Simple closed curves are typically non-separating on high genus surfaces

joint work with E. Goujard, P. Zograf, A. Zorich

Vincent Delecroix

CNRS - Université de Bordeaux
Multicurves and simple closed curves

\[S: \text{topological surface of genus } g \geq 0 \text{ and } n \text{ punctures} \]
Multicurves and simple closed curves

S: topological surface of genus $g \geq 0$ and n punctures

simple closed curve: non-contractible curve on S without auto-intersection
S: topological surface of genus $g \geq 0$ and n punctures

simple closed curve: non-contractible curve on S without auto-intersection
multicurve: disjoint union of simple closed curves on S
Multicurves and simple closed curves

S: topological surface of genus $g \geq 0$ and n punctures

simple closed curve: non-contractible curve on S without auto-intersection

multicurve: disjoint union of simple closed curves on S

simple multicurve: distinct component are not homotopic
Multicurves and simple closed curves

S: topological surface of genus $g \geq 0$ and n punctures

simple closed curve: non-contractible curve on S without auto-intersection

multicurve: disjoint union of simple closed curves on S

simple multicurve: distinct component are not homotopic

We always consider multicurves up to homotopy.
Multicurves and simple closed curves

S: topological surface of genus $g \geq 0$ and n punctures

simple closed curve: non-contractible curve on S without auto-intersection

multicurve: disjoint union of simple closed curves on S

simple multicurve: distinct component are not homotopic

We always consider multicurves up to homotopy.

multicurve = simple multicurve + multiplicity on each component
Multicurves and simple closed curves

S: topological surface of genus $g \geq 0$ and n punctures

simple closed curve: non-contractible curve on S without auto-intersection

multicurve: disjoint union of simple closed curves on S

simple multicurve: distinct component are not homotopic

We always consider multicurves up to homotopy.

multicurve = simple multicurve $+$ multiplicity on each component

topological type: an orbit under of multicurves under $\text{MCG}(S)$
Multicurves and simple closed curves

S: topological surface of genus $g \geq 0$ and n punctures

simple closed curve: non-contractible curve on S without auto-intersection
multicurve: disjoint union of simple closed curves on S

simple multicurve: distinct component are not homotopic

We always consider multicurves up to homotopy.
multicurve = simple multicurve + multiplicity on each component

topological type: an orbit under of multicurves under MCG(S)
Types of simple closed curves

type $\eta_{nsep,(g,n)}$: non-separating curve of genus g
Types of simple closed curves

type $\eta_{nsep,(g,n)}$: non-separating curve of genus g

type $\eta_{sep,(g_1,n_1),(g_2,n_2)}$: separating in components of type (g_1, n_1) and (g_2, n_2)
Types of simple closed curves

type $\eta_{nsep,(g,n)}$: non-separating curve of genus g

type $\eta_{sep,(g_1,n_1),(g_2,n_2)}$: separating in components of type (g_1, n_1) and (g_2, n_2)

\[
\eta_{nsep,(2,0)} = \eta_{nsep,2}
\]

\[
\eta_{sep,(1,0),(1,0)} = \eta_{sep,1,1}
\]
Types of simple closed curves

- Type $\eta_{nsep,(g,n)}$: non-separating curve of genus g
- Type $\eta_{sep,(g_1,n_1),(g_2,n_2)}$: separating in components of type (g_1, n_1) and (g_2, n_2)

What is the type of the following curve?
Asymptotic counting with respect to the type

Theorem (Mirzakhani ’08)

For any type η of multicurve, there exists a positive rational constant $c(\eta)$ such that for any metric on S, as $L \to \infty$ we have

$$\# \{ \text{multicurves of type } \eta \text{ and length } \leq L \} \sim B(\text{metric}) \cdot \frac{c(\eta)}{b_{g,n}} \cdot L^{6g-6},$$

where $B(\text{metric})$ is (implicitly) defined as

$$\# \{ \text{multicurves of length } \leq L \} \sim B(\text{metric}) \cdot L^{6g-6},$$

and we have $\sum_{\eta} c(\eta) = \int_{X} B(X) d\mu_{WP}(X) = b_{g,n}$.
The flat torus case \((g, n) = (1, 1)\)

\[T = \mathbb{R}^2 / \mathbb{Z}^2 \]
The flat torus case \((g, n) = (1, 1)\)

