CRASH COURSE ON MANIFOLDS

A manifold is a (Hausdorff, second countable) topological space M equipped with an equivalence class of atlases.
An atlas is an open covering $M=\bigcup_{i} U_{i}$ and homeomorphisms $\varphi_{i}: U_{i} \rightarrow$ Ω_{i} where $\Omega_{i} \subset \mathbb{R}^{n}$ is open, such that the transition maps $\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap\right.$ $\left.U_{j}\right) \rightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right)$ are smooth (that is, are of type C^{∞} : all partial derivatives of all orders exist and are continuous).
Two atlases $\left\{\varphi_{i}: U_{i} \rightarrow \Omega_{i}\right\}$ and $\left\{\tilde{\varphi}_{j}: \tilde{U}_{j} \rightarrow \tilde{\Omega}_{j}\right\}$ are equivalent if their union is an atlas, that is, if $\tilde{\varphi}_{j} \varphi_{i}^{-1}$ and $\varphi_{i} \tilde{\varphi}_{j}^{-1}$ are smooth for all i, j.
$\varphi_{i}: U_{i} \rightarrow \Omega_{i}$ is called a coordinate chart.
$\varphi_{i}^{-1}: \Omega_{i} \rightarrow U_{i}$ is called a parametrization.
One can write $\varphi_{i}=\left(x^{1}, \ldots, x^{n}\right) . \quad x^{j}: U_{i} \rightarrow \mathbb{R}$ are coordinates.
Let $X \subset \mathbb{R}^{N}$ be any subset and $\Omega \subset \mathbb{R}^{n}$ open. A continuous map $\varphi: X \rightarrow \Omega$ is called smooth if every point in X is contained in an open subset $V \subset \mathbb{R}^{N}$ such that there exists a smooth function $\tilde{\varphi}: V \rightarrow \Omega$ with $\left.\tilde{\varphi}\right|_{X \cap V}=\varphi$. A continuous map $\psi: \Omega \rightarrow X$ is called smooth if it is smooth as a map to \mathbb{R}^{N}. A diffeomorphism $\varphi: X \rightarrow \Omega$ is a homeomorphism such that both φ and φ^{-1} are smooth.

Theorem. Let $M \subset \mathbb{R}^{N}$ be a subset that is "locally diffeomorphic to $\mathbb{R}^{n "}$: for every point in M there exists a neighborhood $U \subset M$ and there exists an open subset $\Omega \subset \mathbb{R}^{n}$ and there exists a diffeomorphism $\varphi: U \rightarrow \Omega$. Then M is a manifold with atlas $\{\varphi: U \rightarrow \Omega\}$. (Exercise: the transition maps are automatically smooth.) Such an M is called an embedded submanifold of $\mathbb{R}^{\mathbf{N}}$.

Example. $S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$. For instance, x, y are coordinates on the upper hemisphere.
A continuous function $f: M \rightarrow \mathbb{R}$ is smooth if $f \circ \varphi_{i}^{-1}: \Omega_{i} \rightarrow \mathbb{R}$ is smooth for all i (as a function of n variables).
$C^{\infty}(M):=\{$ the smooth functions $f: M \rightarrow \mathbb{R}\}$.
A (continuous) curve $\gamma: \mathbb{R} \rightarrow M$ is smooth if $\varphi_{i} \circ \gamma$ is smooth for all i.

We will define the tangent space $T_{m} M=$ "directions along M at the initial point m ".

A smooth curve $\gamma: \mathbb{R} \rightarrow M$ with $\gamma(0)=m$ defines "differentiation along the curve", which is the linear functional $C^{\infty}(M) \rightarrow \mathbb{R}$,

$$
D_{\gamma}:\left.f \mapsto \frac{d}{d t}\right|_{t=0} f(\gamma(t)) .
$$

We define an equivalence of such curves by $\gamma \sim \tilde{\gamma}$ if $D_{\gamma}=D_{\tilde{\gamma}}$.
This means that γ and $\tilde{\gamma}$ have the same direction at the point $m=$ $\gamma(0)=\tilde{\gamma}(0)$, that is, they are tangent to each other at this point.

Geometric definition of the tangent space:

$$
T_{m} M=\{\text { the equivalence classes of curves in } M \text { through } m .\}
$$

Leibnitz property: $D_{\gamma}(f g)=\left(D_{\gamma} f\right) g(m)+f(m)\left(D_{\gamma} g\right)$.
Definition. A derivation at m is a linear functional $D: C^{\infty}(M) \rightarrow \mathbb{R}$ that satisfies the Leibnitz property.

Theorem. The derivations at m form a linear vector space: if D_{1}, D_{2} are derivations and $a, b \in \mathbb{R}$ then $a D_{1}+b D_{2}$ is a derivation.

Theorem. If x^{1}, \ldots, x^{n} are coordinates near m then every derivation is a linear combination of $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$. (The proof uses Hadamard's lemma: for any $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ there exist $f_{i} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $f(x)=$ $f(0)+\sum x_{i} f_{i}(x)$. Proof of the lemma: $f(x)-f(0)=\int_{0}^{1} \frac{d}{d t} f(t x) d t=$ $\sum x_{i} \int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t x) d t$ by the chain rule.)
Corollary. For every derivation D there exists a curve γ such that $D=D_{\gamma} . \quad T_{m} M$ is a linear vector space (identified with the space of derivations at m). If x^{1}, \ldots, x^{n} are coordinates near m then $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$ is a basis of $T_{m} M$.

