, so RK(G) � ChK(G).

Let C1, . . . ,Cr be the set of conj. classes of G. CFK(G) has a basis { f j : G 7→ K} where

f j(g) =


1 g ∈ C j,

0 g < C j.

Hence, the dimension of CFK(G) is the number of conj. classes of G, which, we have seen, is the

number of simple K[G]-modules, ie. the dimension of RK(G). �
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4.8 Change of Group - Induction and Restriction

Let H ≤ G, so K[H] ⊂ K[G]. Let N be a rep. of G, G × N 7→ N. Restricting to H produces an action

H × N 7→ N. Denote the resulting rep. of H by NH.

Conversely, let M be a rep. of G. Define the induced representation of G, denoted MG, via

MG := K[G] ⊗K[H] M.

ie. MG is generated as a K-module by

{g ⊗ m | g ∈ G,m ∈ M}

where gh ⊗ m ∼ g ⊗ hm. The G-action on MG is defined by

g′(g ⊗ m) = g′g ⊗ m.

Let g1, . . . , gr be a set of representatives for the left cosets {gH}. Then {g j ⊗ m} generates MG. In

fact, if K is a field and m1, . . . ,mk is a basis for M then

{g j ⊗ mi | 1 ≤ j ≤ r, 1 ≤ i ≤ k}

forms a basis for MG. In particular,

dim MG
=
|G|
|H| dim M,

whereas dim NH = dim N.

This is a special case of a ground-ring change. A ring homo. f : R 7→ S induces

{S -modules} P7−→ {R-modules}
N 7−→ N,

where N (on the right) is regarded as an R-module via the action through f . f also induces

{R-modules} Q7−→ {S -modules}
M 7−→ M ⊗R M.

Q and P are adjoint functors, ie.

homS (QM,N) = homR(M, PN) ∀R-mods. M, S -mods. N.
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To see this, given α : QM = S ⊗R M 7→ N, define β : M 7→ PN = N by

β(m) = α(1 ⊗ m).

Then

β(rm) = α(1 ⊗ rm) = α(r ⊗ m) = rα(1 ⊗ m) = rβ(m),

∴ β is an R-mod. homo.

Conversely, given β : M 7→ PN, define α : QM 7→ N by

α(s ⊗ m) = sβ(m).

Then

α(s′(s ⊗ m)) = α(ss′ ⊗ m) = ss′β(m) = s′α(s ⊗ m).

∴ α is an S -mod. homo.

In our special case,

homK[G](MG,N) = homK[H](M,NH).

This is called Frobenius Reciprocity.

Also, if A ≤ B ≤ C then

MC
� (MB)C

and

NA � (NB)A.

Let (χN)H := χNH
and (χM)G := χMG denote the characters of restricted and induced representa-

tions. (χN)H is the composite function

H ֒→ G
χ

N7−→ K,

ie. (χN)H = χN |H. To describe (χM)G, let g1, . . . , gr be a set of left coset representatives for GH and let

m1, . . . ,mm be a basis for V , so that {gi ⊗ m j} is a basis for MG.

For g ∈ G,

g · (gi ⊗ m j) = ggi ⊗ m j = gig ⊗ hm j,

where ggi = gigh, h ∈ H, ig = 1, . . . , r. Letting αG(g) be the matrix representing the action of g on MG

and αH(h) be the matrix for the action of h on M, the contribution to TrαG(g) is:

coeff. of (gi ⊗ m j) in g(gi ⊗ m j) =


0 ig , i

(αH(h)) j j ig = g.
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Note that if ig = i then h = g−1
i ggi. So

χG
M(g) =

∑

i, j


0 g−1

i ggi < H

αH(g−1
i ggi) j j g−1

i ggi ∈ H

=

∑

i


0 g−1

i ggi < H

χ
M(g−1

i ggi) g−1
i ggi ∈ H

=

∑

i

χ
M(g−1

i ggi), using the convention χM(x) = 0 if x < H

=
1

|H|
∑

x∈G

χ
M(x−1gx).
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4.9 Examples

4.9.1 G = S 3

We have |G| = 6.
Conj. class # conjugates

λ = (3), (1 2 3) 2

λ = (2, 1), (1 2) 3

λ = (1, 1, 1), e 1
We have 3 conjugacy classes, so 3 indecomposable reps. So our dimensions are determined:

6 = 12
+ 12
+ 22.

