THE PRINCIPAL-AGENT MODEL
AND INCENTIVE COMPATIBILITY IN
MICROECONOMIC THEORY

ROBERT MCCANN

Rochet & Choné Econometrica 1998
G. Carlier PhD (Dauphine) 2000
Carlier & Lachand-Robert CPAM 2001
Principal's Problem:

Maximize profits, by selective pricing of product lines designed to differentiate customers (i.e., "agents") based on e.g., preferences,
- location
- wealth
- willingness to pay...
- access to substitute products

E.g., - Airline tickets prices
- product differentiation (calculators)
- contracts
- taxation
Product (e.g. car) types: \(y = (y_1, \ldots, y_n) \in \mathbb{M}^n \subset \mathbb{R}^n \)

- \(y_1 = \text{fuel efficiency} \)
- \(y_2 = \text{safety} \)
- \(y_3 = \text{appearance} \)
- \(y_4 = \text{comfort} \)

Agent (i.e. buyer) types: \(x = (x_1, \ldots, x_m) \in \mathbb{M}^m \subset \mathbb{R}^m \)

- \(x_1 = \text{environmental consciousness} \)
- \(x_2 = \text{size of family} \)
- \(x_3 = \text{profession / desire to impress} \)
- \(x_4 = \text{pursimanioussness} \)
- \(x_5 = \text{income} \)

\[
\]
EXOGENOUS DATA

\[w(x,y) = \text{utility (i.e. value in$)} \] of
\[\text{car } y \in M^- \text{ to agent } x \in M^+ \]
\[= -c(x,y) \]

\[\mu^+ : \text{distribution of agent types in population} \]
\[= \text{a Borel probability measure on } M^+ \]

\[k(y) : \text{principal's cost to manufacture car } y \]
Principal (Monopolist, Manufacturer)

Chooses a price menu \(V: M^- \to \mathbb{R} U \{0\} \) designed to maximize profits = revenue - costs.

\(V(y) \) = price at which she wants to sell car \(y \in M^- \)

Agent \(x \in M^+ \): Decides whether to buy a car, and if so which one, by calculating the "\(u \)-convex" function (or indirect utility)

\[
U(x) = V^u(x) = \sup_{y \in M^-} u(x, y) - V(y)
\]

If \(U(x) > 0 \), \(x \) buys car \(y_0(x) \) attaining sup

If \(U(x) \leq 0 \), \(x \) does not buy any car.

"Participation constraint"
SET-UP

utility $u : M^+ \times M^- \rightarrow \mathbb{R}^{\text{max}} \rightarrow \mathbb{R} \cup \{\text{inf}\}$ of y to x

measure $\mu^+ \geq 0$ on M^+

cost $k : M^- \rightarrow \mathbb{R} \cup \{\text{inf}\}$ to manufacture

PRINCIPAL: chooses $V : M^- \rightarrow \mathbb{R} \cup \{\text{inf}\}$ to maximize

$$\pi[V] = \text{revenues} - \text{costs}$$

AGENT x: buys a car $y_0(x)$ which achieves maximal

$$U(x) = V^u(x) = \sup_{y \in M^-} u(x,y) - V(y) \quad \text{iff} \quad U_b(x) > 0$$

PROFIT:

$$\pi[V] := \int_{\{x \in M^+ \mid V^u(x) > 0\}} \left[V(y_0(x)) - k(y_0(x)) \right] \, d\mu^+ (x)$$
SOME HISTORY

SPENCE '74 (signal) \(n = m = 1 \)

MIRLEES '76 (Hex)

\[(X) \quad \frac{\partial y}{\partial x} > 0 \Rightarrow y_0(x) \text{ non-decreasing on } x \in M^+ \cap \mathbb{R} \]

\(\Rightarrow \) Compactness, existence, characterization, example...

