MAT1300 Problem set 9 (week 10) - Question 1:
Let x^{1}, \ldots, x^{n} be the standard coordinates on \mathbb{R}^{n}.
(a) Let y^{1}, \ldots, y^{n} be the coordinates on \mathbb{R}^{n} with respect to another oriented orthonormal basis.
(i) Show: $d y^{1} \wedge \ldots \wedge d y^{n}=d x^{1} \wedge \ldots \wedge d x^{n}$.
(ii) Show: $\sum y^{i} \frac{\partial}{\partial y^{i}}=\sum x^{i} \frac{\partial}{\partial x^{i}}$. (This is sometimes called the Euler vector field. In fact, we don't really need the second basis to be oriented nor orthonormal.) Hint: for $v \in \mathbb{R}^{n}$, compute in coordinates the velocity vector at $t=0$ of the curve $t \mapsto e^{t} v$.
(b) Consider the $(n-1)$ form

$$
\omega:=\frac{1}{\|x\|^{n}} \sum(-1)^{i-1} x^{i} d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}
$$

on $S^{n-1} \subset \mathbb{R}^{n}$.
(i) Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a rotation (represented by a matrix in $\mathrm{SO}(n))$. Show that $A^{*} \omega=\omega$. Hint: use parts (a) and (b).
(ii) Show that ω is a volume form on S^{n-1}.