\[T = \mathbb{R}^2 / \mathbb{Z}^2 \]

simple (multi)curves = primitive integral vector in \(\mathbb{R}^2\) up to \(\pm 1\)
The flat torus case \((g, n) = (1, 1)\)

\[T = \mathbb{R}^2 / \mathbb{Z}^2 \]

simple (multi)curves = primitive integral vector in \(\mathbb{R}^2\) up to \(\pm 1\)

multicurves = integral vectors
The flat torus case \((g, n) = (1, 1)\)

\[T = \mathbb{R}^2 / \mathbb{Z}^2 \]

simple (multi)curves = primitive integral vector in \(\mathbb{R}^2\) up to \(\pm 1\)
multicurves = integral vectors
mapping class group action = \(\text{PSL}(2, \mathbb{Z})\)
The flat torus case \((g, n) = (1, 1)\)

\[T = \mathbb{R}^2 / \mathbb{Z}^2 \]

simple (multi)curves = primitive integral vector in \(\mathbb{R}^2\) up to \(\pm 1\)
multicurves = integral vectors
mapping class group action = \(\text{PSL}(2, \mathbb{Z})\)
topological types = multiplicity: \((u, v) \mapsto \gcd(u, v)\)
The flat torus case \((g, n) = (1, 1)\)

\[T = \mathbb{R}^2 / \mathbb{Z}^2 \]

simple (multi)curves = primitive integral vector in \(\mathbb{R}^2 \) up to \(\pm 1 \)
multicurves = integral vectors
mapping class group action = \(\text{PSL}(2, \mathbb{Z}) \)
topological types = multiplicity: \((u, v) \mapsto \gcd(u, v)\)

With respect to the \(L^2\)-norm

\[\#\{\text{multicurves of length } \leq L\} \sim \frac{\pi}{2} \cdot L^2 \]

and

\[c(k) = \frac{1}{4k^2} \quad b_{1,1} = \frac{\pi^2}{24} \]
Counting curves

Separating vs non-separating in high genus

Theorem (Mirzakhani ’08)

\[\#\{ \text{multicurves of type } \eta \text{ and length } \leq L \} \sim B(\text{metric}) \cdot \frac{c(\eta)}{b_g} \cdot L^{6g-6}. \]

Theorem (DGZZ’19)

For \(n = 0 \) (no puncture), as \(g \to \infty \) we have

\[\sum_{g_1 + g_2 = g} \frac{c(\eta_{\text{sep},g_1,g_2})}{c(\eta_{\text{nsep},g})} \sim \sqrt{\frac{2}{3\pi g}} \cdot \frac{1}{4^g}. \]

<table>
<thead>
<tr>
<th>(g)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\text{sep}}{\text{non-sep}})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{5}{1776})</td>
<td>(\frac{605}{790992})</td>
</tr>
<tr>
<td></td>
<td>(\simeq 0.021)</td>
<td>(\simeq 0.0028)</td>
<td>(\simeq 0.00076)</td>
</tr>
</tbody>
</table>
Counting ribbon graphs (aka combinatorial maps)

$\mathcal{R}_{g,n}(b_1, \ldots, b_n)$: ribbon graphs of genus g, no vertex of degree 1, n faces labeled from 1 to n and perimeters b_1, b_2, \ldots, b_n.
Counting ribbon graphs (aka combinatorial maps)

\(\mathcal{R}_{g,n}(b_1, \ldots, b_n) \): ribbon graphs of genus \(g \), no vertex of degree 1, \(n \) faces labeled from 1 to \(n \) and perimeters \(b_1, b_2, \ldots, b_n \).

\[
\tilde{N}_{g,n}(b_1, b_2, \ldots, b_n) := \lim_{L \to \infty} \frac{1}{L^{6g-6+2n}} \# \mathcal{R}_{g,n}(Lb_1, Lb_2, \ldots, Lb_n).
\]
Counting ribbon graphs (aka combinatorial maps)

$\mathcal{R}_{g,n}(b_1, \ldots, b_n)$: ribbon graphs of genus g, no vertex of degree 1, n faces labeled from 1 to n and perimeters b_1, b_2, \ldots, b_n.