"Assortative matching": higher quality agents choose better products (and pay more)

LORENTZ '55 (Rearrangement inequalities)

\[F_+^*(x) = \int_{-\infty}^{x} dp^*(s) = \int_{-\infty}^{x} f^*(s) \, ds \]

\[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(x,y) f^*(x) f^*(y) \, dx \, dy \leq \int_{0}^{2} c(F^+_*(w), F^-_* (w)) \, dw \]

\(\forall \) p.d.f.'s \(f^* \iff (X) \)
Theorem (Rockafellar & Monnéd): \(M^g \subseteq \mathbb{R}^n \)

\[u(x,y) = \langle x, y \rangle \quad \text{and} \quad k(\vec{0}) = 0 \]

\[\pi[V] = \int_{\{ x \in \mathbb{R}^n : u(x) > 0 \}} \left[\langle x, u(x) \rangle - u(x) - k(u(x)) \right] \, dp^+ \]

where \(u(x) = V^*(x) = \sup_{y \in M^-} \langle x, y \rangle - V(y) \)

Enormously simplifies variational problem:

\[\max \int_{\mathbb{R}^n} \left[\langle x, u(x) \rangle - u - k(u(x)) \right] \, dp^+ \]

for \(u: \mathbb{R}^n \rightarrow [0, \infty] \) convex \(u(\mathbb{R}^n) \notin M^- \cup \{ \vec{0} \} \)

\[\text{i.e., } \partial u(\mathbb{R}^n) \cap \partial M^- = \partial (M^g \cup \{ \vec{0} \}) \]
Proof: \(U(x) = V^*(x) = \sup_{y \in \mathbb{N}} \langle x, y \rangle - V(y) \)

attained at \(y_0(x) = \alpha U(x) \) (or \(y_0 \in \alpha U(x) \)),

where \(U(x) + V(\alpha U(x)) = \langle x, \alpha U(x) \rangle \). Profit

\[
\pi [V] = \int \left[V(y_0) - k(y_0) \right] \, dp^+(x) \\
\{ V^+ > 0 \}
\]

\[
= \int \left[\langle x, \alpha u \rangle - u - k(\alpha u) \right] \, dp^+(x) \\
\{ u > 0 \}
\]

\[
= \int_{\mathbb{R}^2} \left[\langle x, vU_+ \rangle - U_+ - k(\alpha U_+) \right] \, dp^+(x) \\
\]

where \(U_+(x) = \max \{ U(x), 0 \} \)
Numerical Example

Example: ROCHET-CHONE '98

\(n = 2 \)

\[d \rho^+(x) = \chi_{[0,1]^2}(x) \, d\mathcal{H}^2(x) \]

\(u(x,y) = \langle x, y \rangle \)

\(k(y) = \frac{1}{2} y^2 \)

\(M^+ = (\mathbb{R}_+)^2 \) = positive quadrant

\[\min \int \int \left[\frac{1}{2} |\nabla u|^2 + u - \langle x, du \rangle \right] \, dx \, dx \]

\(u \geq 0 \) convex

\(\nabla \mathcal{H}(\mathbb{R}^2) \in M^- \)

Dirichlet energy
CALCULUS OF VARIATIONS
UNDER CONVEXITY CONSTRAINTS

- numerical challenges (see Magy '01)
- theoretical: polar dual to cone of convex functions

THM: (Carlier & Lachand-Robert '01)

\[M^+ \subset \mathbb{R}^n \] bounded convex domain
\[dp^+(x) = f^+(x) \chi_{M^+}(x) \, dx \quad \| \log f^+ \|_{\infty} < \infty \]
\[M^- = (\mathbb{R}_+)^n = \text{positive constant} \]

\[\min_{U \geq 0 \text{ convex}} \int_{M^+} \left[\frac{1}{2} |u|^2 + u - \langle x, du \rangle \right] f^+(dx) \, d\nu \]
\[u_{xy} \geq 0 \]
\[u_{x \geq 0} \]

unique minimizer \(U_0 \in C^1(M^+) \)

OPEN: What about \(k(y) = \frac{1}{p} |y|^p \)?
ROBUSTNESS: OTHER COSTS?