The reps. are:

1. V1 = trivial rep., dim V1 = 1, χ1 = (
(3)

1 ,
(2,1)

1 ,
(3)

1 ).

2. V2 = sign rep., dim V2 = 1, χ2 = (1,−1, 1).

3. V3 = natural rep., dim V3 = 2. By orthogonality of characters, χ2 = (2, 0,−1). This representa-

tion is given on the space

〈x1, x2, x3〉/〈x1 + x2 + x3〉
by

σ(xi) = xσ(i).

Altogether, our character table is

χ =


1 1 1

1 −1 −1

2 0 −1

 .

4.9.2 G = D8 = 〈a, b | a4
= b2

= e, bab−1
= a−1〉

|G| = 8. We view G ⊂ S 4 via a = (1 2 3 4), b = (1 2).
Conj. class # conjugates

a = (1 3 2 4) 2

a2
= (1 2)(3 4) 1

b = (1 2) 2

ab = (1 3)(2 4) 2

e 1
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The dimensions of the irred. reps. are determined:

8 = 12
+ 12
+ 12
+ 12
+ 22.

The 1-dim. reps. are given by hom(D8, S
1) where

S 1
= {z ∈ C | |z| = 1}.

We have

hom(D8, S
1) = hom((D8)ab, S

1) = hom(C2 ×C2, S
1) = hom(C2, S

1) × hom(C2, S
1).

Dimension Rep.

1 V1 trivial,

1 V2 a · v = −v, b · v = v

1 V3 a · v = v, b · v = −v

1 V4 a · v = −v, b · v = −v

2 V5 Find character by χK[G](σ) =


|G|, σ = e

0, σ , e.

Our character table (columns indexed by e, a, a2, b, ab) is:

χ =



1 1 1 1 1

1 −1 1 1 −1

1 1 1 −1 −1

1 −1 1 −1 1

2 0 −2 0 0


.

Set IC〈a〉 := (TrivC〈a〉)
D8 , that is, the 2-dimensional representation of D8 obtained by induction

from the trivial representation of the cyclic subgroup generated by a. If v is a basis for the 1-

dimensional vector space V for the trivial 1-dimensional vector representation of C〈a〉, then a basis

for VD8 = K[D8] ⊗K[〈a〉 V is given 〈1 ⊗ v, b ⊗ v〉, since 1 and b are a set of coset representatives. Since

left multiplication by e, a, or a2 preserve the cosets, in IC〈a〉 they are mapped to the identity matrix,

while left multiplication by b or ab switches the cosets. Thus the traces are 2 and 0 respectively so

χIC〈a〉 = (2 2 2 0 0). Comparing this with the character table gives IC〈a〉 = V1 + V3.

Let α3,1 denote the natural 3-dimensional representation of S 4 on 〈x1, x2, x3, x4〉/〈x1+ x2+ x3+ x4〉.
α3,1|D8

splits as W ⊕ α3,1|D8
/W, where W = 〈w〉 where w = x1 + x2.. Since a · w = x3 + x4 = −w

and b · w = x2 + x1 = w, W � V2. and, it is easy to see (using characters or otherwise) that

W ⊕ α3,1|D8
/W � V5, so α3,1|D8

= V2 + V5.
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4.9.3 G = H8

H8 is the group of Quaternions. It consists of 8 elements,

±i,± j,±k,±1

such that (−1)2
= 1, −1 ∈ Z(H8) and

i2
= j2
= k2

= −1,

i j = k, jk = i, ki = j.

Conj. class # conjugates

i ∼ −i 2

j ∼ − j 2

k ∼ −k 2

−1 1

1 1
The dimensions of the irred. reps. are determined:

8 = 12
+ 12
+ 12
+ 12
+ 22.

H8/〈−1〉 � C2 ×C2 is abelian, so (H8)ab = C2 ×C2, and thus,

hom(H8, S
1) = hom(C2, S

1) × hom(C2, S
1).

Dimension Rep.