$$\tilde{N}_{g,n}(b_1, b_2, \ldots, b_n) := \lim_{L \to \infty} \frac{1}{L^{6g-6+2n}} \# \mathcal{R}_{g,n}(Lb_1, Lb_2, \ldots, Lb_n).$$

Theorem (Kontsevich’92, Norbury’11)

For (b_1, \ldots, b_n) such that $b_1 + b_2 + \ldots + b_n \equiv 0 \mod 2$, the numbers $\tilde{N}_{g,n}(b_1, b_2, \ldots, b_n)$ coincide with a homogeneous symmetric polynomial $N_{g,n}(b_1, b_2, \ldots, b_n)$ in the b_i^2 of degree $6g - 6 + 2n$ with rational coefficients.
Counting ribbon graphs (aka combinatorial maps)

Theorem (Kontsevich’92,Norbury’11)

For \((b_1, \ldots, b_n)\) such that \(b_1 + b_2 + \ldots + b_n \equiv 0 \mod 2\), the numbers
\(\tilde{N}_{g,n}(b_1, b_2, \ldots, b_n)\) coincide with a homogeneous symmetric polynomial \(N_{g,n}(b_1, b_2, \ldots, b_n)\) in the \(b^2_i\) of degree \(6g - 6 + 2n\) with rational coefficients.

\(C_{g,n}\): integer compositions of \(3g - 3 + n\) into \(n\) non-negative parts

For \(d = (d_1, d_2, \ldots, d_n) \in C_{g,n}\) we define the correlator \(\langle d \rangle_{g,n}\) as

\[
N_{g,n}(b_1, b_2, \ldots, b_n) =: \frac{1}{2^{5g-6+2n}} \sum_{d \in C_{g,n}} \frac{\langle d \rangle_{g,n}}{d_1!d_2! \cdots d_n!} b_1^{2d_1} b_2^{2d_2} \cdots b_n^{2d_n}.
\]
Counting ribbon graphs (aka combinatorial maps)

Theorem (Kontsevich’92, Norbury’11)

For \((b_1, \ldots, b_n)\) such that \(b_1 + b_2 + \ldots + b_n \equiv 0 \mod 2\), the numbers
\(\tilde{N}_{g,n}(b_1, b_2, \ldots, b_n)\) coincide with a homogeneous symmetric polynomial \(N_{g,n}(b_1, b_2, \ldots, b_n)\) in the \(b_i^2\) of degree \(6g - 6 + 2n\) with rational coefficients.

\(C_{g,n}\): integer compositions of \(3g - 3 + n\) into \(n\) non-negative parts
For \(d = (d_1, d_2, \ldots, d_n) \in C_{g,n}\) we define the correlator \(\langle d \rangle_{g,n}\) as

\[
N_{g,n}(b_1, b_2, \ldots, b_n) =: \frac{1}{2^{5g-6+2n}} \sum_{d \in C_{g,n}} \frac{\langle d \rangle_{g,n}}{d_1!d_2! \cdots d_n!} b_1^{2d_1} b_2^{2d_2} \cdots b_n^{2d_n}.
\]

Algebraic geometry note: the polynomials \(N_{g,n}\) are part of Kontsevich’s proof of Witten conjecture. We have

\[
\langle d \rangle_{g,n} = \int_{\mathcal{M}_{g,n}} \psi_1^{d_1} \psi_2^{d_2} \cdots \psi_n^{d_n}
\]
Explicit formula in the unicellular case \((n = 1)\)

We have

\[
\langle 3g - 2 \rangle_{g,1} = \frac{1}{24g \cdot g!}.
\]

In other words

\[
N_{g,1}(b_1) = \frac{1}{2^{5g-6+2n}} \frac{1}{(3g - 2)!} \frac{1}{24g \cdot g!} b_1^{6g-4}.
\]
Explicit formula in the unicellular case \((n = 1)\)

We have

\[
\langle 3g - 2 \rangle_{g,1} = \frac{1}{24g \cdot g!}.
\]

In other words

\[
N_{g,1}(b_1) = \frac{1}{2^{5g-6+2n}} \cdot \frac{1}{(3g-2)!} \cdot \frac{1}{24^g \cdot g!} b_1^{6g-4}.
\]

Note: equivalent to the Lehman-Walsh’72, Harer-Zagier’86 formulas for the exact counting of unicellular maps.
Asymptotic formula in the bicellular case \((n = 2)\)

