Big mapping class groups acting on homology

Federica Fanoni

Joint with Sebastian Hensel and Nicholas Vlamis

\(S \) surface \((\text{conn, oriented}, \exists S = d) \)

\[\text{Finite-type} \]

The \(S \) f.g.

Ends(\(S \)) = space of ends

Mapping class group: \(\text{MCG}(S) := \text{Homeo}^+(S)/\text{homotopy} \)

\(\text{f.g.} \)

\(\text{discrete} \)

\(\text{not f.g.} \)

\(\text{not discrete} \)
Homology

$H_1(S; \mathbb{R})$: vector space generated by $\{[\alpha] \mid \alpha \text{ curve}\}$

$H_1(S, \mathbb{Z})$: \mathbb{Z}-span of $\{[\alpha] \mid \alpha \text{ curve}\}$ (simple closed, oriented)

Remark: α sep. cutting off $X \cap \alpha$ (\text{=}) $[\alpha] = 0$

Algebraic intersection form $i: H_1(S; \mathbb{R}) \times H_1(S; \mathbb{R}) \to \mathbb{R}$

$$\alpha, \beta \to i([\alpha], [\beta]) = \sum_{p \in \alpha \cap \beta} p \in \alpha \cap \beta$$

Rule: α sep. $\Rightarrow i([\alpha], \cdot) = 0$ $[\alpha]$ isotropic

Remark: i is symplectic if and only if S has at most one end.

$GL(H_1(S; \mathbb{R}))$

Action of $\text{MCG}(S)$ on homology $\sim \rho_S: \text{MCG}(S) \to \text{Aut}(H_1(S; \mathbb{Z}); i)$

Question: what is the image of ρ_S? i.e., which $\varphi \in GL(H_1)$ come from a mapping class?
A classical result

Theorem (Burkhardt)

If S is closed of genus g, ρ_S is surjective onto $\text{Aut}(H_1(S; \mathbb{Z}); i) \simeq \text{Sp}(2g; \mathbb{Z}).$

"Proof:" $\psi \in \text{Sp}(2g; \mathbb{Z})$

\[\alpha_i, \beta_i \text{ symplectic basic} \]

Only α_i & β_i intersect, in 1 pt

\[\varphi(\alpha_i), \varphi(\beta_i) \]

α_i', β_i' curves w/ same int. pattern

$S \setminus \bigcup_{i} U \alpha_i \cup U \beta_i \simeq S^2 \setminus g \simeq S \setminus \bigcup_{i} U \alpha_i' \cup U \beta_i'$

\[\alpha_i \rightarrow \alpha_i', \beta_i \rightarrow \beta_i' \]

\[\varphi: S \rightarrow S \text{ homeo} \]

$F = \varphi$

D
The Loch Ness monster

Theorem (F.–Hensel–Vlamis)
If S is the Loch Ness monster, ρ_S is surjective onto $\text{Aut}(H_1(S;\mathbb{Z});\hat{i}) \simeq \text{Sp}$(N;Z).

Problem:

Solution: [Richards] $\psi \in \text{Sp}(N,\mathbb{Z})$

$\Sigma_1 \subseteq \Sigma_2 \subseteq \cdots$ φ a exhaustion $B_2 = \Sigma_2$

Construct subs. $A_n, B_n, \overline{f_n}: A_n \rightarrow B_n$

- n odd $A_n \supseteq \Sigma_n$ $\Rightarrow A_n, B_n$ exh.
- n even $B_n \supseteq \Sigma_n$

$\overline{f_n} |_{A_{n+1}} = \overline{f_{n-1}} \Rightarrow \overline{f} = \lim_{n\rightarrow \infty} \overline{f_n}$

$\overline{(f_n)}_* = \psi |_{H_n(A_n,\mathbb{Z})} \Rightarrow \overline{f_*} = \psi$
The general case

What if $\hat{\imath}$ is not symplectic?

$\exists \phi \in \text{Aut}(\mathfrak{H}(S;\mathbb{Z}))$

$\phi([\alpha]) = [\beta]$

but $\mathcal{F} \notin \text{MCG}$:

$\mathcal{F}_s = \phi$

\rightarrow need to:

(1) detect ends

(2) deal w/ sep. curves

Ends

X flare surface if ∂X is a single separating curve and X is unbounded.

$\mathcal{F} := \{H_1(X;\mathbb{Z}) \mid X$ flare surface$\}$ w/ partial order \leq

\leq

< $[\alpha]$ | α curves, $\alpha \leq X$

Fact: ends \leftrightarrow ultrafilters fn (\mathcal{F}, \leq)

$e \leftrightarrow \mathcal{F}_e = \{ \mathcal{V} \in \mathcal{F} \mid \exists \text{ flare } \mathcal{V} = H_1(X;\mathbb{Z})$ & $e \in \text{Ends}(X) \}$
Separating curves

\(\gamma \) separating curve \(\leadsto \mathcal{L}(\gamma) := \{ e \in \text{Ends}(S) \mid e \text{ is to the left of } \gamma \} \)

\[\mathcal{L}(\alpha) = \{ x \} \]
\[\mathcal{L}(\beta) = \{ p, q \} \]

Lemma

\(\alpha, \beta \) separating. Then \([\alpha] = [\beta] \) if and only if \(\mathcal{L}(\alpha) = \mathcal{L}(\beta) \).

\(\xrightarrow{\text{X q p}} \) \(\implies [\alpha] = [\beta] \)
\(\xrightarrow{\text{no end in } X} \) \(\implies \mathcal{L}(\alpha) = \mathcal{L}(\beta) \)

\[C = [\gamma], \gamma \text{ sep. } \implies \mathcal{L}(C) = \mathcal{L}(\gamma) \]
The general case

Theorem (F.–Hensel–Vlamis)
Let S be either:

- a finite-type surface with at least 4 punctures, or
- an infinite-type surface different from the Loch Ness monster or the once-punctured Loch Ness monster.

Then:

- $\varphi \in \text{Aut}(H_1(S; \mathbb{Z}); \hat{1})$ preserving $\mathcal{F} \Rightarrow$ it preserves
 \[
 \{[\alpha] \mid \alpha \text{ separating}\}
 \]
 and it induces a homeomorphism
 \[
 f_{\varphi} : \text{Ends}(S) \to \text{Ends}(S);
 \]

- the image of ρ_S is
 \[
 \left\{ \varphi \in \text{Aut}(H_1(S; \mathbb{Z}); \hat{1}) \mid \begin{array}{c}
 \varphi \text{ preserves } \mathcal{F} \text{ and } \\
 \exists \alpha \text{ separating}, [\alpha] \neq 0 : \\
 \mathcal{L}(\varphi([\alpha])) = f_{\varphi}(\mathcal{L}([\alpha]))
 \end{array} \right\}.
 \]