1 V1 trivial

1 V2 i · v = −v, j · v = v

1 V3 i · v = v, j · v = −v

1 V4 i · v = −v, j · v = −v

2 V5 Find character by χK[G](σ) =


|G|, σ = e

0, σ , e.

Our character table (columns indexed by 1,−1, i, j, k) is:

χ =



1 1 1 1 1

1 1 −1 1 −1

1 1 1 −1 −1

1 1 −1 −1 1

2 −2 0 0 0


.

The “natural” representation of H8 on W = 〈x1, xi, x j, xk〉 is given by i · x1 = xi, i · xi = −x1,

i · x j = xk, i · xk = −x j, etc. By inspection χW = (4 − 4 0 0 0), which, from the character table is

recognized as 2V5. The subspace 〈x1 + xi, x j + xk〉 ⊂ W is closed under the action of H8 and provides

a natural description of V5.
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4.9.4 G = C7 ⋊C3 = 〈a, b | a7
= e, b3

= e, bab−1
= a2〉

Conj. class # conjugates

a 3

a3 ∼ a−1 3

b 7

b2 7

1 1
Gab = C〈b〉 = C3, and thus,

hom(G, S 1) = hom(C3, S
1).

yielding three 1-dimensional representatives.

The dimensions of the irred. reps. are determined:

21 = 12
+ 12
+ 12
+ 32
+ 32.

Let ω = e2πi/3.

Dimension Rep.

1 V1 trivial

1 V2 a · v = v, b · v = ωv

1 V3 i · v = v, b · v = ω2v

3 V4

3 V5

Our character table (columns indexed by 1, a, a3, b, b2) looks like:

χ =



1 1 1 1 1

1 1 1 ω ω2

1 1 1 ω2 ω

3 x y s t

3 x′ y′ s′ t′


.

for some x, y, s, t, x′, y′, s′, t’.

Using χK[G](σ) =


|G|, σ = e

0, σ , e,
we find that x′ = −(x + 1), y′ = −(y + 1), s′ = −s, t′ = −t.

Orthogonality of χ1 and χ4 gives 7(s + t) = −3 − 3x − 3y while orthogonality of the pairs χ2, χ4

and χ
3, χ4 give 7(ωs + ω2t) = −3 − 2x − 3y and 7(ω2s + ωt) = −3 − 2x − 3y respectively. Thus

7(s + t) = 7(ωs + ω2t) = 7(ω2s + ωt), from which we deduce that s = t = 0 and so (x + y + 1) =

− 7
3
(s + t) = 0. The inner product of χ4 with itself gives |G| = 21 = 9 + 3xy + 3xy, which combined

with x+ y+ 1 = 0 gives x2
+ x+ 2 = 0, which determines x. Notice that the solution of x2

+ x+ 2 = 0

satisfies x = ζ + ζ2
+ ζ4, where ζ = e2πi/7 and 1 − x = ζ3

+ ζ5
+ ζ6,
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Thus our character table is Our character table (columns indexed by 1, a, a3, b, b2) looks like:

χ =



1 1 1 1 1

1 1 1 ω ω2

1 1 1 ω2 ω

3 x y 0 0

3 y x 0 0


.

where x = ζ + ζ2
+ ζ4 and y = ζ3

+ ζ5
+ ζ6.

The representation V4 is given explicitly by a 7→


ζ 0 0

0 ζ2 0

0 0 ζ4

, b 7→


0 0 1

1 0 0

0 1 0

 while V5 is given by

a 7→


ζ3 0 0

0 ζ6 0

0 0 ζ5

, b 7→


0 0 1

1 0 0

0 1 0

.
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4.10 Symmetric Polynomials

For a free K-module V , let

T K(V) :=

∞⊕

n=0

V⊗n,

called the tensor algebra on V . Multiplication is defined on T K(V) by

(x1 ⊗ · · · ⊗ xk)(xk+1 ⊗ · · · ⊗ xℓ) = x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xℓ.

S n acts on V⊗n by permuting factors (called the position action), ie.

σ · (x1 ⊗ · · · ⊗ xn) = xσ(1) ⊗ · · · ⊗ xσ(n).