Let us introduce

\[
h(d) = \frac{1}{24^g \cdot g!} \cdot \frac{(6g - 1)!!}{\prod_{i=1}^{n} (2d_i + 1)!!}
\]
Asymptotic formula in the bicellular case ($n = 2$)

Let us introduce

$$h(d) = \frac{1}{24^g \cdot g!} \cdot \frac{(6g - 1)!!}{\prod_{i=1}^n (2d_i + 1)!!}$$

Theorem (DGZZ’19)

For any $d \in C_{g,2}$ we have

$$1 - \frac{2}{6g - 1} \leq \frac{\langle d \rangle_{g,2}}{h(d)} \leq 1.$$
Asymptotic formula in the bicellular case \((n = 2)\)

Let us introduce

\[
h(d) = \frac{1}{24^g \cdot g!} \cdot \frac{(6g - 1)!!}{\prod_{i=1}^{n} (2d_i + 1)!!}
\]

Theorem (DGZZ’19)

For any \(d \in C_{g,2}\) we have \(1 - \frac{2}{6g - 1} \leq \langle d \rangle_{g,2} \leq \frac{h(d)}{h(d)} \leq 1.\)

Note: generalized in Aggarwal’20 for correlators with \(n \geq 3\).
From simple multicurves to stable graphs

stable graph:

Decorated graph dual to a multicurve and forgetting the embedding in the surface
From simple multicurves to stable graphs

stable graph:

Decorated graph dual to a multicurve and forgetting the embedding in the surface

\[\{ \text{topological types of simple multicurves} \} \sim \{ \text{stable graphs} \} \]
From simple multicurves to stable graphs

stable graph:

Decorated graph dual to a multicurve and forgetting the embedding in the surface

\[\{ \text{topological types of simple multicurves} \} \approx \{ \text{stable graphs} \} \]
\[\{ \text{topological types of multicurves} \} \approx \{ \text{weighted stable graphs} \} \]
The coefficient $c(\eta)$ and Kontsevich polynomials $N_{g,n}$

For each stable graph Γ (dual to a multicurve η) we associate a polynomial with variables $(b_e)_{e\in E(\Gamma)}$ and define

$$P_\Gamma(b) = A_{g,n} \frac{1}{2|V(\Gamma)|-1} \cdot \frac{1}{|\text{Aut}(\Gamma)|} \cdot \prod_{e\in E(\Gamma)} b_e \cdot \prod_{v\in V(\Gamma)} N_{g,v,n_v}(b_v).$$

where $A_{g,n} = \frac{2^{2g-3+n}}{(6g-6+2n) \cdot (6g-7+2n)!}$.

Theorem (Mirzakhani '08, DGZZ '19)

For η is a simple multicurve and associated stable graph Γ we have $c(\eta) = \sum P_\Gamma(b)$ where $Y: k \prod_{i=1}^{\prod m_i} \mapsto k \prod_{i=1}^{\prod m_i!}$.
The coefficient $c(\eta)$ and Kontsevich polynomials $N_{g,n}$

For each stable graph Γ (dual to a multicurve η) we associate a polynomial with variables $(b_e)_{e \in E(\Gamma)}$ and define

$$P_\Gamma(b) = A_{g,n} \cdot \frac{1}{2|V(\Gamma)|-1} \cdot \frac{1}{|\text{Aut}(\Gamma)|} \cdot \prod_{e \in E(\Gamma)} b_e \cdot \prod_{v \in V(\Gamma)} N_{g_v,n_v}(b_v).$$

where $A_{g,n} = \frac{2^{2g-3+n}}{(6g - 6 + 2n) \cdot (6g - 7 + 2n)!}.$

Theorem (Mirzakhani ’08, DGZZ ’19)

For η is a simple multicurve and associated stable graph Γ we have

$$c(\eta) = \mathcal{Y}(P_\Gamma) \quad \text{where} \quad \mathcal{Y} : \prod_{i=1}^k b_i^{m_i} \mapsto \prod_{i=1}^k m_i!.$$
From correlators to $c(\eta)$

