MAT344 HW 2 Solutions

Solution to Ex. 1: Let $n \geq 2$. There are three types of valid record identifiers (VRIs) of length n. A VRI of length n of the first type begins with any upper-case letter other than D and is followed by any valid record identifier of length $n-1$. Thus, there are $25 \cdot r(n-1)$ VRIs of length n of the first type. A VRI of length n of the second type begins with $1 C, 2 K$, or $7 J$ and is followed by any valid record identifier of length $n-2$. Thus, there are $3 \cdot r(n-2)$ VRIs of length n of the second type. A VRI of length n of the third type begins with D and is followed by any string of $n-1$ decimal digits. Thus there are 10^{n-1} VRIs of length n of the third type. In total, we get

$$
r(n)=25 \cdot r(n-1)+3 \cdot r(n-2)+10^{n-1}
$$

Since $r(0)=1$ and $r(1)=26$, we have

$$
\begin{aligned}
& r(2)=25 \cdot r(1)+3 \cdot r(0)+10^{1}=25 \cdot 26+3 \cdot 1+10=663 \\
& r(3)=25 \cdot r(2)+3 \cdot r(1)+10^{2}=25 \cdot 663+3 \cdot 26+100=16753 \\
& r(4)=25 \cdot r(3)+3 \cdot r(2)+10^{3}=25 \cdot 16753+3 \cdot 663+1000=421814 \\
& r(5)=25 \cdot r(4)+3 \cdot r(3)+10^{4}=25 \cdot 421814+3 \cdot 16753+10000=10605609
\end{aligned}
$$

Solution to Ex. 3: For each non-negative integer n, let $S(n)$ denote the set of all ternary strings of length n that do not contain 102 as a substring. Note that $g(n)=|S(n)|$. All ternary strings of length at most 2 do not contain 102 as a substring. Therefore $g(0)=1, g(1)=3$, and $g(2)=3^{2}=9$.

Let $n \geq 3$. For $i=0,1,2$, define $S_{i}(n)=\left\{x_{1} \ldots x_{n} \in S(n): x_{n}=i\right\}$. Then $S(n)$ is the disjoint union of $S_{0}(n), S_{1}(n)$, and $S_{2}(n)$, so $g(n)=|S(n)|=\left|S_{0}(n)\right|+\left|S_{1}(n)\right|+\left|S_{2}(n)\right|$.

Let $i=0,1$. If $x_{1} \ldots x_{n-1} i$ is a ternary string of length n that ends in i, then $x_{1} \ldots x_{n-1} i$ does not contain 102 as a substring if and only if $x_{1} \ldots x_{n-1}$ does not contain 102 as a substring. Therefore $S_{i}(n)=$ $S(n-1) \times\{i\}$, and consequently $\left|S_{i}(n)\right|=|S(n-1)|=g(n-1)$.

Now we will show that $S_{2}(n)=S(n-3) \times\left(\{0,1,2\}^{2} \backslash\{10\}\right) \times\{2\}$, and consequently $\left|S_{2}(n)\right|=\mid S(n-$ $3) \mid \cdot\left(3^{2}-1\right)=8 g(n-3)$. In words, we will show that $S_{2}(n)$ is the set of ternary strings $x_{1} \ldots x_{n-1} 2$ such that $x_{1} \ldots x_{n-3}$ does not contain 102 as a substring and $x_{n-2} x_{n-2} \neq 10$. To show this, consider a ternary string $x_{1} \ldots x_{n-1} 2$ of length n that ends in 2 . The string $x_{1} \ldots x_{n-1} 2$ does not contain 102 as a substring if and only if $x_{1} \ldots x_{n-1}$ does not contain 102 as a substring and $x_{n-2} x_{n-1} \neq 10$. Now, when $x_{n-2} x_{n-1} \neq 10$, the string $x_{1} \ldots x_{n-1}$ does not contain 102 as a substring if and only if $x_{1} \ldots x_{n-3}$ does not contain 102 as a substring. Therefore $x_{1} \ldots x_{n-1} 2$ does not contain 102 as a substring if and only if $x_{1} \ldots x_{n-3}$ does not contain 102 as a substring and $x_{n-2} x_{n-2} \neq 10$, as required.

