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1.2.35. Tucker’s Algorithm. Let G be a connected even graph. At each vertex, partition
the incident edges into pairs (each edge appears in a pair for each of its endpoints).
Starting along a given edge ¢, form a trail by leaving each vertex along the edge paired
with the edge just used to enter it, ending with the edge paired with e. This decomposes
G into closed trails. As long as there is more than one trail in the decomposition, find
two trails with a common vertex and combine them into a longer trail by changing the
pairing at a common vertex. Prove that this procedure works and produces an Eulerian
circuit as its final trail. (Tucker [1976])

1.2.36. (+) Alternative characterization. of Eulerian graphs.

a) Prove that if G is Eulerian and G’ = G — uv, then G’ has an odd number of u, v-
trails that visit v only at the end. Prove also that the number of the trails in this list
that are not paths is even. (Toida [1973])

b) Let v be a vertex of odd degree in a graph. For each edge e incident to v, let c(e)
be the number of cycles containing e. Use Ze c(e) to prove that c(e) is even for some e
incident to v. (McKee [1984])

¢) Use part (a) and part (b) to conclude that a nontrivial connected graph is Eulerian
if and only if every edge belongs to an odd number of cycles.

1.2.37. () Use extremality to prove that the connection relation is transitive. (Hint:
Given a u, v-path P and a v, w-path Q, consider the first vertex of P in Q.)

1.2.38. (!) Prove that every n-vertex graph with at least n edges contains a cycle.

1.2.39. Suppose that every vertex of a loopless graph G has degree at least 3. Prove
that G has a cycle of even lengin. (Hint: Consider a maximal path.) (P. Kwok)

1.2.40. (!) Let P and Q be paths of maximum length in a connected graph G. Prove
that P and Q have a common vertex.

1.2.41. Let G be a connected graph with at least three vertices. Prove that G has
two vertices x, y such that 1) G — {x, y} is connected and 2) x, y are adjaeent or have a
common neighbor. (Hint: Consider a longest path.) (Chung [1978a}])

1.2.42. Let G be a connected simple graph that does not have P, or C4 as an induced
subgraph. Prove that G has a vertex adjacent to all other vertices. (Hint: Consider a
vertex of maximum degree.) (Wolk [1965])

1.2.43. (+) Use induction on k to prove that every connected simple graph with an even
number of edges decomposes into paths of length 2. Does the conclusion remain true if
the hypothesis of connectedness is omitted?

1.3. Vertex Degrees and Counting

The degrees of the vertices are fundamental parameters of a graph. We
repeat the definition in order to introduce important notation.

1.3.1. Definition. The degree of vertex v in a graph G, written dg (v) or d(v),
18 the number of edges incident to v, except that each loop at v counts twice.
The maximum degree is A(G), the minimum degree is §(G), and G is reg-
ular if A(G) = §(G). Itis k-regular if the common degree is k. The neigh-
borhood of v, written Ng(v) or N(v), is the set of vertices adjacent to v.
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1.3.2. Definition. The order of a graph G, written n(G), is the number of
vertices in G. An n-vertex graph is a graph of order n. The size of a
graph G, written ¢(G), is the number of edges in G. For n € N, the notation
[7] indicates the set {1, ..., n}.

Since our graphs are finite, n(G) and ¢(G) are well-defined nonnegative
integers. We also often use “e¢” by itself to denote an edge. When e denotes a
particular edge, it is not followed by the name of a graph in parentheses, so
the context indicates the usage. We have used “n-cycle” to denote a cycle with
n vertices; this is consistent with “n-vertex graph”.

COUNTING AND BIJECTIONS

We begin with counting problems about subgraphs in a graph. The first
such problem is to count the edges; we do this using the vertex degrees. The
resulting formula is an essential tool of graph theory, sometimes called the
“First Theorem of Graph Theory” or the “Handshaking Lemma”.

1.3.3. Proposition. (Degree-Sum Formula) If G is a graph, then
ZI’EV(G) d(U) - 2€(G)

Proof: Summing the degrees counts each edge twice, since each edge has two
ends and contributes to the degree at each endpoint. |

The proof holds even when G has loops, since a loop contributes 2 to the
degree of its endpoint. For a loopless graph, the two sides of the formula count
the set of pairs (v, e) such that v is an endpoint of ¢, grouped by vertices or
grouped by edges. “Counting two ways” is an elegant technique for proving
integer identities (see Exercise 31 and Appendix A).

The degree-sum formula has several immediate corollaries. Corollary 1.3.5
applies in Exercises 9-13 and in many arguments of later chapters.

1.3.4. Corollary. In a graph G, the average vertex degree is %, and hence
5(G) < 2B < A(G). u

1.3.5. Corollary. Every graph has an even number of vertices of odd degree.
No graph of odd order is regular with odd degree. [ ]

1.3.6. Corollary. A k-regular graph with n vertices has nk/2 edges. ]
We next introduce an important family of graphs.

1.3.7. Definition. The k-dimensional cube or hypercube Q; is the sim-
ple graph whose vertices are the k-tuples with entries in {0, 1} and whose
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edges are the pairs of k-tuples that differ in exactly one position. A j-
dimensional subcube of Q; is a subgraph of Q, isomorphic to Q;.
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Above we show Q3. The hypercube is a natural computer architecture.

Processors can communicate directly if they correspond to adjacent vertices in
Q. The k-tuples that name the vertices serve as addresses for the processors.

1.3.8. Example. Structure of hypercubes. The parity of a vertex in Q; is the
parity of the number of 1s in its name, even or odd. Each edge of Q; has an
even vertex and an odd vertex as endpoints. Hence the even vertices form an
independent set, as do the odd vertices, and Q; is bipartite.