Let

S (V) := T (V)/ ∼
where (x1 ⊗ · · · ⊗ xn) ∼ σ · (x1 ⊗ · · · ⊗ xn). This is called the polynomial (symmetric) algebra on V .

Example 4.10.1. If x1, . . . , xm form a basis for V then

S (V)
�7−→ K[x1, . . . , xm]

xi1 ⊗ · · · ⊗ xin 7→ xi1 · · · xin .

Likewise, the exterior algebra on V is

Λ(V) := T (V)/ ∼
where

x1 ⊗ · · · ⊗ xn ∼ (−1)σxσ(1) ⊗ · · · ⊗ xσ(n).

If x1, . . . , xm is a basis for V then S m acts on V (on the right) by

x j · σ = xσ−1( j).

∴ Get induced action of S m on T (V), S (V), and Λ(V). This is called the internal action. Let

Σ(V) = FixS m(S (V)) = {a ∈ S (V) | a = a · σ ∀σ ∈ S m}.
When K is a field, the isomorphism S (V) � K[x1, . . . , xm] takes Σ(V) to the ring of symmetric poly-

nomials over K, as defined in Section 3.9. Recall the definition in that section of the elementary

symmetric polynomials s1, . . . , sm:

sk =

∑

i1<i2<···<ik

xi1 xi2 · · · xik .

By identifying S (V) with K[x1, . . . , xm], we have s j ∈ Σ(V) ∀ j.
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Theorem 4.10.2. Σ(V) � K[s1, . . . , sm].

If rankV = m, write ΣK[m] = ΣK(V).

K[x1, . . . , xm+1] 7→ K[x1, . . . , xm]

x j 7→ x j j ≤ m

xm+1 7→ 0

induces the map

ρm+1 : Σ[m + 1] 7→ Σ[m]

sk(x1, . . . , xm+1) 7→ sk(x1, . . . , xm).

Set Σ := lim←−−
m

Σ[m], the inverse limit of graded rings. That is,

Σ = {(am ∈ Σ[m])∞m=1 | ρm+1(am+1) = am ∀m}.

Σ is a graded ring; the elements of Σn are sequences ( f [m])∞
m=1

, where f [m] is a degree n symmetric

poly. in m variables, and

f [m](x1, . . . , xm) = f [m + 1](x1, . . . , xm, 0).

∴ f [m] determines f [k] for all k ≤ m. However, since each f [m] is of degree n, f [n] determines

f [m] ∀m. ie. Given

f [n] = ρ
(
s1(x1, . . . , xn), . . . , sn(x1, . . . , xn)

)
,

we then have, for any m ≥ n,

f [m] = ρ
(
s1(x1, . . . , xm), . . . , sn(x1, . . . , xm)

)
.

Equivalently, f [m] is obtained from f [n] by “symmetrizing over the m variables”.

So, we may identify the sequence ( f [m]) with the single element f [n]. ie. Σn has a basis consisting

of the symmetric polynomials of degree n in n variables. (Alternatively, Σn has a basis consisting of

the symmetric polynomials of degree n in m variables, for any m ≥ n.) So

Σ � K[s1, s2, . . . , sk, . . . ].

Definition 4.10.3. A partition of n is a sequence λ = (λ1, . . . , λr) of non-negative integers s.t.

n = λ1 + · · · + λr.

λ ⊢− n means that λ is a partition of n.
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Pick n ≥ 0, let K be a field and let V be the free module with basis x1, . . . , xr. For an unordered

partition λ = (λ1, . . . , λr) of n, set Vλ to be the K[S n]-submodule of V⊗n (position action) generated

by

x
⊗λ1

1
⊗ · · · ⊗ x⊗λr

r .

That is, Vλ is the subspace of V⊗n with basis

{xi1 ⊗ · · · ⊗ xin | {i1, . . . , in} contains λ j copies of j}.

Given A ⊂ V⊗n a subspace, the characteristic polynomial of A is

Ch(A) :=
∑

λ ⊢− n

dλxλ

where dλ = dim(A ∩ Vλ) and xλ = x
λ1

1
. . . x

λr
r .

It is clear from the definition that

Ch(A ⊕ B) = Ch(A) + Ch(B)

Ch(A ⊗ B) = Ch(A)Ch(B).

