REVIEW OF HOMOLOGY

Homology.

Singular homology:

$$
H_{k}(M, \mathbb{Z})=\{k \text {-cycles }\} /\{k \text {-boundaries }\} .
$$

A k-chain is a formal integer combination

$$
\sum m_{\sigma}\left[\sigma: \Delta^{k} \rightarrow M\right]
$$

where Δ^{k} is the standard k-simplex. The boundary map takes k-chains to $(k-1)$-chains for each k. Cycles are chains with zero boundary.

Example: a finite triangulation of a closed oriented embedded k-submanifold of M gives a k-cycle; its homology class is independent of the triangulation. Similarly, a continuous map from a closed oriented manifold to M represents a homology class.

Functoriality: $f: M \rightarrow M^{\prime}$ gives $f_{*}: H_{k}(M) \rightarrow H_{k}\left(M^{\prime}\right)$.
$-(g \circ f)_{*}=g_{*} \circ f_{*} ;$

- if $f=$ identity $_{M}$ then $f_{*}=$ identity $_{H_{k}(M)}$;
- if f is a diffeomorphism then f_{*} is an isomorphism.

If M is a closed, oriented, n-dimensional manifold then $H_{n}(M) \cong \mathbb{Z}$, generated by the fundamental class $[M]$.

Integration. $\alpha \in H_{\mathrm{dR}}^{k}$ and $A \in H_{k}(M)$ give

$$
\int_{A} \alpha \in \mathbb{R}
$$

(Represent A by a smooth cycle.)
If M, M^{\prime} are closed oriented manifolds of the same dimension and $\Psi: M \rightarrow M^{\prime}$, we have $\Psi_{*}[M]=d\left[M^{\prime}\right]$ for $d \in \mathbb{Z}$, the degree of Ψ. If Ψ is an orientation preserving diffeomorphism then $d=1$; if Ψ is an orientation reversing diffeomorphism then $d=-1$.

For $f: M \rightarrow M^{\prime}$ we have $\int_{f_{*} A} \alpha=\int_{A} f^{*} \alpha$. If f is a diffeomorphism then $\int_{M} f^{*} \alpha= \pm \int_{M} \alpha$. Functoriality: $(f \circ g)^{*}=g^{*} \circ f^{*}$. Also, $f^{*}(\alpha \wedge \beta)=$ $f^{*} \alpha \wedge f^{*} \beta$.

Example.

$$
\begin{aligned}
& H_{2}\left(S^{2} \times S^{2}\right)=\mathbb{Z}\left[S^{2} \times \text { point }\right]+\mathbb{Z}\left[\text { point } \times S^{2}\right] \\
& H_{4}\left(S^{2} \times S^{2}\right)=\mathbb{Z}\left[S^{2} \times S^{2}\right] . \\
& \operatorname{dim} H^{k}\left(S^{2} \times S^{2}\right)= \begin{cases}1 & k=0 \\
2 & k=2 \\
1 & k=4 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Denote $\omega_{a, b}=a \omega_{S^{2}} \oplus b \omega_{S^{2}}$.

$$
H^{2}\left(S^{2} \times S^{2}\right)=\left\{\left[\omega_{a, b}\right] \mid a, b \in \mathbb{R}\right\} \stackrel{(}{\rightrightarrows} \mathbb{R}^{2}
$$

via $\left[\omega_{a, b}\right] \mapsto(a, b)$.

$$
a=\frac{1}{4 \pi} \int_{S^{2} \times \text { point }}\left[\omega_{a, b}\right] \quad ; \quad b=\frac{1}{4 \pi} \int_{\text {point } \times S^{2}}\left[\omega_{a, b}\right] .
$$

A diffeomorphism of $S^{2} \times S^{2}$ induces a linear isomorphism of $H^{2}\left(S^{2} \times\right.$ $\left.S^{2}\right) \cong \mathbb{R}^{2}$ that is represented by $\binom{\alpha}{\gamma} \in \mathbb{G} L(2, \mathbb{Z})$, i.e., $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$, and $\alpha \delta-\beta \gamma= \pm 1$.

Example.

$\mathbb{C}^{2} \hookrightarrow \mathbb{C}^{n+1}$ gives $\mathbb{C P}^{1} \hookrightarrow \mathbb{C P}^{n}$. For $\omega=$ Fubini Study, $\int_{\mathbb{C P}^{1}} \omega=\pi$.

$$
\begin{aligned}
& H_{2}\left(\mathbb{C P}^{n}\right)=\mathbb{Z}\left[\mathbb{C P}^{1}\right] \quad, \quad H_{2 n}\left(\mathbb{C P}^{n}\right)=\mathbb{Z}\left[\mathbb{C P}^{n}\right] . \\
& \quad \operatorname{dim} H^{k}\left(\mathbb{C P}^{n}\right)= \begin{cases}1 & k=0,2,4, \ldots, 2 n \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Thus, $\quad 1,[\omega],\left[\omega^{2}\right], \ldots,\left[\omega^{n}\right]$ are a basis for $H^{*}\left(\mathbb{C P}^{n}\right)$.