Each position in the k-tuples can be specified in two ways, so n(Q;) = 2¢. A
neighbor of a vertex is obtained by changing one of the k positions in its name
to the other value. Thus Qy is k-regular. By Corollary 1.3.6, e(Qy) = k21,

The bold edges above show two subgraphs of Q3 isomorphic to Q2, formed
by keeping the last coordinate fixed at O or at 1. We can form a j-dimensional
subcube by keeping any k — j coordinates fixed and letting the values in the
remaining j coordinates range over all 2/ possible j-tuples. The subgrlflph in-

duced by such a set of vertices is isomorphic to Q;. Since there are (,) ways

to pick j coordinates to vary and 2~/ ways to specify the values in the fixed
coordinates, this specifies (’;)2k‘j such subcubes. In fact, there are no other

j-dimensional subcubes (Exercise 29).

The copies of Q; are simply the edges in Q. Our formula reduces to k2!
when j = 1, so we have found another counting argument to compute e(Q;).

When j = k — 1, our discussion suggests a recursive description of Q.
Append 0 to the vertex names in a copy of Q;_1; append 1 in another copy.
Add edges joining vertices from the two copies whose first £k — 1 coordinates are
equal. The result is Q. The basis of the construction is the 1-vertex graph Q.
This description leads to inductive proofs for many properties of hypercubes,
including e(Qy) = k2¢-! (Exercise 23). n

A hypercube is a regular bipartite graph. A simple counting argument
proves a fundamental observation about such graphs.

1.3.9. Proposition. If £ > 0, then a k-regular bipartite graph has the same
number of vertices in each partite set.
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Proof: Let G be an X, Y-bigraph. Counting the edges according to their end-
points in X yields ¢(G) = k | X|. Counting them by their endpoints in Y yields
e(G) =k |Y|. Thus k | X| = k |Y|, which yields |X| = |Y| when k > 0. ]

Another technique for counting a set is to establish a bijection from it to
a set of known size. Our next example uses this approach. Other examples of
combinatorial arguments for counting problems appear in Appendix A. Exer-
cises 18-35 involve counting.

1.3.10. Example. The Petersen graph has ten 6-cycles. Let G be the Petersen
graph. Being 3-regular, G has ten claws (copies of K; 3). We establish a one-to-
one correspondence between the 6-cycles and the claws.

Since G has girth 5, every 6-cycle F is an induced subgraph. Each vertex
of F has one neighbor outside F. Since nonadjacent vertices have exactly one
common neighbor (Proposition 1.1.38), opposite vertices on F have a common
neighbor outside F. Since G is 3-regular, the resulting three vertices outside
F are distinct. Thus deleting.V (F) leaves a subgraph with three vertices of
degree 1 and one vertex of degree 3; it is a claw.

We show that each claw H in G arises exactly once in this way. Let S be the
set of vertices with degree 1 in H; S is an independent set. The central vertex
of H is already a common neighbor, so the six other edges from S reach distinct
vertices. Thus G — V(H) is 2-regular: Since G has girth 5, G — V(H) must be a
6-cycle. This 6-cycle yields H when its vertices are deleted. ]

We present one more counting argument related to a long-standing conjec-
ture. Subgraphs obtained by deleting a single vertex are called vertex-deleted
subgraphs. These subgraphs need not all be distinct; for example, the n vertex-
deleted subgraphs of C, are all isomorphic to P,_;.

1.3.11.* Proposition. For a simple graph G with vertices v1,...,v, and n > 3,
Ye(G —v;) Ye(G —v)
e(G) = —“'—n—_-z— and dG(U,') = _]1———.2—— - e(G - 'Uj).

Proof: An edge e of G appears in G — v; if and only if v; is not an endpoint of e.
Thus ) (G — v;) counts each edge exactly n — 2 times.

Once we know ¢(G), the degree of v; can be computed as the number of
edges lost when deleting v; to form G — v;. B
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Typically, we are given the vertex-deleted subgraphs as unlabeled graphs;
we know only the list of isomorphism classes, not which vertex of G — v; cor-
responds to which vertex in G. This can make it very difficult to tell what G
is. For example, K2 and its complement have the same list of vertex-deleted
subgraphs. For larger graphs we have the Reconstruction Conjecture, for-
mulated in 1942 by Kelly and Ulam.

1.3.12.* Conjecture. (Reconstruction Conjecture) If G is a simple graph with
at least three vertices, then G is uniquely determined by the list of (iso-
morphism classes of) its vertex-deleted subgraphs. [ ]

The list of vertex-deleted subgraphs of G has n(G) items. Proposition 1.3.11
shows that ¢(G) and the list of vertex degrees can be reconstructed. The lat-
ter implies that regular graphs can be reconstructed (Exercise 37). We can
also determine whether G is connected (Exercise 38); using this, disconnected
graphs can be reconstructed (Exercise 39). Other sufficient conditions for re-
constructibility are known, but the general conjecture remains open.

EXTREMAL PROBLEMS

An extremal problem asks for the maximum or minimum value of a func-
tion over a class of objects. For example, the maximum number of edges in a
simple graph with n vertices is (3).
1.3.13. Proposition. The minimum number of edges in a connected graph

with n verticesis n — 1.

Proof: By Proposition 1.2.11, every graph with n vertices and k edges has at
least n — k components. Hence every n-vertex graph with fewer than n — 1 edges
has at least two components and is disconnected. The contrapositive of this is
that every connected n-vertex graph has at least n — 1 edges. This lower bound
is achieved by the path P,. ]

1.3.14. Remark. Proving that g is the minimum of f(G) for graphs in a class
G requires showing two things:

1) f(G) > B for all G € G.

2) f(G) = B for some G € G.
The proof of the bound must apply to every G € G. For equality it suffices to
obtain an example in G with the desired value of f.

Changing “>" to “<” yields the criteria for a maximum. [ ]

Next we solve a maximization problem that is not initially phrased as such.

1.3.15. Proposition. If G is a simple n-vertex graph with §(G) > (n — 1)/2,
then G is connected.
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Proof: Choose u, v € V(G). It suffices to show that «, v have a common neighbor
if they are not adjacent. Since G is simple, we have |[N(u)| > §(G) > (n — 1)/2,
and similarly for v. When u ¢ v, we have |[N(u) U N(v)| < n — 2, since u and v
are not in the union. Using Remark A.13 of Appendix A, we thus compute

IN@)NN@)| = IN@|+IN@)| - IN@)UN@)| = 252 + 5 —(n—-2)=1. =

We say that a result is best possible or sharp when there is some aspect
of it that cannot be strengthened without the statement becoming false. As
shown by the next example, this holds for Proposition 1.3.15; when §(G) is
smaller than (n(G) — 1)/2, we cannot still conclude that G must be connected.