Putting everything together, we have $g(n)=2 g(n-1)+8 g(n-3)$.
Solution to Ex. 5: Recall that S is the set of quaternary strings (strings on the alphabet $\{0,1,2,3\}$) that do not contain 12 or 20 as a substring and we wish to find a recursion for the number $h(n)$ of strings in S of length $n \geq 0$. All quaternary strings of length at most 1 are in S , so $h(0)=1$ and $h(1)=4$. Let $n \geq 2$. Consider a quaternary string $x_{1} \ldots x_{n}$ of length n.

Suppose that $x_{n}=1$ or $x_{n}=3$. Then $x_{1} \ldots x_{n}$ is in S if and only if $x_{1} \ldots x_{n-1}$ is in S. Therefore the number of strings in S of length n that end in 1 or 3 is $2 h(n-1)$.

Suppose that $x_{n}=0$. Then $x_{1} \ldots x_{n}$ is in S if and only if $x_{1} \ldots x_{n-1}$ is in S and $x_{n-1}=0,1,3$, and this happens if and only if $x_{1} \ldots x_{n-2}$ is in S and $x_{n-1}=0,1,3$. Therefore the number of strings in S of length n that end in 0 is $3 h(n-2)$.

Suppose that $x_{n}=2$. Then $x_{1} \ldots x_{n}$ is in S if and only if $x_{1} \ldots x_{n-1}$ is in S and $x_{n-1}=0,2,3$, and this happens if and only if $x_{1} \ldots, x_{n-2}$ is in S and $x_{n-1}=0,2,3$. Therefore the number of strings in S of length n that end in 2 is $3 h(n-2)$.

In total, the number of strings in S of length n is thus $h(n)=2 h(n-1)+6 h(n-2)$.

Solution to Ex. 7: We apply the Euclid's algorithm:

$$
\begin{aligned}
827 & =3 \cdot 249+80 \\
249 & =3 \cdot 80+9 \\
80 & =8 \cdot 9+8 \\
9 & =1 \cdot 8+1 \\
8 & =8 \cdot 1+0 .
\end{aligned}
$$

Therefore $\operatorname{gcd}(827,249)=1$ and

$$
\begin{aligned}
1 & =9-1 \cdot 8 \\
& =(249-3 \cdot 80)-1 \cdot(80-8 \cdot 9) \\
& =249-4 \cdot 80+8 \cdot 9 \\
& =249-4 \cdot(827-3 \cdot 249)+8 \cdot(249-3 \cdot 80) \\
& =-4 \cdot 827+21 \cdot 249-24 \cdot 80 \\
& =-4 \cdot 827+21 \cdot 249-24 \cdot(827-3 \cdot 249) \\
& =-28 \cdot 827+93 \cdot 249 .
\end{aligned}
$$

Thus, if we take $a=6 \cdot(-28)=-168$ and $b=6 \cdot 93=558$, then $827 a+249 b=6$.
Solution to Ex. 9.a: First, we prove the identity by induction. If $n=1$, then

$$
\frac{n(n+1)(2 n+1)}{6}=\frac{1 \cdot 2 \cdot 3}{6}=\frac{6}{6}=1^{2}=\sum_{i=1}^{n} i^{2}
$$

so the identity holds. Let $n \geq 1$ and assume that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$. Then

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} \\
& =\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
\end{aligned}
$$

Therefore, by the principle of induction the identity holds for all positive integers n.
Now we give a combinatorial proof of the identity. Let n be a positive integer. We will prove that

$$
3 \sum_{i=1}^{n} i^{2}=\frac{n(n+1)}{2} \cdot(2 n+1)
$$

by counting the number of elements in a set in two different ways. The proof will make clear why the triangular number $\frac{n(n+1)}{2}$ appears. Afterwards we will give a second way of concluding the combinatorial proof, which proves the identity in the form

$$
6 \sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1)
$$

Consider the following three "step-pyramids":

$$
\begin{aligned}
& P_{1}=\bigcup_{i=0}^{n-1}[i, n-i] \times[i, n-i] \times[i, i+1] \\
& P_{2}=\bigcup_{i=0}^{n-1}[0, n-i] \times[n-i, n-i+1] \times[i, n], \\
& P_{3}=\bigcup_{i=0}^{n-1}[n-i-1, n-i] \times[0, n-i] \times[i+1, n+1] .
\end{aligned}
$$