If A is closed under the internal action of S r on V then Ch(A) is symmetric.

Let P be a projective K[S n]-module, so that P = K[S n]e for some idempotent e ∈ K[S n]. For any

right K[S n]-module N,

N � Ne ⊕ N(1 − e)

as vector spaces. Applying this in particular to V⊗n with the position action,

V⊗n
= V⊗ne ⊕ V⊗n(1 − e).

Set P(V) := V⊗ne. Then

K-vector spaces 7→ K-vector spaces

V 7→ P(V)

is a functor.

Example 4.10.4. Suppose p ∤ n!. Then letting P be the trivial 1-dimensional rep. of S n, P is an inde-

composable proj. module with idempotent

e =
1

n!

∑

σ∈S n

σ.
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We have:

P(V) = span


1

n!

∑

σ∈S n

vσ(1) ⊗ · · · ⊗ vσ(n) | v1, . . . , vn ∈ V

 ⊂ V⊗n

� S (V).

Let V = 〈x1, . . . , xm〉, ie. V is the vector space with basis x1, . . . , xm. Then Ch(P(V)) is a symmetric

polynomial in x1, . . . , xm of degree n. In fact, if we let

P[m] = Ch(P(〈x1, . . . , xm〉))

then

〈x1, . . . , xm+1〉 7→ 〈x1, . . . , xm〉
x j 7→ x j j ≤ m

xm+1 7→ 0

induces by functoriality a map

P(〈x1, . . . , xm+1〉)) 7→ P(〈x1, . . . , xm〉))

so by applying Ch(·), we get

P[m + 1] 7→ P[m]

x j 7→ x j j ≤ m

xm+1 7→ 0.

ie. (P[m]) forms an elt. of ΣZ (symmetric polys. with coeffs. in Z). We write Ch(P) for this elt. of ΣZ.

It is determined by the degree n symmetric polynomial Ch(P(V)) in n vars. obtained from

V = 〈x1, . . . , xn〉.

For an arbitrary K[S n]-module P, we can write

P =
∑

n jP j

where each P j is an indecomposable proj. module and n j ≥ 0. Set Ch(P) :=
∑

n jCh(P j).

More generally, elements of K0(K[S n]) are sums

∑
n jP j
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with n j ∈ Z. So by extending the definition to this case via

Ch(
∑

n jP j) =
∑

n jCh(P j)

yields a homomorphism

Ch : K0(K[S n]) 7→ ΣZ[n].

We shall show, for char K = 0, that Ch(P) determines P.

For n ≥ 0, set

Rn := Underlying group of the representation ring R(S n)

= K0(K[S n])

= spanZ{simple K[S n]-modules}
� spanZ{simple characters of S n}

and set R =
⊕

n
Rn. The map Ch : Rn 7→ ΣZn for each n yields Ch : Rn 7→ ΣZ.

Define a ring structure on R as follows: Let M be a K[S m]-module, in Rm, and N a K[S n]-module,

in Rn. Set

M · N = (M ⊗ N)S m+n ∈ Rm+n.

ie. M ⊗ N is a (S m × S n)-module in an obvious way, and S m × S n ⊂ S m+n; M · N is the induced

S m+n-module.

Theorem 4.10.5. Ch : R 7→ Σ is a ring isomorphism.

Proof. We know that Ch(M ⊕ n) = Ch(M) + Ch(N). We must show that Ch(M · N) = Ch(M)Ch(N).

It suffices to consider the case where M is a simple K[S m]-module and N is a simple K[S n]-module.

Write M = K[S m] · e, N = K[S n] · f . Then e ⊗ f ∈ K[S m] ⊗ K[S n] = K[S m × S n], and

M ⊗ N = K[S m × S n] · (e ⊗ f ).

Now K[S m × S n] ⊂ K[S m+n] and so

M · N = K[S m+n] · (e ⊗ f ).

For any V ,

Ch(M · N(V)) = Ch(V⊗(m+n) · (e ⊗ f ))

= Ch(V⊗m · e ⊗ V⊗n · f )

= Ch(V⊗m · e)Ch(V⊗n · f )

= Ch(M(V))Ch(N(V))
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∴ Ch(MN) = Ch(M)Ch(N). Thus, Ch is a ring homomorphism.