1.3.16. Example. Let G be the n-vertex graph with components isomorphic to
K|n/2) and K, 9, where the floor |x] of x is the largest integer at most x and
the ceiling [x] of x is the smallest integer at least x. Since §(G) = |n/2] — 1
and G is disconnected, the inequality in Proposition 1.3.15 is sharp.

We use the floor and ceiling functions here in order to describe a single
family of graphs providing an example for each n. ]

Kins2) } K21

Ry providing a family of examples to show that the bound is best possible,
we have solved an extremal problem. Together, Proposition 1.3.15 and Example
1.3.16 prove “The minimum value of §(G) that forces an n-vertex simple graph
G to be connected is |n/2],” or “The maximum value of §(G) among disconnected
n-vertex simple graphs is |n/2] — 1.”

We introduce compact notation to describe the graph of Example 1.3.16.

1.3.17. Definition. The graph obtained by taking the union of graphs G and
H with disjoint vertex sets is the disjoint union or sum, written G + H.
In general, mG is the graph consisting of m pairwise disjoint copies of G.

1.3.18. Example. If G and H are connected, then G+ H has components G and
H, so the graph in Example 1.3.16 is K|, /2) + K|4/21. This notation is convenient
when we have not named the vertices. Note that K,, + K, = K 0.

The graph mK; consists of m pairwise disjoint edges. ]

In graph theory, we use “extremal problem” for finding an optimum over a
class of graphs. When seeking extremes in a single graph, such as the maxi-
mum size of an independent set, or maximum size of a bipartite subgraph, we
have a different problem for each graph. To distinguish these from the earlier
type of problem, we call them optimization problems.

Since an optimization problem has an instance for each graph, we usualiy
can’t list all solutions. We may seek a solution procedure or bounds on the
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answer in terms of other aspects of the input graph. In this light we consider
the problem of finding a large bipartite subgraph. It allows us to introduce the
technique of constructive or “algorithmic” proof. (An algorithm is a procedure
for performing some task.)

One way to prove that something exists is to build it. Such proofs can be
viewed as algorithms. To complete an algorithmic proof, we must prove that
the algorithm terminates and yields the desired result. This may involve in-
duction,contradiction, finiteness, etc. We prove that every graph has a large
bipartitesubgraph by providing an algorithm to find one. Exercises 45-49 ar-
erelated to finding large bipartite subgraphs.

1.3.19. Theorem. Every loopless graph G has a bipartite subgraph with at
least ¢(G)/2 edges.

Proof: We start with any partition of V(G) into two sets X, Y. Using the edges
having one endpoint in each set yields a bipartite subgraph H with bipartition
X, Y. If H contains fewer than half the edges of G incident to a vertex v, then v
has more edges to vertices in its own class than in the other class, as illustrated
below. Moving v to the other class gains more edges of G than it loses.

We move one vertex in this way as long as the current bipartite subgraph
captures less than half of the edges at some vertex. Each such switch increases
the size of the subgraph, so the process must terminate. When it terminates,
we have dy(v) > dg(v)/2 for every v € V(G). Summing this and applying the
degree-sum formula yields e(H) > e(G)/2. ]

Algorithmic proofs often correspond to proofs by induction or extremality.
Such proofs are shorter and may be easier to find, so we may seek such a proof
and later convert it to an algorithm. For example, here is the proof of Theorem
1.3.19 in the language of extremality and contradiction; in effect, the extremal
choice of H goes directly to the end of the algorithm:

Let H be the bipartite subgraph of G that has the most edges. If
dy(v) > dg(v)/2 for all v € V(G), then the degree-sum formula yields
e(H) > e(G)/2. Otherwise, dy(v) < dg(v)/2 for some v € V(G), and
then switching v in the bipartition contradicts the choice of H.

1.3.20. Example. Local maximum. The algorithm in Theorem 1.3.19 need not
produce a bipartite subgraph with the most edges, merely one with at least half
the edges. The graph below is 5-regular with 8 vertices and hence has 20 edges.
The bipartition X = {a,b,c,d} and Y = {e, f, g, h} yields a 3-regular bipartite
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subgraph with 12 edges. The algorithm terminates here; switching one vertex
would pick up two edges but lose three.

Nevertheless, the bipartition X = {a, b, g,h} and Y ={c,d, e, f} yields a 4-
regular bipartite subgraph with 16 edges. An algorithm seeking the maximum
by local changes may get stuck in a lecal maximum. |

h a

1.3.21. Remark. In a graph G, the (global) maximum number c¢f edges in a bi-
partite subgraph is ¢(G) minus the minimum number of edges needed to obtain
at least one edge from every odd cycle. ]

Our next extremal problern doesn’t start with bipartite graphs, but it winds
up there. In politics and warfare, seldom do two enemies have a common en-
emy; usually two of the three combine against the third. Given n factions, how
many pairs of enemies can there be if no two enemies have a common enemy?

In the language of graphs, we are asking for the maximum number of edges
in a simple n-vertex graph with no triangle. Bipartite graphs 1nave no triangles,
but also many non-bipartite graphs (such as the Petersen graph) have no tri-
angles. Using extremality (by choosing a vertex of maximum degree), we will
prove that the maximum is indeed achieved by a complete bipartite graph.