Let us call a unit cube of the form $[i, i+1] \times[j, j+1] \times[k, k+1]$ with $i, j, k \in \mathbb{Z}$ an integral unit cube. Note that each of P_{1}, P_{2}, P_{3} is a union of $\sum_{i=1}^{n} i^{2}$ distinct integral unit cubes. (For example, consider P_{1}. For each $i=0, \ldots, n-1$, the solid box $[i, n-i] \times[i, n-i] \times[i, i+1]$ contains precisely $(n-i)^{2}$ integral unit cubes, namely $[j, j+1] \times[k, k+1] \times[i, i+1]$ for $j, k=0, \ldots, n-i-1$.) Moreover, no two of P_{1}, P_{2}, P_{3} share an integral unit cube. Therefore the union $S=P_{1} \cup P_{2} \cup P_{3}$ contains precisely $3 \sum_{i=1}^{n} i^{2}$ integral unit cubes.

We will now count the number of integral unit cubes contained in S in a different way and show that it is $\frac{n(n+1)}{2} \cdot(2 n+1)$. Consider the following two "step-triangular prisms":

$$
\begin{aligned}
T_{1} & =\bigcup_{i=0}^{n-1}[i, n] \times[i, i+1] \times[0,1] \\
T_{2} & =\bigcup_{i=0}^{n-1}[0, n-i] \times[n-i, n-i+1] \times[0,1]
\end{aligned}
$$

Each of T_{1} and T_{2} is a union of $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ distinct integral unit cubes, and T_{1} and T_{2} do not share any integral unit cubes. Now, S is the union of the $n+1$ vertical translates of T_{1} by the vectors $(0,0,1), \ldots,(0,0, n+1)$ and n vertical translates of T_{2} by the vectors $(0,0,1), \ldots,(0,0, n)$. Therefore the number of integral unit cubes contained in S is $(2 n+1) \cdot \frac{n(n+1)}{2}$ as required.

Alternatively, one can conclude the proof by observing that the solid box $B=[0, n] \times[0, n+1] \times[0,2 n+1]$ is the union of S and a solid S^{\prime} congruent to S, which also contains $3 \sum_{i=1}^{n} i^{2}$ integral unit cubes that are all distinct from those contained in S. Therefore the number of integral unit cubes in B is the number contained in S plus the number contained in S^{\prime}, in other words $3 \sum_{i=1}^{n} i^{2}+3 \sum_{i=1}^{n} i^{2}=6 \sum_{i=1}^{n} i^{2}$. Since the number of integral unit cubes in B is clearly $n(n+1)(2 n+1)$, we obtain $6 \sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1)$.

Solution to Ex. 9.b:

If $n=0$, then the left hand side of the identity is $\binom{n}{0} 2^{0}=1$ and the right hand side is $3^{0}=1$, so the identity holds. Let $n \geq 0$ and suppose that $\sum_{i=0}^{n}\binom{n}{i} 2^{i}=3^{n}$. Then

$$
\begin{aligned}
\sum_{i=0}^{n+1}\binom{n+1}{i} 2^{i} & =\binom{n+1}{0} 2^{0}+\sum_{i=1}^{n+1}\left(\binom{n}{i-1}\binom{n}{i}\right) 2^{i} \\
& =1+\sum_{i=1}^{n+1}\binom{n}{i-1} 2^{i}+\sum_{i=1}^{n+1}\binom{n}{i} 2^{i} \\
& =1+\sum_{i=0}^{n}\binom{n}{i} 2^{i+1}+\sum_{i=1}^{n+1}\binom{n}{i} 2^{i} \\
& =\sum_{i=0}^{n}\binom{n}{i} 2^{i+1}+\sum_{i=0}^{n}\binom{n}{i} 2^{i} \\
& =2 \sum_{i=0}^{n}\binom{n}{i} 2^{i}+\sum_{i=0}^{n}\binom{n}{i} 2^{i}
\end{aligned}
$$

