1. **Extremal length**

 \(X \) — Riemann surface, perhaps with boundary

 \[\rho(\lambda v) = |\lambda|\rho(v) \]

 for every \(v \in TX \) and \(\lambda \in \mathbb{C} \).

 \(\Gamma \) — a set of paths or closed curves in \(X \)

 If \(\rho \) is a conformal metric and \(\gamma \in \Gamma \), then we define the **length** of \(\gamma \) with respect to \(\rho \) as

 \[\ell(\gamma, \rho) = \int_{\gamma} \rho = \int_{\gamma} \rho(t(x)) \]

 if the integral makes sense, \(\ell(\gamma, \rho) = \infty \) otherwise, and

 \[\ell(\Gamma, \rho) = \inf \{ \ell(\gamma, \rho) : \gamma \in \Gamma \} \]

 is the **length of the path family**.

 \[\Gamma = \text{all paths between } p \text{ and } q \]

 \[\ell(\Gamma, \rho) \]

 \[d(p, q) \text{ in metric } \rho. \]

 Def: The **extremal length** of \(\Gamma \) is defined as

 \[\text{EL}(\Gamma, X) = \sup_{\rho} \frac{\ell(\Gamma, \rho)^2}{\text{area}(\rho)} \]

 which gives

 \[\text{EL}(\Gamma, X) = \frac{\ell(\Gamma, \rho)^2}{\text{area}(\rho)} = \frac{a^2}{ab} = \frac{a}{b} \]

 \[\text{aspect ratio of the rectangle}. \]

Key example: \(X = \text{rectangle}, \quad \Gamma = \text{all paths joining the two vertical sides} \)

Then the metric \(\rho \) realizing the supremum in the definition of \(\text{EL}(\Gamma, X) \) is simply the Euclidean metric, which gives

\[\text{EL}(\Gamma, X) = \frac{\ell(\Gamma, \rho)^2}{\text{area}(\rho)} = \frac{a^2}{ab} = \frac{a}{b} \]

We’ll prove this as a special case of Beurling’s criterion for the extremality of the metric \(\rho \).
2. **Beurling’s criterion**

Def: A metric \(\rho_0 \) on \(X \) is **evenly covered by shortest paths** of \(\Gamma \) if

- There is a non-empty subset \(\Gamma_0 \subset \Gamma \) of shortest paths, i.e., such that
 \[
 \ell(\gamma, \rho_0) = \ell(\Gamma, \rho_0)
 \]
 for every \(\gamma \in \Gamma_0 \).
- There is a measure \(\mu \) on \(\Gamma_0 \) such that
 \[
 \rho_0^2 = (\rho_0 \text{ along } \gamma) \times d\mu
 \]
 i.e., to integrate against \(\rho_0^2 \) over \(X \), we can apply an iterated integral (Fubini).

Example: In the rectangle example, the Euclidean metric \(\rho_0 \) is evenly covered by the horizontal paths.

\[
L \times d\mu = dy
\]

Theorem (Beurling’s criterion): Let \(\rho_0 \) be a conformal on \(X \) that is evenly covered by shortest paths of \(\Gamma \). Then \(\rho_0 \) realizes the supremum in the definition of \(EL(\Gamma, X) \), that is,

\[
EL(\Gamma, X) = \frac{\ell(\Gamma, \rho_0)^2}{area(\rho_0)}
\]

To prove the theorem, first note that

\[
area(\rho_0) = \int_X \rho_0^2 = \int_{\Gamma_0} \left(\int_{\gamma} \rho_0^2 \right) d\mu(\gamma)
\]

\[
= \int_{\Gamma_0} \ell(\gamma, \rho_0) d\mu(\gamma)
\]

\[
= \int_{\Gamma_0} \ell(\Gamma, \rho_0) d\mu
\]

\[
= \ell(\Gamma, \rho_0) \cdot \mu(\Gamma_0)
\]

"area = length \cdot height" if

Let \(\rho \) be any competing metric with \(0 < area(\rho) < \infty \). We need to show

\[
\frac{\ell(\Gamma, \rho)^2}{area(\rho)} < \frac{\ell(\Gamma, \rho_0)^2}{\infty} = 0.
\]
\[
\frac{l(p, p')}{\text{area}(p)} \leq \frac{\mu(p, p')}{\text{area}(p)}.
\]

We have

\[
l(p, p) \leq l(p_0, p) \leq \frac{1}{8} |p| \quad \text{for every } x \in P_0.
\]