1.3.22. Definition. A graph G is H-free if G has no induced subgraph isomor-
phic to H.

1.3.23. Theorem. (Mantel [1907]) The maximum number of edges in an n-
vertex triangle-free simple graph is | n?/4].

Proof: Let G be an n-vertex triangle-free simple graph. Let x be a vertex of

maximum degree, with k = d(x). Since G has no triangles, there are no edges

among neighbors of x. Hence summing the degrees of x and its nonneighbors

counts at least one endpoint of every edge: > .y, d(v) > e(G). We sum over

n — k vertices, each having degree at most %, so e(G) < (n — k)k.

x =
./

Since (n — k)k counts the edges in K,_; 1, we have now proved that ¢(G) is
bounded by the size of some biclique with n vertices. Moving a vertex of K, ;
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from the set of size k to the set of size n — k gains k — 1 edges and loses n — k
edges. The net gain is 2k — 1 — n, which is positive for 2k > n + 1 and negative
for 2k < n + 1. Thus e(K,— ) is maximized when k is [r/2] or |n/2]. The
product is then n%/4 for even n and (n® — 1)/4 for odd n. Thus e(G) < |n?/4].
To prove that the bound is best possible, we exhibit a triangle-free graph
with |n?/4] edges: Ku25,m/21- ]

Although (n — k)k can be maximized over k using calculus, the discrete
approach is preferable in some ways. 1t directly restricts k to be an integer
and generalizes easily to more variables. The switching idea used is that of
Theorem 1.3.19; here we have used it to find the largest bipartite subgraph of
K,. In Theorem 5.2.9 we generalize Theorem 1.3.23 to X, 1-free graphs.

Mantel’s result leads us to another reason for phrasing inductive proofs in
the format that we have used. The reason is safety.

1.3.24. Example. A failed proof. Let us try to prove Theorem 1.3.23 by induc-
tion on n. Basis step: n < 2. Here the complete graph K, has the most edges
and has no triangles.

Induction step: n > 2. We try “Suppose that the claim is true when n =k,
s0 K\x/2).1k/21 is the largest triangle-free graph with k vertices. We add a new
vertex x to form a triangle-free graph with k + 1 vertices. Making x adjacent
to vertices from both partite sets would create a triangle. Hence we add the
most edges by making x adjacent to all the vertices in the larger partite set of
K\k/2).1k/21- Doing so creates K|«+1)/2).1+1)/21- This completes the proof.”

This argument is wrong, because we did not consider all triangle-free
graphs with k + 1 vertices. We considered only those containing the extremal k-
vertex graph as an induced subgraph. This graph does appear in the extremal
graph with & + 1 vertices, but we cannot use that fact before proving it. It re-
mains possible that the largest example with k + 1 vertices arises by adding a
new vertex of high degree to a non-maximal example with k& vertices.

Exercise 51 develops a correct proof by induction on n. ]

The error in Example 1.3.24 was that our induction step did not consider
all instances of the statement for the new larger value of the parameter. We
call this error the induction trap. If the induction step grows an instance
with the new value of the parameter from a smailer instance, then we must
prove that all instances with the new value have been considered.

When there is only one instance for each value of the induction parameter
(as in summation formulas), this does not cause trouble. With more than one
instance, it is safer and simpler to start with an arbitrary instance for the larger
parameter value. This explicitly considers each instance G for the larger value,
so we don’t need to prove that we have generated them all.

However, when we obtain from G a smaller instance, we must confirm that
the induction hypothesis applies to it. For example, in the inductive proof of
the characterization of Eulerian circuits (Theorem 1.2.26), we must apply the



Section 1.3: Vertex Degrees and Counting 43

induction hypothesis to each component of the graph obtained by deleting the
edges of a cycle, not to the entire graph at once.

1.3.25. Remark. A template for induction. Often the statement we want to
prove by induction on » is an implication: A(n) = B(n). We must prove that
every instance G satisfying A(n) also satisfies B(n). Our induction step follows
a typical format. From G we obtain some (smaller) G'. If we show that G’
satisfies A(n— 1) (for ordinary induction), then the induction hypothesis implies
that G’ satisfies B(n — 1). Now we use the information that G’ satisfies B(n — 1)
to prove that G satisfies B(n).

G satisfies A(n) G satisfies B(n)

N8 1)
G’ satisfies A(n —1) = G’ satisfies B(n — 1)

Here the central implication is the statement of the induction hypothesis, and
the others are the work we must do. Our induction proofs have followed this
format. |

1.3.26.* Example. The induction trap. The induction trap can lead to a false
conclusion. Let us try to prove by induction on the number of vertices that
every 3-regular connected simple graph has no cut-edge.

By the degree-sum formula, every regular graph with odd degree has even
order, so we consider graphs with 2m vertices. The smallest 3-regular simple
graph, K4, is connected and has no cut-edge; this proves the basis step with
m = 2. Now consider the induction step.

Given a simple 3-regular graph G with 2k vertices, we can obtain a simple
3-regular graph G’ with 2(k + 1) vertices (the next larger possible order) by
“expansion”: take two edges of G, replace them by paths of length 2 through
new vertices, and add an edge joining the two new vertices. As illustrated
below, K3 3 arises from K4 by one expansion on two disjoint edges.

—
expansion
—
erasure
-

If G is connected, then the expanded graph G’ is also connected: a path
between old vertices that traversed a replaced edge has merely lengthened, and
a path to a new vertex in G’ is obtained from a path in G to a neighbor.

If G has no cut-edge, then every edge lies on a cycle (Theorem 1.2.14).
These cycles remain in G’ (those using replaced edges become longer). The
edge joining the two new vertices in G’ also lies on a cycle using a path in G
between the edges that were replaced. Theorem 1.2:14 now implies that G’ has
no cut-edge.

We have proved that if G is connected and has no cut-edge, then the same
holds for G’. We might think we have proved by induction on m ‘that every 3-
regular simple connected graph with 2m vertices has no cut-edge, but the graph
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below is a counterexample. The proof fails because we cannot build every 3-
regular simple connected graph from K, by expansions. We cannot even obtain
all those without cut-edges, as shown in Exercise 66. ]

PO—X

Appendix A presents another example of the induction trap.

GRAPHIC SEQUENCES

Next we consider all the vertex degrees together.

1.3.27. Definition. The degree sequence of a graph is the list of vertex de-
grees, usually written in nonincreasing order, as d; > --- > d,,.

Every graph has a degree sequence, but which sequences occur? That is,
given nonnegative integers dy, .. ., d,, is there a graph with these as the vertex
degrees? The degree-sum formula implies that ) d; must be even. When we
allow loops and multiple edges, TONCAS.