Since Σ = Z[s1, s2, . . . ], to show Ch is onto, is suffices to show that sn ∈ Im(Ch) ∀n. Let P be

the one-dimensional sign rep. of S n. ie. P = 〈w〉 with σ · w = (−1)sgnσw. Then P = K[S n] · e with

e =
1

n!

∑

σ∈S n

(−1)sgnσσ,

an idempotent. For any vector space V ,

P(V) = (V⊗n) · e = Λ(V).

∴ Ch(P(V)) = Ch(Λ(V)) = sn. Thus, Ch is onto.

Claim. For each n, Rn and Σn are free abelian groups whose rank equals the number of partitions

of n (into positive integers).

Proof of claim. The rank of Rn is equal to the number of non-isomorphic simple K[S n]-reps, which

is equal to the number of conjugacy classes in S n. Each conjugacy class is determined by its cycle

type, which is a partition of n (by Corollary 1.6.3). Moreover, it is obvious that every partition of n is

the cycle type of some element in S n. Thus, the rank of Rn is equal to the number of partitions of n.

For Σn, this follows from the fact that Σ = Z[s1, s2, . . . ] and the degree of sk is k. ie. A basis for Σn

consists of monomials in {sk} of total degree n, and since deg sk = k, each such monomial corresponds

to a partition of n via

(λ1, . . . , λr)↔ sλ1
. . . sλr

.

�

Since Ch is one-to-one, this claim shows that Ch is also onto, whence an isomorphism. �

4.10.1 Other Bases for Σn

There are 6 bases for Σ
Q
n in “common” use, of which 5 form bases in ΣZn . All bases are indexed by

partitions λ of n.

1. Elementary Symmetric Functions

sλ = sλ1
sλ2
· · · sλr

.

eg.

s(2) = x1x2, s(1,2) = (x1 + x2)2.
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2. Monomial Basis

mλ = symmetrization of x
λ1

1
x
λ2

2
. . . xλr

r .

eg.

m(2) = x2
1 + x2

2, m(1,1) = x1x2.

3. Homogeneous Functions

Let

hk =

∑

k

monomials of degree k.

Then

hλ = hλ1
hλ2
· · · hλr

.

eg.

h(2) = x2
1 + x1x2 + x2

2, h(1,1) = (x1 + x2)2.

4. Power Functions

Let

ψk = xk
1 + xk

2 + · · · + xk
n.

Then

ψλ = ψλ1
ψλ2
· · ·ψλr

.

eg.

ψ(2) = x2
1 + x2

2 ψ(1,1) = (x1 + x2)2.

5. Schur Functions

For µ = (µ1, . . . , µn), with µ j ≥ 0 ∀ j, let

Vµ :=
∑

σ∈S n

(−1)sgnσx
µ1

σ(1)
· · · xµn

σ(n)

= det



x
µ1

1
x
µ2

1
· · · x

µn

1

x
µ1

2
x
µ2

2
· · · x

µn

2
...

...
...

x
µ1
n x

µ2
n · · · x

µn
n


.

In particular,

V(n−1,n−2,...,1,0) =

∏

i< j

(xi − x j),
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called the Vandermonde determinant. For the partition λ = (λ1, . . . , λn) of n (with λ j = 0

allowed),

Fλ :=
Vλ+(n−1,...,1,0)

V(n−1,...,1,0)

.

eg.

F(2) = F(2,0) =

∣∣∣∣∣∣
x3

1
1

x3
2

1

∣∣∣∣∣∣
∣∣∣∣∣∣

x1 1

x2 1

∣∣∣∣∣∣

=
x3

1
− x3

2

x1 − x2

= x2
1 + x1x2 + x2

2,

F(1,1) =

∣∣∣∣∣∣
x2

1
x1

x2
2

x2

∣∣∣∣∣∣
∣∣∣∣∣∣

x1 1

x2 1

∣∣∣∣∣∣

=
x2

1
x2 − x1x2

2

x1 − x2

= x1x2.

Note:

(a) xi = x j ⇒ Vµ = 0. Thus, Vλ+(n−1,...,1,0) is divisible by V(n−1,...,1,0), and so Fλ is a polynomial.

