
MAT344 HW 2 Solutions

Solution to Ex. 1: Let n ≥ 2. There are three types of valid record identifiers (VRIs) of length n. A VRI
of length n of the first type begins with any upper-case letter other than D and is followed by any valid
record identifier of length n − 1. Thus, there are 25 · r(n − 1) VRIs of length n of the first type. A VRI of
length n of the second type begins with 1C, 2K, or 7J and is followed by any valid record identifier of length
n− 2. Thus, there are 3 · r(n− 2) VRIs of length n of the second type. A VRI of length n of the third type
begins with D and is followed by any string of n− 1 decimal digits. Thus there are 10n−1 VRIs of length n
of the third type. In total, we get

r(n) = 25 · r(n− 1) + 3 · r(n− 2) + 10n−1.

Since r(0) = 1 and r(1) = 26, we have

r(2) = 25 · r(1) + 3 · r(0) + 101 = 25 · 26 + 3 · 1 + 10 = 663

r(3) = 25 · r(2) + 3 · r(1) + 102 = 25 · 663 + 3 · 26 + 100 = 16 753

r(4) = 25 · r(3) + 3 · r(2) + 103 = 25 · 16 753 + 3 · 663 + 1 000 = 421 814

r(5) = 25 · r(4) + 3 · r(3) + 104 = 25 · 421 814 + 3 · 16 753 + 10 000 = 10 605 609

Solution to Ex. 3: For each non-negative integer n, let S(n) denote the set of all ternary strings of length
n that do not contain 102 as a substring. Note that g(n) = |S(n)|. All ternary strings of length at most 2
do not contain 102 as a substring. Therefore g(0) = 1, g(1) = 3, and g(2) = 32 = 9.

Let n ≥ 3. For i = 0, 1, 2, define Si(n) = {x1 . . . xn ∈ S(n) : xn = i}. Then S(n) is the disjoint union of
S0(n), S1(n), and S2(n), so g(n) = |S(n)| = |S0(n)|+ |S1(n)|+ |S2(n)|.

Let i = 0, 1. If x1 . . . xn−1i is a ternary string of length n that ends in i, then x1 . . . xn−1i does not
contain 102 as a substring if and only if x1 . . . xn−1 does not contain 102 as a substring. Therefore Si(n) =
S(n− 1)× {i}, and consequently |Si(n)| = |S(n− 1)| = g(n− 1).

Now we will show that S2(n) = S(n − 3) × ({0, 1, 2}2 \ {10}) × {2}, and consequently |S2(n)| = |S(n −
3)| · (32 − 1) = 8g(n − 3). In words, we will show that S2(n) is the set of ternary strings x1 . . . xn−12 such
that x1 . . . xn−3 does not contain 102 as a substring and xn−2xn−2 ̸= 10. To show this, consider a ternary
string x1 . . . xn−12 of length n that ends in 2. The string x1 . . . xn−12 does not contain 102 as a substring if
and only if x1 . . . xn−1 does not contain 102 as a substring and xn−2xn−1 ̸= 10. Now, when xn−2xn−1 ̸= 10,
the string x1 . . . xn−1 does not contain 102 as a substring if and only if x1 . . . xn−3 does not contain 102 as
a substring. Therefore x1 . . . xn−12 does not contain 102 as a substring if and only if x1 . . . xn−3 does not
contain 102 as a substring and xn−2xn−2 ̸= 10, as required.

Putting everything together, we have g(n) = 2g(n− 1) + 8g(n− 3).

Solution to Ex. 5: Recall that S is the set of quaternary strings (strings on the alphabet {0, 1, 2, 3}) that
do not contain 12 or 20 as a substring and we wish to find a recursion for the number h(n) of strings in S
of length n ≥ 0. All quaternary strings of length at most 1 are in S, so h(0) = 1 and h(1) = 4. Let n ≥ 2.
Consider a quaternary string x1 . . . xn of length n.

Suppose that xn = 1 or xn = 3. Then x1 . . . xn is in S if and only if x1 . . . xn−1 is in S. Therefore the
number of strings in S of length n that end in 1 or 3 is 2h(n− 1).

