MAT1300 PROBLEM SET 9 (WEEK 10) - QUESTION 1:

Let x^1, \ldots, x^n be the standard coordinates on \mathbb{R}^n .

- (a) Let y^1, \ldots, y^n be the coordinates on \mathbb{R}^n with respect to another oriented orthonormal basis.

 - (i) Show: $dy^1 \wedge \ldots \wedge dy^n = dx^1 \wedge \ldots \wedge dx^n$. (ii) Show: $\sum y^i \frac{\partial}{\partial y^i} = \sum x^i \frac{\partial}{\partial x^i}$. (This is sometimes called the Euler vector field. In fact, we don't really need the second basis to be oriented nor orthonormal.) Hint: for $v \in \mathbb{R}^n$, compute in coordinates the velocity vector at t = 0 of the curve $t \mapsto e^t v$.
- (b) Consider the (n-1) form

$$\omega := \frac{1}{\|x\|^n} \sum (-1)^{i-1} x^i dx^1 \wedge \ldots \wedge \widehat{dx^i} \wedge \ldots \wedge dx^n$$

on $S^{n-1} \subset \mathbb{R}^n$.

- (i) Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be a rotation (represented by a matrix in SO(n)). Show that $A^*\omega = \omega$. Hint: use parts (a) and (b).
- (ii) Show that ω is a volume form on S^{n-1} .