MAT1300 PROBLEM SET - WEEK 8

(1) Prove that every $n \times n$ matrix whose entires are all non-negative has a non-negative eigenvalue. (Hint: use the fact that $S^{n-1} \cap$ $\mathbb{R}_{\geq 0}^{n}$ is homeomorphic to a closed disc and apply Brouwer's fixed point theorem to it.)
(2) Let $\varepsilon^{1}, \varepsilon^{2}, \varepsilon^{3}, \varepsilon^{4}$ be the standard basis of $\left(\mathbb{R}^{4}\right)^{*}$. Show that $\alpha:=\varepsilon^{1} \wedge \varepsilon^{2}+\varepsilon^{3} \wedge \varepsilon^{4}$ is not decomposable. (Hint: if α were decomposable then $\alpha \wedge \alpha$ would be zero.)
(3) The k th de Rham cohomology of a smooth manifold M is the quotient vector space $H^{k}(M):=\{\operatorname{closed} k$-forms on $M\} /\{$ exact k-forms on $M\}$.
Show that the map

$$
\begin{gathered}
\cup: H^{k}(M) \times H^{\ell}(M) \rightarrow H^{k+\ell}(M) \\
{[\alpha],[\beta] \mapsto[\alpha \wedge \beta]}
\end{gathered}
$$

is well defined.
(4) Compute the pullback of the differential form

$$
\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y)
$$

under the map $(u, v) \mapsto\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)$ from the open unit disc in \mathbb{R}^{2} to the complement of the origin in \mathbb{R}^{3}.