Suppose that xn = 0. Then x1 . . . xn is in S if and only if x1 . . . xn−1 is in S and xn−1 = 0, 1, 3, and this
happens if and only if x1 . . . xn−2 is in S and xn−1 = 0, 1, 3. Therefore the number of strings in S of length
n that end in 0 is 3h(n− 2).

Suppose that xn = 2. Then x1 . . . xn is in S if and only if x1 . . . xn−1 is in S and xn−1 = 0, 2, 3, and this
happens if and only if x1 . . . , xn−2 is in S and xn−1 = 0, 2, 3. Therefore the number of strings in S of length
n that end in 2 is 3h(n− 2).

In total, the number of strings in S of length n is thus h(n) = 2h(n− 1) + 6h(n− 2).
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Solution to Ex. 7: We apply the Euclid’s algorithm:

827 = 3 · 249 + 80

249 = 3 · 80 + 9

80 = 8 · 9 + 8

9 = 1 · 8 + 1

8 = 8 · 1 + 0.

Therefore gcd(827, 249) = 1 and

1 = 9− 1 · 8
= (249− 3 · 80)− 1 · (80− 8 · 9)
= 249− 4 · 80 + 8 · 9
= 249− 4 · (827− 3 · 249) + 8 · (249− 3 · 80)
= −4 · 827 + 21 · 249− 24 · 80
= −4 · 827 + 21 · 249− 24 · (827− 3 · 249)
= −28 · 827 + 93 · 249.

Thus, if we take a = 6 · (−28) = −168 and b = 6 · 93 = 558, then 827a+ 249b = 6.

Solution to Ex. 9.a: First, we prove the identity by induction. If n = 1, then

n(n+ 1)(2n+ 1)

6
=

1 · 2 · 3
6

=
6

6
= 12 =

n∑
i=1

i2,

so the identity holds. Let n ≥ 1 and assume that
∑n

i=1 i
2 = n(n+1)(2n+1)

6 . Then

n+1∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

=
(n+ 1)(n(2n+ 1) + 6(n+ 1))

6

=
(n+ 1)(2n2 + 7n+ 6)

6

=
(n+ 1)(n+ 2)(2n+ 3)

6

=
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6
.

Therefore, by the principle of induction the identity holds for all positive integers n.
Now we give a combinatorial proof of the identity. Let n be a positive integer. We will prove that

3

n∑
i=1

i2 =
n(n+ 1)

2
· (2n+ 1)

by counting the number of elements in a set in two different ways. The proof will make clear why the

triangular number n(n+1)
2 appears. Afterwards we will give a second way of concluding the combinatorial

proof, which proves the identity in the form

6

n∑
i=1

i2 = n(n+ 1)(2n+ 1).
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Consider the following three “step-pyramids”:

P1 =

n−1⋃
i=0

[i, n− i]× [i, n− i]× [i, i+ 1],

P2 =

n−1⋃
i=0

[0, n− i]× [n− i, n− i+ 1]× [i, n],

P3 =

n−1⋃
i=0

[n− i− 1, n− i]× [0, n− i]× [i+ 1, n+ 1].

Let us call a unit cube of the form [i, i+ 1]× [j, j + 1]× [k, k+ 1] with i, j, k ∈ Z an integral unit cube. Note
that each of P1, P2, P3 is a union of

∑n
i=1 i

2 distinct integral unit cubes. (For example, consider P1. For each
i = 0, . . . , n− 1, the solid box [i, n− i]× [i, n− i]× [i, i+ 1] contains precisely (n− i)2 integral unit cubes,
namely [j, j + 1] × [k, k + 1] × [i, i + 1] for j, k = 0, . . . , n − i − 1.) Moreover, no two of P1, P2, P3 share an
integral unit cube. Therefore the union S = P1 ∪ P2 ∪ P3 contains precisely 3

∑n
i=1 i

2 integral unit cubes.
We will now count the number of integral unit cubes contained in S in a different way and show that it

is n(n+1)
2 · (2n+ 1). Consider the following two “step-triangular prisms”:

T1 =

n−1⋃
i=0

[i, n]× [i, i+ 1]× [0, 1]