Since $\sum_{i=0}^{n}\binom{n}{i} 2^{i}=3^{n}$, we have

$$
\sum_{i=0}^{n+1}\binom{n+1}{i} 2^{i}=2 \cdot 3^{n}+3^{n}=3^{n+1}
$$

By the principle of induction, the identity holds for all non-negative integers n.
Now we give a combinatorial proof. Let n be a non-negative integer. Let $B(n)$ (resp. $T(n)$) denote the set of binary (resp. ternary) strings of length n. For each $i=0, \ldots, n$, let $T_{i}(n)$ denote the set of ternary strings of length n with $i 0$ s and 1 s (and $n-i 2 \mathrm{~s}$). Then we have the disjoint union $T(n)=\coprod_{i=0}^{n} T_{i}(n)$. Therefore $3^{n}=|T(n)|=\sum_{i=0}^{n}\left|T_{i}(n)\right|$.

We will show that for each $i=0, \ldots, n$ we have $\left|T_{i}(n)\right|=\binom{n}{i} 2^{i}$. To show this, it suffices to construct a bijection $f_{i}: T_{i}(n) \rightarrow\binom{\{1, \ldots, n\}}{i} \times B(i)$, as the codomain has cardinality $\binom{n}{i} 2^{i}$. Let $x=x_{1} \ldots x_{n} \in T_{i}(n)$. Define $k_{1}<\cdots<k_{i}$ so that $x_{k_{1}}, \ldots, x_{k_{i}} \in\{0,1\}$. Then $\left\{k_{1}, \ldots, k_{n}\right\} \in\left({ }_{i}^{\{1, \ldots, n\}}\right)$ and $x_{k_{1}} \ldots x_{k_{i}} \in B(i)$. We define $f_{i}(x)=\left(\left\{k_{1}, \ldots, k_{i}\right\}, x_{k_{1}} \ldots x_{k_{i}}\right)$. This gives a well-defined map $f_{i}: T_{i}(n) \rightarrow\left({ }_{i}^{\{1, \ldots, n\}}\right) \times B(i)$. The map f_{i} is a bijection since we can write down its inverse. Indeed, for $\left(\left\{k_{1}, \ldots, k_{i}\right\}, x_{k_{1}} \ldots x_{k_{i}}\right) \in\left({ }_{i}^{\{1, \ldots, n\}}\right) \times B(i)$ define by $g_{i}\left(\left\{k_{1}, \ldots, k_{i}\right\}, y_{k_{1}} \ldots y_{k_{i}}\right)$ to be the ternary string $x_{1} \ldots x_{n}$ with $x_{k_{i}}=y_{k_{i}}$ for all $i=0, \ldots, i$ and $x_{k}=2$ for all $k \in\{1, \ldots, n\} \backslash\left\{k_{1}, \ldots, k_{i}\right\}$. Then g_{i} is the inverse of f_{i}.

Solution to Ex. 11: It is straightforward to prove the identity by induction. We give a combintorial proof. Let n be a non-negative integer. The set $2^{[n+1]} \backslash\{\varnothing\}$ of non-empty subsets of $[n+1]=\{1, \ldots, n+1\}$ is the disjoint union

$$
2^{[n+1]} \backslash\{\varnothing\}=\coprod_{i=0}^{n} S_{i},
$$

where S_{i} is the set of non-empty subsets of $[n+1]$ whose largest element is $i+1$. For each $i=0, \ldots, n$, the the map $f_{i}: S_{i} \rightarrow 2^{[i]}$ defined by $f_{i}(A)=A \backslash\{i+1\}$ is a bijection, so $\left|S_{i}\right|=2^{i}$. Therefore