Assume (as usual) \(u : M^+ \times M^- \to \mathbb{R} \) satisfies:

\[\forall x \in M^+, \ p \in \mathbb{R}^m \ \exists \ \text{at most one} \ y = Y(x, p) \in M^- . \]

\[\delta_{1u}(x, y) = p \]

+ suitable smoothness

Agent \(x \in M^+ \) will choose \(y^*_x (x) = Y(x, u(x)) \)

where

\[u(x) = V^u(x) = \sup_{y \in M^-} u(x, y) - V(y) \]
\[\sup_{V: M^+ \to \mathbb{R}} \int_{\{x \in M^+ : V^I \leq 0\}} \left[V(Y(x, \varpi U(x))) - k(Y(x, \varpi U(x))) \right] d\mu^I(x) \]

\[\max_{U: M^+ \to \mathbb{R}} \int_{\{x \in M^+ : U(x) > 0\}} \left[U(x, Y(x, \varpi U(x))) - U(x) - k(Y(x, \varpi U(x))) \right] d\mu^I(x) \]

\(Y(x, \varpi U(x)) \ni M^-\)

and is attained (because of the compactifying property of \(V \to U = V^u \) supremal convolutions)

Characterization? Examples?
3D Rotating Stratified Fluid (Incompressible)

Velocity

Geopotential

Potential temperature

\[
(\partial_t + \mathbf{v} \cdot \nabla) \mathbf{v} + \nu \nabla^2 \mathbf{v} + \mathbf{J} \mathbf{v} + \theta \mathbf{g} = 0
\]

\[
(\partial_t + \mathbf{v} \cdot \nabla) \theta = 0
\]

\[
\mathbf{v} \cdot \nabla = 0
\]

\[
\mathbf{J} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

\[
\mathbf{g} = \begin{pmatrix} 0 \\ 0 \\ \beta \end{pmatrix}
\]

\[
\mathbf{V} + \mathbf{Y} \in \mathbb{R}^3
\]

\[
\mathbf{V} = \mathbf{V}_H + \mathbf{V}_T = -\mathbf{J}^2 \mathbf{V} + \mathbf{V}_T \mathbf{g}
\]
3D Incompressible Semi-geostrophic Theory

Geostrophy: \(\mathbf{v}_n = \mathbf{J} \nabla \mathbf{p} \quad \Theta = \frac{\partial \mathbf{p}}{\partial y_2} \)

Semi-geostrophy: \[(\mathbf{\alpha} + \mathbf{\nabla} \cdot \mathbf{v}) \cdot \mathbf{v} = \mathbf{J} \partial_t \mathbf{p} + \mathbf{J} \mathbf{v} \]

\(\mathbf{\nabla} \cdot \mathbf{v} = 0 \)

Conserved Quantities

Energy: \(E = \frac{d}{dt} \int \frac{1}{2} \partial \mathbf{v}^2 \, d^3y \)

Potential

Vertical

\(\Theta = \left(\frac{2}{5t} + \mathbf{\nabla} \cdot \mathbf{v} \right) \det (\partial \mathbf{p} + J) \)

\(\Rightarrow \) convexity of \(P(t, \mathbf{y}) \) preserved

(Allen i.e., Proser "stability")
Dual Formulation in Geostrophic Variables.

\[V(t, \hat{y}) = P(t, \hat{y}) + \frac{1}{2} \hat{y}^2 \]

\[x = X(t, \hat{y}) = \phi V(t, \hat{y}) \]

\[\psi(t, \hat{z}) = \psi \hat{z} \cdot \hat{y} - V(t, \hat{y}) = \psi \hat{z} \]

\[= U(t, \hat{z}) \]

\[= \psi (t, \hat{z}) + \frac{1}{2} \hat{z}^2 \]

\[x = \partial \psi (t, \hat{z}) \hat{y} \]

\[p(\hat{z}, \hat{x}) = \det [I + D^2 \psi (t, \hat{z})] \]

\[= \text{Monge-Ampère elliptic} \]

\[\left(\frac{\partial}{\partial t} - \text{J}_\psi \cdot \hat{v} \right) p(\hat{z}, \hat{x}) = 0 \]

Active scalar advected in layers by a divergence free vector field.

\[\text{d}_2(x, y) p(t, z) = \text{constant energy} \]