1.3.28. Proposition. The nonnegative integers di, ..., d, are the vertex de-
grees of some graph if and only if ) _ d; is even.

Proof: Necessity. When some graph G has these numbers as its vertex degrees,
the degree-sum formula implies that ) d; = 2¢(G), which is even.

Sufficiency. Suppose that )_ d; is even. We construct a graph with vertex
set v1,...,v, and d(v;) = d; for all i. Since ) d; is even, the number of odd
values is even. First form an arbitrary pairing of the vertices in {v;: d; is odd}.
For each resulting pair, form an edge having these two vertices as its endpoints.
The remaining degree needed at each vertex is even and nonnegative; satisfy
this for each i by placing |d;/2] loops at v;. [ ]

This proof is constructive; we could also use induction (Exercise 56). The
construction is easy with loops available. Without them, (2, 0, 0) is not realiz-
able and the condition is not sufficient. Exercise 63 characterizes the degree
sequences of loopless graphs. We next characterize degree sequences of simple
graphs by a recursive condition that readily yields an algorithm. Many other
characterizations are known; Sierksma—Hoogeveen [1991] lists seven.

1.3.29. Definition. A graphic sequence is a list of nonnegative numbers that
is the degree sequence of some simple graph. A simple graph with degree
sequence d “realizes” d.
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1.3.30. Example. A recursive condition. The lists 2,2,1,1 and 1,0, 1 are
graphit. The graph K3 + K, realizes 1,0,1. Adding a new vertex adjacent
to vertices of degrees 1 and 0O yields a graph with degree sequence 2,2,1, 1,
as shown below. Conversely, if a graph realizing 2, 2, 1, 1 has a vertex w with
neighbors of degrees 2 and 1, then deleting w yields a graph with degrees 1, 0, 1.

|- DT

Similarly, to test 33333221, we seek a realization with a vertex w of de-
gree 3 having three neighbors of degree 3. This exists if and only if 2223221 is
graphic. We reorder this and test 3222221. We continue deleting and reorder-
ing until we can tell whether the remaining list is realizable. If it is, then we
insert vertices with the desired neighbors to work back to a realization of the
original list. The realization is not unique.

The next theorem implies that this recursive test works. ]
33333221 ~ 3222221 221111 ~ 11110
2223221 111221 7 10111
w v u
T 1. d..
/ *e /
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1.3.31. Theorem. (Havel [1955], Hakimi [1962]) For n > 1, an integer list d
of size n is graphic if and only if 4’ is graphic, where d’ is obtained from d
by deleting its largest element A and subtracting 1 from its A next largest
elements. The only 1-element graphic sequence is d; = 0.

Proof: For n = 1, the statement is trivial. For n > 1, we first prove that the
condition is sufficient. Given d with d; > --- > d, and a simple graph G’ with
degree sequence d’, we add a new vertex adjacent to vertices in G’ with degrees
dy—1,...,das1 — 1. These d;'are the A largest elements of d after (one copy of)
A itself, but do — 1, ...,da41 — 1 need not be the A largest numbers in d'.

To prove necessity, we begin with a simple graph G realizing d and produce
a simple graph G’ realizing d’. Let w be a vertex of degree A in G. Let S be a
set of A vertices in G having the “desired degrees” ds, ...,da+1. If N(w) = S,
then we delete w to obtain G'. :

Otherwise, some vertex of S is missing from N (w). In this case, we modify
G to increase |N(w) N S| without changing any vertex degree. Since |N(w) N S|
can increase at most A times, repeating this converts G into another graph G*
that realizes d and has S as the neighborhood of w. From G* we then delete w
to obtain the desited graph G’ realizing d’.
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To find the modification when N(w) # S, we choose x € S and 7 ¢ S so that
w < z and w ¢ x. We want to add wx and delete wz, but we must preserve
vertex degrees. Since d(x) > d(z) and already w is a neighbor of z but not x,
there must be a vertex y adjacent to x but not to z. Now we delete {wz, xy} and
add {wx, yz} to increase |N(w) N S|. [ |

Theorem 1.3.31 tests a list of » numbers by testing a list of » — 1 numbers;
it yields a recursive algorithm to test whether ¢ is graphic. The necessary
condition “}_d; even” holds implicitly: ) d] = (3_d;) — 2A implies that )_d;
and ) _d; have the same parity.

An algorithmic proof using “local change” pushes an object toward a de-
sired condition. This can be phrased as proof by induction, where the induction
parameter is the “distance” from the desired condition. In the proof of Theorem
1.3.31, this distance is the number of vertices in S that are missing from N (w).

We used edge switches to transform an arbitrary graph with degree se-
quence d into a graph satisfying the desired condition. Next we will show that
every simple graph with degree sequence d can be transformed by such switches
into every other.

1.3.32. Definition. A 2-switch is the replacement of a pair of edges xy and
zw in a simple graph by the edges yz and wx, given that yz and wx did not
appear in the graph originally.

7
“

A3 y
Ve 7o o
[ —>

*-—-- — ¢
X w J

The dashed lines above indicate nonadjacent pairs. If y < z or w < x,
then the 2-switch cannot be performed, because the resulting graph would not
be simple. A 2-switch preserves all vertex degrees. If some 2-switch turns H
into H*, then a 2-switch on the same four vertices turns H* into H. Below we
illustrate two successive 2-switches.
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1.3.33.* Theorem. (Berge [1973, p153—154]) If G and H are two simple graphs
with vertex set V, then dg(v) = dy (v) for every v € V if and only if there is
a sequence of 2-switches that transforms G into H.

Proof: Every 2-switch preserves vertex degrees, so the condition is sufficient.
Conversely, when dg(v) = dy(v) for all v € V, we obtain an appropriate se-
quence of 2-switches by induction on the number of vertices, n. If n < 3, then
for each dy, ..., d, there is at most one simple graph with d(v;) = d;. Hence we
can use n = 3 as the basis step.

Consider n > 4, and let w be a vertex of maximum degree, A. Let § =
{vi,...,va} be a fixed set of vertices with the A highest degrees other than w.
As in the proof of Theorem 1.3.31, some sequence of 2-switches transforms G
to a graph G* such that Ng-(w) = S, and some such sequence transforms H to
a graph H* such that Ny«(w) = §S.