Integrate over \(P_0 \) ⇒

\[
l(p, p) \cdot \mu(p_0) \leq \int_{P_0} \left(\frac{1}{8} |p| \right) d\mu(x)
\]

\[
= \int_{P_0} \int_{x} \frac{1}{8} \frac{p}{p_0} \cdot \frac{p_0^2}{p} \, d\mu(x)
\]

\[
= \int_{x} \frac{1}{8} \frac{p}{p_0} \cdot \frac{p_0^2}{p} = \frac{1}{8} \int_{x} |p| \cdot p_0
\]

\[
\leq \sqrt{\int_{x} |p|^2} \cdot \sqrt{\int_{x} p_0^2}
\]

\[
= \sqrt{\text{area}(p)} \cdot \sqrt{\text{area}(p_0)}
\]

\[
\Rightarrow \quad \frac{l(p, p')^2}{\text{area}(p)} \leq \frac{\text{area}(p_0)}{\mu(p_0)^2}
\]

\[
= \frac{\text{length} \cdot \text{height}}{\text{height}^2} = \frac{\text{length}}{\text{height}} = \frac{\text{length}^2}{\text{length} \cdot \text{height}} = \frac{l(p, p')^2}{\text{area}(p)}
\]
More examples:

0) The rectangle example.

1) X any Riemann surface, $\Gamma = [\alpha]$ where $\alpha \subset X$ is an essential simple closed curve.

Then a theorem of Jenkins/Strebel says that there is a quadratic differential q that makes X isometric to a Euclidean cylinder modulo some gluings along the boundary.

The induced conformal metric is evenly covered by shortest curves in $[\alpha]$ so that

$$EL([\alpha], X) = \frac{\text{circumference}^2}{\text{area}} = \frac{\text{circumference}}{\text{height}} = \frac{1}{\text{modulus}}$$

by Beurling's criterion.
A special case of this is when \(X \) is a flat torus. Then \(EL([\alpha], X) = \text{length}^2 / \text{area} \) for the flat metric.

2) \(X = \mathbb{RP}^2 = S^2 / \text{antipodal map} \), \(\Gamma = \text{all non-contractible curves in} \ X \).

Then the spherical metric is evenly covered by quotients of great circles, which are shortest in \(\Gamma \).

By Beurling’s criterion,
\[
EL(\Gamma, X) = \frac{\pi^2}{2\pi} = \frac{\pi}{2}.
\]

3. **Systolic inequalities**

\((M, g) \) — compact Riemannian \(n \)-manifold

Systole: \(\text{sys}(M, g) = \text{length of shortest non-contractible curve in} \ (M, g) \)

Systolic ratio: \(\text{SR}(M, g) = \frac{\text{sys}(M, g)^n}{\text{vol}(M, g)} \) (invariant under scaling)

Question (Berger, Gromov): Given a smooth manifold \(M \), which Riemannian metrics on \(M \) maximize the systolic ratio?

Answer known only if \(M \in \{ 2 \text{ – torus, projective plane, Klein bottle} \} \)

Relationship with extremal length:

We can stratify the space of Riemannian metrics on \(M \) by conformal classes:

\(\sup\{\text{SR}(M, g) : g \text{ is a Riemannian metric on} \ M\} = \sup\{\sup\{\text{SR}(M, g) : g \in c\} : c \text{ is a conformal class of metrics on} \ M\} \)

so we can try to solve the problem for each conformal class, then maximize over moduli space.

For a fixed conformal structure \(X \) (or conformal class \(c \)) on \(M \) we have

\[
\sup\{\text{SR}(M, g) : g \in c\} = \sup_{g \in c} \text{sys}(M, g)^n = \sup_{\rho} \left(\frac{\text{vol}(\Gamma_{\text{ess}})}{\text{vol}(\rho)} \right)^n = \mathbb{L}\left(\Gamma_{\text{ess}}, X \right).
\]

where \(\Gamma_{\text{ess}} = \text{all non-contractible curves in} \ X \).
\[l(\text{Res}, p) = \inf \{ \text{length}(\gamma, p) : \gamma \in \text{Res} \} \]

\[= \inf \text{ length of non-cont. curves } \]

\[= \text{sys}(X, p). \]

\[\text{EL sys} = \inf_{\alpha} \text{EL}(\alpha, X) \]

\[= \inf_{\alpha} \sup_{p} \frac{\ell^2}{\text{area}} \]

\[\max \text{ SR} = \sup_{p} \inf_{\alpha} \frac{\ell^2}{\text{area}} \]