Differential of a function: $\left.d f\right|_{m} \in T_{m}^{*} M=\left(T_{m} M\right)^{*}$ is given by

$$
\left.d f\right|_{m}(v)=v f
$$

the derivative of f in the direction of $v \in T_{m} M$.
If x^{1}, \ldots, x^{n} are coordinates then

$$
d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\frac{\partial x^{i}}{\partial x^{j}}=\delta_{i j},
$$

so $d x^{1}, \ldots, d x^{n}$ is the basis of $T_{m}^{*} M$ which is dual to the basis $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$ of $T_{m} M$.

In coordinates, $d f=\sum_{i} \frac{\partial f}{\partial x^{i}} d x^{i}$.
A differential form of degree $\mathbf{0}$ is a smooth function.
A differential form of degree $1, \alpha \in \Omega^{1}(M)$, associates to each $m \in$ M a linear functional $\alpha_{m} \in T_{m}^{*} M$. In coordinates: $\alpha=\sum_{i} c_{i}(x) d x^{i}$. We require that the coefficients $c_{i}(x)$ be smooth functions of $x=$ $\left(x^{1}, \ldots, x^{n}\right)$.

A differential form of degree $\mathbf{2}, \alpha \in \Omega^{2}(M)$, associates to each $m \in M$ an alternating (i.e., anti-symmetric) bilinear form $\alpha_{m}: T_{m} M \times$ $T_{m} M \rightarrow \mathbb{R}$. In coordinates: $\alpha=\sum_{i, j} c_{i j}(x) d x^{i} \wedge d x^{j}$ (where

$$
d x^{i} \wedge d x^{j}:(u, v) \mapsto \operatorname{det}\left[\begin{array}{cc}
u^{i} & v^{i} \\
u^{j} & v^{j}
\end{array}\right]
$$

if $u=\sum u^{k} \frac{\partial}{\partial x^{k}}$ and $\left.v=\sum v^{k} \frac{\partial}{\partial x^{k}}\right)$.
A differential form of degree k :

$$
\alpha=\sum_{i_{1}, \ldots, i_{k}} c_{i_{1} \ldots i_{k}}(x) d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}
$$

(where $d x^{i_{1}} \wedge \ldots \wedge d x^{i_{i}}$ is similarly given by a $k \times k$ determinant).

Exterior derivative:

$$
d \alpha=\sum_{i_{1}, \ldots, i_{k}, j} \frac{\partial c_{i_{1} \ldots i_{k}}}{\partial x^{j}} d x^{j} \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}
$$

α is closed if $d \alpha=0 ; \alpha$ is exact if there exists β such that $\alpha=d \beta$.
De Rham cohomology: $H_{d R}^{k}(M)=\{$ closed k-forms $\} /\{$ exact k-forms $\}$.
An oriented manifold is a manifold equipped with an equivalence class of oriented atlases. (Jacobians of transition maps must have positive determinants.)

Integration: Let M be an oriented manifold of dimension n. For an n-form with support in a coordinate neighborhood U_{i} : write it as $f(x) d x^{1} \wedge \ldots \wedge d x^{n}$ where x^{1}, \ldots, x^{n} are (oriented) coordinates and take the Riemann integral of f on \mathbb{R}^{n}. For an arbitrary compactly supported form α : choose a partition of unity $\rho_{i}: M \rightarrow \mathbb{R}, \sum \rho_{i}=1$, $\operatorname{supp} \rho_{i} \subset U_{i}$, and define

$$
\int_{M} \alpha=\sum_{i} \int\left(\rho_{i} \alpha\right) .
$$

Pullback: $f: M \rightarrow N$ induces $f^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)$. This enables us to integrate a k-form over an oriented k-submanifold.

A manifold with boundary is defined like a manifold except that the Ω 's are open subsets of the upper half space. Its boundary ∂M is well defined and is a manifold of one dimension less.

Stokes's theorem: $\int_{M} d \alpha=\int_{\partial M} \alpha$.
$\alpha \in \Omega^{k}(M)$ is closed iff $\int_{N} \alpha=0$ whenever N is the boundary of a compact oriented submanifold-with-boundary of M. If α is exact, $\int_{N} \alpha=0$ for every compact oriented submanifold $N \subset M .(\alpha$ is exact iff $\int_{N} \alpha=0$ for every smooth cycle $N \subset M$.) If the integral of a closed form on N is nonzero, we can think that N "wraps around a hole in M".

Theorem: if M is oriented and compact n-manifold then $\alpha \mapsto \int_{M} \alpha$ induces an isomorphism $H_{\mathrm{dR}}^{n}(M) \rightarrow \mathbb{R}$.
Multiplicative structure: $[\alpha] \cdot[\beta]=[\alpha \wedge \beta]$ is a well defined ring structure on $H_{d R}^{*}(M) . \quad f: M \rightarrow N$ induces a ring homomorphism $f^{*}: H_{d R}^{*}(N) \rightarrow H_{d R}^{*}(M)$.