T2 =

n−1⋃
i=0

[0, n− i]× [n− i, n− i+ 1]× [0, 1]

Each of T1 and T2 is a union of
∑n

i=1 i = n(n+1)
2 distinct integral unit cubes, and T1 and T2 do not

share any integral unit cubes. Now, S is the union of the n + 1 vertical translates of T1 by the vectors
(0, 0, 1), . . . , (0, 0, n + 1) and n vertical translates of T2 by the vectors (0, 0, 1), . . . , (0, 0, n). Therefore the

number of integral unit cubes contained in S is (2n+ 1) · n(n+1)
2 as required.

Alternatively, one can conclude the proof by observing that the solid box B = [0, n]× [0, n+1]× [0, 2n+1]
is the union of S and a solid S′ congruent to S, which also contains 3

∑n
i=1 i

2 integral unit cubes that are all
distinct from those contained in S. Therefore the number of integral unit cubes in B is the number contained
in S plus the number contained in S′, in other words 3

∑n
i=1 i

2 + 3
∑n

i=1 i
2 = 6

∑n
i=1 i

2. Since the number
of integral unit cubes in B is clearly n(n+ 1)(2n+ 1), we obtain 6

∑n
i=1 i

2 = n(n+ 1)(2n+ 1).

Solution to Ex. 9.b:
If n = 0, then the left hand side of the identity is

(
n
0

)
20 = 1 and the right hand side is 30 = 1, so the

identity holds. Let n ≥ 0 and suppose that
∑n

i=0

(
n
i

)
2i = 3n. Then

n+1∑
i=0

(
n+ 1

i

)
2i =

(
n+ 1

0

)
20 +

n+1∑
i=1

(

(
n

i− 1

)(
n

i

)
)2i

= 1 +

n+1∑
i=1

(
n

i− 1

)
2i +

n+1∑
i=1

(
n

i

)
2i

= 1 +

n∑
i=0

(
n

i

)
2i+1 +

n+1∑
i=1

(
n

i

)
2i

=

n∑
i=0

(
n

i

)
2i+1 +

n∑
i=0

(
n

i

)
2i

= 2

n∑
i=0

(
n

i

)
2i +

n∑
i=0

(
n

i

)
2i
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Since
∑n

i=0

(
n
i

)
2i = 3n, we have

n+1∑
i=0

(
n+ 1

i

)
2i = 2 · 3n + 3n = 3n+1.

By the principle of induction, the identity holds for all non-negative integers n.
Now we give a combinatorial proof. Let n be a non-negative integer. Let B(n) (resp. T (n)) denote the

set of binary (resp. ternary) strings of length n. For each i = 0, . . . , n, let Ti(n) denote the set of ternary
strings of length n with i 0s and 1s (and n − i 2s). Then we have the disjoint union T (n) =

∐n
i=0 Ti(n).

Therefore 3n = |T (n)| =
∑n

i=0 |Ti(n)|.
We will show that for each i = 0, . . . , n we have |Ti(n)| =

(
n
i

)
2i. To show this, it suffices to construct a bi-

jection fi : Ti(n) →
({1,...,n}

i

)
×B(i), as the codomain has cardinality

(
n
i

)
2i. Let x = x1 . . . xn ∈ Ti(n). Define

k1 < · · · < ki so that xk1
, . . . , xki

∈ {0, 1}. Then {k1, . . . , kn} ∈
({1,...,n}

i

)
and xk1

. . . xki
∈ B(i). We define

fi(x) = ({k1, . . . , ki}, xk1 . . . xki). This gives a well-defined map fi : Ti(n) →
({1,...,n}

i

)
× B(i). The map fi

is a bijection since we can write down its inverse. Indeed, for ({k1, . . . , ki}, xk1
. . . xki

) ∈
({1,...,n}

i

)
× B(i)

define by gi({k1, . . . , ki}, yk1
. . . yki

) to be the ternary string x1 . . . xn with xki
= yki

for all i = 0, . . . , i and
xk = 2 for all k ∈ {1, . . . , n} \ {k1, . . . , ki}. Then gi is the inverse of fi.