@_}

Since Ng«(w) = Npy«(w), deleting w leaves simple graphs G’ = G* — w
and H' = H* — w with dg (v) = dy:(v) for every vertex v. By the induction
hypothesis, some sequence of 2-switches transforms G’ to H’. Since these do nct
involve w, and w has the same neighbors in G* and H*, applying this sequence
transforms G* to H*. Hence we can transform G to H by transforming G to G*,
then G* to H*, then (in reverse order) the transformation of H to H*.

We could also phrase this using induction on the number of edges appear-
ing in exactly one of G and H, which is 0 if and only if they are already the
same. In this approach, it suffices to find a 2-switch in G that makes it closer
to H or a 2-switch in H that makes it closer to G.

EXERCISES

A statement with a parameter must be proved for all values of the parameter; it
cannot be proved by giving examples. Counting a set includes providing proof.

1.3.1. (=) Prove or disprove: If u and v are the only vertices of odd degree in a graph G,
then G contains a u, v-path.

1.3.2. (-) In a class with nine students, each student sends valentine cards to three
others. Determine whether it is possible that each student receives cards from the same
three students to whom he or she sent cards.
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1.3.3. (-) Let « and v be adjacent vertices in a simple graph G. Prove that uv belongs
to at least d(u) + d(v) — n(G) triangles in G.

1.3.4. (—) Prove that the graph below is isomorphic to Q4.

1.3.5. (=) Count the copies of P; and C; in Q.

1.3.6. (-) Given graphs G and H, determine the number of components and maximum
degree of G + H in terms of the those parameters for G and H.

1.3.7. (—) Determine the maximum number of edges in a bipartite subgraph of P,, of
C,, and of K,,.

1.3.8. (—) Which of the following are graphic sequences? Provide a construction or a
proof of impossibility for each.

a) (5,5,4,3,2,2,2,1), ¢) (5,5,5,3,2,2,1,1),
b) (5,5,4,4,2,2,1,1), d) (5,5,5,4,2,1,1,1).
[ ] [ ] [ ] [ ] [ ]

1.3.9. In a league with two divisions of 13 teams each, determine whether it is possi-
ble to schedule a season with each team playing nine games against teams within its
division and four games against teams in the other division.

1.3.10. Let !/, m, n be nonnegative integers with / +m = n. Find necessary and sufficient
conditions on /, m, n such that there exists a connected simple n-vertex graph with /
vertices of even degree and m vertices of odd degree.

1.3.11. Let W be a closed walk in a graph G. Let H be the subgraph of G consisting of
edges used an odd number of times in W. Prove that dy (v) is even for every v € V(G).

1.3.12. (!) Prove that an even graph has no cut-edge. For each k > 1, construct a
2k + 1-regular simple graph having a cut-edge.

1.3.13. (+) A mountain range is a polygonal curve from (a, 0) to (b, 0) in the upper
half-plane. Hikers A and B begin at (a, 0) and (b, 0), respectively. Prove that A and
B can meet by traveling on the mountain range in such a way that at all times their
heights above the horizontal axis are the same. (Hint: Define a graph to model the
movements, and use Corollary 1.3.5.) (Communicated by D.G. Hoffman.)
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1.3.14. Prove that every simple graph with at least two vertices has two vertices of
equal degree. Is the conclusion true for loopless graphs?

1.3.15. For each k > 3, determine the smallest n such that
a) there is a simple k-regular graph with n vertices.
b) there exist nonisomorphic simple k-regular graphs with n vertices.

1.3.16. (+) For k > 2 and g > 2, prove that there exists an k-regular graph with girth
g. (Hint: To construct such a graph inductively, make use of an & — 1-regular graph H
with girth g and a graph with girth [g/2] that is n(H)-regular. Comment: Such a graph
with minimum order is a (k, g)-cage.) (Erdés—Sachs [1963])

1.3.17. (!) Let G be a graph with at least two vertices. Prove or disprove:
a) Deleting a vertex of degree A(G) cannot increase the average degree.
b) Deleting a vertex of degree §(G) cannot reduce the average degree.

1.3.18. () For k > 2, prove that a k-regular bipartite graph has no cut-edge.

1.3.19. Let G be a claw-free graph. Prove that if A(G) > 5, then G has a 4-cycle. For
all n € N, construct a 4-regular claw-free graph of order at least n that has no 4-cycle.

1.3.20. (!) Count the cycles of length » in K, and the cycles of length 2z in X, ..
1.3.21. Count the 6-cycles in K,,, ,..

1.3.22. (!) Let G be a nonbipartite graph with n vertices and minimum degree k. Let [
be the minimum length of an odd cycle in G.

a) Let C be a cycle of length / in G. Prove that every vertex not in V (C) has at most
two neighbors in V (C).

b) By counting the edges joining V(C) and G — V(C) in two ways, prove thatn > kl/2
(and thus ! < 2n/k). (Campbell-Staton [1991])

c) When £ is even, prove that the inequality of part (b) is best possible. (Hint: form
a graph having k/2 pairwise disjoint /-cycles.)

1.3.23. Use the recursive description of Q, (Example 1.3.8) to prove that e(Q;) = k2¢-1.
1.3.24. Prove that K, 3 is not contained in any hypercube Q;.

1.3.25. (!) Prove that every cycle of length 2r in a hypercube is contained in a subcube
of dimension at most r. Can a cycle of length 2r be contained in a subcube of dimension
less than r?

1.3.26. (!) Count the 6-cycles in Q3. Prove that every 6-cycle in O, lies in exactly one
3-dimensional subcube. Use this to count the 6-cycles in Q, for k > 3.

1.3.27. Given k € N, let G be the subgraph of Qs induced by the vertices in which the
number of ones and zeros differs by 1. Prove that G is regular, and compute n(G), e(G),
and the girth of G.