$$
2^{n+1}-1=\left|2^{[n+1]} \backslash\{\varnothing\}\right|=\left|\coprod_{i=0}^{n} S_{i}\right|=\sum_{i=0}^{n}\left|S_{i}\right|=\sum_{i=0}^{n} 2^{i}
$$

as required.
Solution to Ex. 13: We proceed by induction on n. If $n=1$, then $9^{n}-5^{n}=9-5=4$, which is divisible by 4 . Let n be a positive integer and assume that $9^{n}-5^{n}$ is divisible by 4 . Let q be the integer such that $9^{n}-5^{n}=4 q$. Then

$$
9^{n+1}-5^{n+1}=9 \cdot 9^{n}-5 \cdot 5^{n}=4 \cdot 9^{n}+5 \cdot\left(9^{n}-5^{n}\right)=4 \cdot\left(9^{n}+5 q\right) .
$$

Therefore 4 divides $9^{n+1}-5^{n+1}$. By the principle of induction, we have that 4 divides $9^{n}-5^{n}$ for all positive integers n.

Solution to Ex. 15: If $n=0$, then $n^{3}+(n+1)^{3}+(n+2)^{3}=0+1+8=9$, which is divisible by 9 . Let n be a non-negative integer and assume that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 . Let q be the integer such that $n^{3}+(n+1)^{3}+(n+2)^{3}=9 q$. Then

$$
\begin{aligned}
(n+1)^{3}+((n+1)+1)^{3}+((n+1)+2)^{3} & =(n+1)^{3}+(n+2)^{3}+(n+3)^{3} \\
& =(n+1)^{3}+(n+2)^{3}+n^{3}+\binom{3}{1} 3 n^{2}+\binom{3}{2} 3^{2} n+\binom{3}{3} 3^{3} \\
& =9 q+9 n^{2}+27 n+27 \\
& =9\left(q+n^{2}+3 n+3\right) .
\end{aligned}
$$

Thus, $(n+1)^{3}+((n+1)+1)^{3}+((n+1)+2)^{3}$ is divisible by 9 . By the principle of induction, $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for all non-negative integers n.

Solution to Ex. 17: If $n=0$, then $3 n^{2}-n+2=2=f(0)$. If $n=1$, then $3 n^{2}-n+2=3-1+2=4=f(1)$. Let $n \geq 1$ be a integer and assume that $f(k)=3 k^{2}-k+2$ for all non-negative integers $k \leq n$. Then

$$
\begin{aligned}
f(n+1) & =2 f(n)-f(n-1)+6 \\
& =2\left(3 n^{2}-n+2\right)-\left(3(n-1)^{2}-(n-1)+2\right)+6 \\
& =6 n^{2}-2 n+4-\left(3\left(n^{2}-2 n+1\right)-n+3\right)+6 \\
& =6 n^{2}-2 n+4-\left(3 n^{2}-7 n+6\right)+6 \\
& =3 n^{2}+5 n+4 .
\end{aligned}
$$

On the other hand, $3(n+1)^{2}-(n+1)+2=3\left(n^{2}+2 n+1\right)-n+1=3 n^{2}+5 n+4$, so $f(n+1)=$ $3(n+1)^{2}-(n+1)+2$. Therefore, by the principle of strong induction we have $f(n)=3 n^{2}-n+2$ for all non-negative integers n.
Solution to Ex. 19: We proceed by induction. When $n=0$, we have $(1+x)^{n}=1$ and $1+n x=1$, so $(1+x)^{n} \geq 1+n x$. Let n be a non-negative integer and assume that $(1+x)^{n} \geq 1+n x$. Since $1+x>0$ and $(1+x)^{n} \geq 1+n x$, we have

$$
(1+x)(1+x)^{n} \geq(1+x)(1+n x)
$$

Therefore

$$
(1+x)^{n+1} \geq(1+x)(1+n x)=1+n x+x+n x^{2}=1+(n+1) x+n x^{2} \geq 1+(n+1) x
$$

where the last inequality holds since $n x^{2} \geq 0$. By the principle of induction, we have $(1+x)^{n} \geq 1+n x$ for all non-negative integers n.