Solution to Ex. 11: It is straightforward to prove the identity by induction. We give a combintorial proof.
Let n be a non-negative integer. The set 2[n+1] \ {∅} of non-empty subsets of [n+1] = {1, . . . , n+1} is the
disjoint union

2[n+1] \ {∅} =

n∐
i=0

Si,

where Si is the set of non-empty subsets of [n+ 1] whose largest element is i+ 1. For each i = 0, . . . , n, the
the map fi : Si → 2[i] defined by fi(A) = A \ {i+ 1} is a bijection, so |Si| = 2i. Therefore

2n+1 − 1 = |2[n+1] \ {∅}| = |
n∐

i=0

Si| =
n∑

i=0

|Si| =
n∑

i=0

2i

as required.

Solution to Ex. 13: We proceed by induction on n. If n = 1, then 9n − 5n = 9− 5 = 4, which is divisible
by 4. Let n be a positive integer and assume that 9n − 5n is divisible by 4. Let q be the integer such that
9n − 5n = 4q. Then

9n+1 − 5n+1 = 9 · 9n − 5 · 5n = 4 · 9n + 5 · (9n − 5n) = 4 · (9n + 5q).

Therefore 4 divides 9n+1−5n+1. By the principle of induction, we have that 4 divides 9n−5n for all positive
integers n.

Solution to Ex. 15: If n = 0, then n3 + (n+ 1)3 + (n+ 2)3 = 0 + 1 + 8 = 9, which is divisible by 9. Let
n be a non-negative integer and assume that n3 + (n+ 1)3 + (n+ 2)3 is divisible by 9. Let q be the integer
such that n3 + (n+ 1)3 + (n+ 2)3 = 9q. Then

(n+ 1)3 + ((n+ 1) + 1)3 + ((n+ 1) + 2)3 = (n+ 1)3 + (n+ 2)3 + (n+ 3)3

= (n+ 1)3 + (n+ 2)3 + n3 +

(
3

1

)
3n2 +

(
3

2

)
32n+

(
3

3

)
33

= 9q + 9n2 + 27n+ 27

= 9(q + n2 + 3n+ 3).

Thus, (n+1)3+((n+1)+1)3+((n+1)+2)3 is divisible by 9. By the principle of induction, n3+(n+1)3+(n+2)3

is divisible by 9 for all non-negative integers n.
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Solution to Ex. 17: If n = 0, then 3n2−n+2 = 2 = f(0). If n = 1, then 3n2−n+2 = 3−1+2 = 4 = f(1).
Let n ≥ 1 be a integer and assume that f(k) = 3k2 − k + 2 for all non-negative integers k ≤ n. Then

f(n+ 1) = 2f(n)− f(n− 1) + 6

= 2(3n2 − n+ 2)− (3(n− 1)2 − (n− 1) + 2) + 6

= 6n2 − 2n+ 4− (3(n2 − 2n+ 1)− n+ 3) + 6

= 6n2 − 2n+ 4− (3n2 − 7n+ 6) + 6

= 3n2 + 5n+ 4.

On the other hand, 3(n + 1)2 − (n + 1) + 2 = 3(n2 + 2n + 1) − n + 1 = 3n2 + 5n + 4, so f(n + 1) =
3(n+ 1)2 − (n+ 1) + 2. Therefore, by the principle of strong induction we have f(n) = 3n2 − n+ 2 for all
non-negative integers n.
Solution to Ex. 19: We proceed by induction. When n = 0, we have (1 + x)n = 1 and 1 + nx = 1, so
(1 + x)n ≥ 1+ nx. Let n be a non-negative integer and assume that (1 + x)n ≥ 1+ nx. Since 1 + x > 0 and
(1 + x)n ≥ 1 + nx, we have

(1 + x)(1 + x)n ≥ (1 + x)(1 + nx).

Therefore

(1 + x)n+1 ≥ (1 + x)(1 + nx) = 1 + nx+ x+ nx2 = 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x,

where the last inequality holds since nx2 ≥ 0. By the principle of induction, we have (1 + x)n ≥ 1 + nx for
all non-negative integers n.
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