1.3.28. Let V be the set of binary k-tuples. Define a simple graph Q; with vertex set V
by putting ¥ < v if and only if ¥ and v agree in exactly one coordinate. Prove that Q, is
isomorphic to the hypercube Q; if and only if k is even. (D.G. Hoffman)

1.3.29. (x+) Automorphisms of the k-dimensional cube Q.

a) Prove that every copy of Q; in Qy is a subgraph induced by a set of 2/ vertices
having specified values on a fixed set of k — j coordinates. (Hint: Prcve that a copy of
Q; must have two vertices differing in j coordinates.)

b) Use part (a) to count the automorphisms of Q.
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1.3.30. Prove that every edge in the Petersen graph belongs to exactly four 5-cycles,
and use this to show that the Petersen graph has exactly twelve 5-cycles. (Hint: For the
first part, extend the edge to a copy of P, and apply Proposition 1.1.38.)

1.3.31. (!) Use complete graphs and counting arguments (not algebra!) to prove that
a) (5) = (5) +k(n —k) + ("5") for 0 <k <n.

b)If Y n; =n,then Y (%) < (3).
n—1

1.3.32. (!) Prove that the number of simple even graphs with vertex set [n] is 2("2),
(Hint: Establish a bijection to the set of all simple graphs with vertex set [n — 1].)

1.3.33. (+) Let G be a triangle-free simple n-vertex graph such that every pair of non-
adjacent vertices has exactly two common neighbors.

a) Prove that n(G) = 1 + (“}’), where x € V(G). Conclude that G is regular.

b) When k = 5, prove that deleting any one vertex and its neighbors from G leaves
the Petersen graph. (Comment: When k = 5, the graph G is in fact the graph obtained
from Q4 by adding edges joining complementary vertices.)

1.3.34. (+) Let G be a kite-free simple n-vertex graph such that every pair of nonadja-
cent vertices has exactly two common neighbors. Prove that G is regular. (Galvin)

1.3.35. (+) Let n and & be integers such that 1 < k < n — 1. Let G be a simple n-vertex
graph such that every k-vertex induced subgraph of G has m edges.

a) Let G’ be an induced subgraph of G with / vertices, where | > k. Prove that
@) =m()/(3)

b) Use part (a) to prove that G € {K,, K,}. (Hint: Use part (a) to prove that the
number of edges with endpoints u, v is independent of the choice of ¥ and v.)

1.3.36. Let G be a 4-vertex graph whose list of subgraphs obtained by deleting one
vertex appears below. Determine G.

A A AN A

1.3.37. Let H be a graph formed by deleting a vertex from a loopless regular graph G
with n(G) > 3. Describe (and justify) a method for obtaining G from H.

1.3.38. Let G be a graph with at least 3 vertices. Prove that G is connected if and only if
at least two of the subgraphs obtained by deleting one vertex of G are connected. (Hint:
Use Proposition 1.2.29.)

1.3.39. (x+) Prove that every disconnected graph G with at least three vertices is re-
constructible. (Hint: Having used Exercise 1.3.38 to determine that G is disconnected,
use Gy, ..., G, to find a component M of G that occurs the most times among the compo-
nents with the maximum number of vertices, use Proposition 1.2.29 to choose v so that
L = M — v is connected, and reconstruct G by finding some G — v; in which a copy of M
became a copy of L.)

1.3.40. (!) Let G be an n-vertex simple graph, where n > 2, Determine the maximum
possible number of edges in G under each of the following conditions.

a) G has an independent set of size a.

b) G has exactly & components.

¢) G is disconnected.
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1.3.41. (!) Prove or disprove: If G is an n-vertex simple graph with maximum degree
[7/2] and minimum degree |n/2] — 1, then G is connected.

1.3.42. Let S be a set of vertices in a k-regular graph G such that no two vertices in
S are adjacent or have a common neighbor. Use the pigeonhole principle to prove that
IS| < n(G)/(k +1)]. Show that the bound is best possible for the cube Q3. (Comment:
The bound is not best possible for Q4.)

1.3.43. (+) Let G be a simple graph with no isolated vertices, and let a = 2¢(G)/n(G) be
the average degree in G. Let #(v) denote the average of the degrees of the neighbors of v.
Prove that r(v) > « for some v € V(G). Construct an infinite family of connected graphs
such that 7(v) > « for every vertex v. (Hint: For the first part, compute the average of
1(v), using that x/v + v/x > 2 when x. v > 0.} (Ajtai-Komlés—Szemerédi [1980])

1.3.44. (!) Let G be a loopless graph with average vertex degree a = 2¢(G)/n(G).

a) Prove that G — x has average degree at least a if and only if d(x) < a/2.

b) Use part (a) to give an algorithmic proof that if a > 0, then G has a subgraph
with minimum degree greater than /2.

¢) Show that there is no constant ¢ greater than 1/2 such that G must have a
subgraph with minimum degree greater than ca; this proves that the bound in part (b)
is best possible. (Hint: Use K;,_1.)

1.3.45. Determine the maximum number of edges in a bipartite subgraph of the Pe-
tersen graph.

1.3.46. Prove or disprove: Whenever the algorithm of Theorem 1.3.19 is applied to a
bipartite graph, it finds the bipartite subgraph with the most edges (the full graph).

1.3.47. Use induction on n(G) to prove that every nontrivial loopless graph G has a
bipartite subgraph H such that H has more than ¢(G)/2 edges.

1.3.48. Construct graphs G, Gs. ..., with G, having 2n vertices, such that lim, ., f, =
1/2, where f, is the fraction of E(G,) belonging to the largest bipartite subgraph of G,,.

1.3.49. For each k € N and each loopless graph G, prove that G has a k-partite subgraph
H (Definition 1.1.12) such that e(H) > (1 — 1/k)e(G).

1.3.50. (+) For n > 3, determine the minimum number of edges in a connected n-vertex
graph in which every edge belongs to a triangle. (Erdés [1988])

1.3.51. (+) Let G be a simple n-vertex graph, where n > 3.

a) Use Proposition 1.3.11 to prove that if G has more than n%/4 edges, then G has
a vertex whose deletion leaves a graph with more than (n — 1)?/4 edges. (Hint: In every
graph, the number of edges is an integer.) ,

b) Use part (a) to prove by induction that G contains a triangle if e(G) > n?/4.