(b) Interchanging xi, x j multiplies both numerator and denominator by −1, so Fλ is symmetric.

6. Forgotten Basis

Let mλ = p(s1, . . . , sk) be the expansion for mλ in the elem. symmetric polys. Then

fλ = p(h1, . . . , hk).

eg. For λ = (2),

m(2) = x2
1 + x2

2 = (x1 + x2)2 − 2x1x2 = s2
1 − 2s2,

∴ f(2) = h2
1 − 2h2 = (x1 + x2)2 − 2(x2

1 + x1x2 + x2
2) = −x2

1 − x2
2.
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For λ = (1, 1),

m(1,1) = x1x2 = s2

∴ f(1,1) = h2 = x2
1 + x1x2 + x2

2.

We know that 1 forms a basis for Σ
Q
n and it is trivial to see that 2 does. We have to prove that the

others do.

Note: {ψλ} does not form a basis for ΣZn . eg. s2 =
1
2
(ψ(1,1) − ψ(2)) in σ

Q
n , so

s2 < Z[ψ1, ψ2, ψ3, . . . ].

Generating Functions for sn, hn, ψn

The first three of our bases are defined as monomials in some other symmetric functions. Set

S (t) :=

∞∑

n=0

sntn

H(t) :=

∞∑

n=0

hntn

Ψ(t) :=

∞∑

n=0

ψntn.
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By expanding and examining the coefficient of tn, we see that

S (t) =

∞∏

j=1

(1 + x jt),

H(t) =

∞∏

j=1

(1 + x jt + x2
j t

2
+ x3

j t
3
+ · · · ) =

∞∏

j=1

1

1 − x jt
,

Ψ(t) =

∞∑

n=1

∞∑

j=1

xn
j t

n−1

=

∞∑

j=1

∞∑

n=1

xn
j t

n−1

=

∞∑

j=1

x j

1 − x jt

=

∞∑

j=1

− d

dt
log(1 − x jt)

=
d

dt
log


∞∏

j=1

1

1 − x jt



=
d

dt
log(H(t))

=
H′(t)

H(t)
.

Thus,

S (t)H(−t) = 1 (1)

Ψ(t) =
H′(t)

H(t)
(2)

Ψ(−t) =
H′(−t)

H(−t)
=

S ′(t)

S (t)
(3)

(1) implies that

s0h0 = 1
n∑

j=0

(−1) js jhn− j = 0 n > 0 (1’)
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Define ω : ΛZ = Z[s1, s2, . . . ] 7→ ΛZ by ω(s j) = h j. Since (1’) is symmetrical in h, s, we get that ω

is an isomorphism. In particular, Λ = Z[h1, h2, . . . ], and so the homogeneous functions form a basis.

Applying ω to (1’) gives

0 =

n∑

j=0

(−1) jh jω(hn− j)

=

n∑

j=0

(−1)n− jhn− jω(h j)

= (−1)n

n∑

j=0

(−1) jω(h j)hn− j ∀n > 0.

Comparing with (1’), we see that ω(hn) = sn, ie. ω2
= 1 (ω is an involution).

By (2),

∞∑

n=1

nhntn−1
=

∞∑

n=1

∞∑

j=1

ψ jhn− jt
n−1

n∑

j=1

ψ jhn− j = nhn ∀n. (2’)

Similarly,
n∑

j=1

(−1) j−1ψ jsn− j = ns j ∀n. (3’)

Using (3’), each sn can inductively be written as a polynomial inQ[ψ1, . . . , ψn], so the power functions

form a basis for ΛQ.

Since ω interchanges h, s, comparing (2’) and (3’) gives

ω(ψn) = (−1)n−1ψn.

To see that the Schur Functions form a basis for ΛZn , set Vn := V(n−1,...,0). Let Ak be the set of skew

symmetric polynomials of degree k in n variables. Then we have an isomorphism

Λn 7→ An+(n
2)

f 7→ f Vn

Since {FλVn} is the “monomial” basis for An+(2
2)

(ie. the basis obtained by skew symmetrizing each

monomial), {Fλ} forms a basis for Λn.
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