$c(\eta)$ for simple closed curves

Theorem (Mirzakhani ’08, DGZZ ’19)

$$c(\eta) = \mathcal{V}(P_\Gamma) \quad \text{where} \quad \mathcal{V} : \prod_{i=1}^{k} b_i^{m_i} \mapsto \prod_{i=1}^{k} m_i!.$$

Non-separating curve

$$c(\eta_{nsep,g}) = \frac{1}{A_{g,n}} \frac{1}{2} \mathcal{V} \left(b_{N_{g-1,2}}(b,b) \right)$$

Separating curve

$$c(\eta_{sep,g_1,g_2}) = \frac{1}{A_{g,n} \text{Aut}} \mathcal{V} \left(b_{N_{g_1,1}}(b) N_{g_2,1}(b) \right)$$
Mirzakhani’s curve counting theorem

\{\text{multicurves on } S\} = \{\text{integral points in } \mathcal{ML}(S)\}
Mirzakhani’s curve counting theorem

\{\text{multicurves on } S\} = \{\text{integral points in } \mathcal{ML}(S)\}

It follows that as \(L \to \infty \)

\{\text{all multicurves of length } \leq L\} \sim B(\text{metric}) \cdot L^{6g-6}.
Mirzakhani’s curve counting theorem

\{\text{multicurves on } S\} = \{\text{integral points in } \mathcal{ML}(S)\}

It follows that as \(L \to \infty \)

\(\{\text{all multicurves of length \(\leq \) } L\} \sim B(\text{metric}) \cdot L^{6g-6}. \)

The fact that for each type of multicurves \(\eta \) its proportion \(c(\eta)/b_g \) exists and is positive relies on the ergodic action of \(\text{MCG}(S) \) on \(\mathcal{ML}(S) \) (Masur’85).
Mirzakhani’s curve counting theorem

\[
\{\text{multicurves on } S\} = \{\text{integral points in } \mathcal{ML}(S)\}
\]

It follows that as \(L \to \infty \)

\[
\{\text{all multicurves of length } \leq L\} \sim B(\text{metric}) \cdot L^{6g-6}.
\]

The fact that for each type of multicurves \(\eta \) its proportion \(c(\eta)/b_g \) exists and is positive relies on the ergodic action of \(\text{MCG}(S) \) on \(\mathcal{ML}(S) \) (Masur’85).

The explicit formula for \(c(\eta) \) can be proven via Weil-Petersson volumes (Mirzakhani’08) or square-tiled surface counting (DGZZ’19).
Witten conjecture (Kontsevich theorem) states that the correlators $\langle d \rangle_{g,n}$ satisfy recurrence relations.
Asymptotics of 2-correlators

Witten conjecture (Kontsevich theorem) states that the correlators $\langle d \rangle_{g,n}$ satisfy recurrence relations. They restrict to simple ones for 2-correlators $\langle d \rangle_{g,2}$ (Zograf’18).
Witten conjecture (Kontsevich theorem) states that the correlators \(\langle d \rangle_{g,n} \) satisfy recurrence relations. They restrict to simple ones for 2-correlators \(\langle d \rangle_{g,2} \) (Zograf’18).

One can then prove by induction

\[
1 - \frac{2}{6g - 1} \leq \frac{\langle d \rangle_{g,2}}{h(d)} \leq 1.
\]
Recall that 1-correlators and 2-correlators are respectively the coefficients of $N_{g,1}(b_1)$ and $N_{g,2}(b_1, b_2)$.
Recall that 1-correlators and 2-correlators are respectively the coefficients of $N_{g,1}(b_1)$ and $N_{g,2}(b_1, b_2)$.

From the formulas $c(\eta_{nsep,g}) = \frac{1}{A_{g,n}} \frac{1}{2} \mathcal{Y}(bN_{g-1,2}(b, b))$ and $c(\eta_{sep,g_1,g_2}) = \frac{1}{A_{g,n} \text{Aut}} \frac{1}{\mathcal{Y}(bN_{g_1,1}(b)N_{g_2,1}(b))}$, we deduce asymptotics for $c(\eta_{nsep,g})$ and $c(\eta_{sep,g_1,g_2})$.
Further remarks

- (weak) generalization to multicurves with more components using Aggarwal’20 (DGZZ’20)
- for generic hyperbolic metric, the separating systole has order $2 \log(g)$ (Mirzakhani’13, Nie-Wu-Xue’20)