1.3.52. Prove that every n-vertex triangle-free simple graph with the maximum number
of edges is isomorphic to K|, 2).;m/2;. (Hint: Strengthen the proof of Theorem 1.3.23.)

1.3.53. () Each game of bridge involves two teams of two partners each. Consider
a club in which four players cannot play a game if two of them have previously been
partners that night. Suppose that 15 members arrive, but one decides to study graph
theory. The other 14 people play until each has been a partner with four others. Next
they succeed in playing six more games (12 partnerships), but after that they cannot
find four players containing no pair of previous partners. Prove that if they can convince
the graph theorist to play, then at least one more game can be played. (Adapted from
Bondy-Murty [1976, p111]).
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1.3.54. (+) Let G be a simple graph with » vertices. Let ¢(G) be the total number of
triangles in G and G together.

a) Prove that 1(G) = (g) - (n—=2)e(G)+ > vio ('“2”)) triangles. (Hint: Consider
the contribution made to each side by each triple of vertices.

b) Prove that t(G) > n(n — 1)(n — 5)/24. (Hint: Use a lower boundon ) _ _, ("(2”))
in terms of average degree.)

c) When n — 1 is divisible by 4, construct a graph achieving equality in part (b).
(Goodman [1959])

1.3.55. (+) Maximum size with no induced P,.

a) Let G be the complement of a disconnected simple graph. Prove that ¢(G) <
A(G)?, with equality only for K().a(6)-

b) Let G be a simple connected P;-free graph with maximum degree k. Prove that
e(G) < k2. (Seinsche [1974], Chung—West [1993])

3
1.8.56. Use induction (on » or on Z d;) to prove that if d;, ..., d, are nonnegative inte-
gers and Zd,- is even, then therg is an n-vertex graph with vertex degrees di, ..., d,.
(Comment: This requests an alternative proof of Proposition 1.3.28.)

1.3.57. (!) Let n be a positive integer. Let d be a list of » nonnegative integers with even
sum whose largest entry is less than n and differs from the smallest entry by at most 1.
Prove that d is graphic. (Hint: Use the Havel-Hakimi Theorem. Example: 443333 is
such a list, as is 33333322.)

1.3.58. Generalization of Havel-Hakimi Theorem. Given a nonincreasing list d of non-
negative integers, let d’ be obtained by deleting d; and subtracting 1 from the k largest
elements remaining in the list. Prove that d is graphic if and only if &’ is graphic. (Hint:
Mimic the proof of Theorem 1.3.31.) (Wang—Kleitman [1973])

1.3.59. Defined = (d1,...,d) by do; = dsi—y =i for 1 <i < k. Prove that d is graphic.
(Hint: Do not use the Havel-Hakimi Theorem.)

1.3.60. (+) Let d be a list of integers consisting of k copies of @ and n — k copies of b,
with a > b > 0. Determine necessary and sufficient conditions for d to be graphic.

1.3.61. (!) Suppose that G = G and that n(G) = 1 mod 4. Prove that G has at least one
vertex of degree (n(G) — 1)/2.

1.3.62. Suppose that n is congruent to 0 or 1 modulo 4. Construct an n-vertex simple
graph G with }(3) edges such that A(G) - 8(G) < 1.

1.3.63. () Let d;,...,d, be integers such that d; > --- > d, > 0. Prove that there is
a loopless graph (multiple edges allowed) with degree sequence d,, ..., d, if and only if
) diisevenand dy < dp + --- +d,. (Hakimi [1962])

1.3.64. () Let d; < --- < d, be the vertex degrees of a simple graph G. Prove that G is
connected if d; > j when j < n —1—d,. (Hint: Consider a component that omits some
vertex of maximum degree.)

1.3.65. (+) Let a; < --- < a; be distinct positive integers. Prove that there is a simple
graph with a; + 1 vertices whose set of distinct vertex degrees is a;, ..., ¢;. (Hint: Use
induction on k to construct such a graph.) (Kapoor-Polimeni—Wall [1977])

1.3.66. (x) Expansion of 3-regular graphs (see Example 1.3.26). For n = 4k, where
k > 2, construct a connected 3-regular simple graph with n vertices that has no cut-
edge but cannot be obtained from a smaller 3-regular simple graph by expansion. (Hint:
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The desired graph must have no edge to which the inverse “erasure” operation can be
applied to obtain a smaller simple graph.)

1.3.67. (%) Construction of 3-regular simple graphs

a) Prove that a 2-switch can be performed by performing a sequence of expansions
and erasures; these operations are defined in Example 1.3.26. (Caution: Erasure is not
allowed when it would produce multiple edges.)

b) Use part (a) to prove that every 3-regular simple graph can be obtained from K,
by a sequence of expansions and erasures. (Batagelj [1984])

1.3.68. (x) Let G and H be two simple bipartite graphs, each with bipartition X, Y.
Prove that dg(v) = dy(v) for all v € X UY if and only if there is a sequence of 2-switches
that transforms G into H without ever changing the bipartition (each 2-switch replaces
two edges joining X and Y by two other edges joining X and Y).

1.4. Directed Graphs

We have used graphs to model symmetric relations. Relation need not be
symmetric; in general, a relation on S can be any set of ordered pairsin § x §
(see Appendix A). For such relations, we need a more general model.

DEFINITIONS AND EXAMPLES

Seeking a graphical representation of the information in a general relation
on S leads us to a model of directed graphs.

1.4.1. Example. For natural numbers x, y, we say that x is a “maximal divisor”
of y if y/x is a prime number. For § C N, the set R = {(x, y) € §%: x is a maximal
divisor of y} is a relation on S. To represent it graphically, we name a point
in the plane for each element of S and draw an arrow from x to y whenever

(x,y) € R. Below we show the result when § = [12]. [ ]
8 12
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1.4.2. Definition. A directed graph or digraph G is a triple consisting of a
vertex set V(G), an edge set E(G), and a function assigning each edge
an ordered pair of vertices. The first vertex of the ordered pair is the tail
of the edge, and the second is the head; together, they are the endpoints.
We say that an edge is an edge from its tail to its head.



