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Given a Hamiltonian G-space (M,w, A, i), let us consider the topological subspace p~1(0) of M.
Since 0 € g* is a fixed point of the coadjoint representation, and since p is G-equivariant, it follows
that A restricts to a G-action on u~*(0). Accordingly, we may consider the quotient topological space
My = p~1(0)/G, called the reduced space of (M,w, A, ).

In the presence of certain additional hypotheses, My is naturally a symplectic manifold'. However,
this will not hold for the general Hamiltonian G-space. Nevertheless, if one requires G to be compact,
then M, will have intriguing topological properties. In particular, there is a partition of M, into
symplectic manifolds fitting together in some desirable ways. This partition realizes My as a so-called
symplectic stratified space. We will develop the notions necessary to formulate a precise definition of
this object, and we will subsequently exhibit M, as a symplectic stratified space.

Definition 0.1. Let X be a paracompact Hausdorff topological space, and I a partially ordered set.
An I-decomposition of X is a disjoint locally finite cover, {S;}icr, of X by locally closed subsets?,
satisfying the below two properties.

(i) For eachi € I, the subspace S; is a topological manifold.

(ii) If (i,j) € I x I, then ;N S; #0 < S; CS; < i<j?
A decomposed space is a paracompact Hausdorff topological space X, together with a distinguished I-
decomposition {S;}ier of X for some partially ordered set I. We shall call the partially ordered set I
the index set of the decomposed space, and the subspaces S; the pieces of the space.

Example 0.1. Let X be a topological space. Recall that the cone over X, CX, is defined to be the
quotient of X x [0,00) obtained by identifying the points in X x {0}. If (X,{S:}icr) is a decomposed
space, then there is a canonical realization of CX as a decomposed space. Precisely, one defines the
set J =IU{0}, and augments it with the partial order coinciding with that on I C J, such that 0 <1
for all i € I. Now, for each i € I, define S; to be the image of S; X (0,00) under the quotient map
X x[0,00) — CX. Also, let Sy be the image of X x {0} under the quotient map. We note that {S;};cs
1s a J-decomposition of CX, as desired.

Definition 0.2. Let X be a decomposed space, and S C X a piece. We define an S-chain in X of length
n >0 to be a sequence, S = Ao, Ax,...,An, of n+1 pieces, with the property that if i, j € {0,...,n}
and j =i+ 1, then A; # A; and A; C A;. The depth of S, depthx(S), is defined to be

depthx (S) = sup{n > 0: 3 an S-chain of length n}.

1Indeed7 if G'is compact and acts freely on p~1(0), then p~1(0) is an embedded submanifold of M, there exists a
unique smooth manifold structure on Mg for which the quotient map « : u™ — Mp is a submersion, and there is
i h ifold My f hich th i w10 Moy i b i d th i
a unique symplectic form wp on the smooth manifo o for which 7*(wp) is the restriction of w to p~ . isis a
i lectic f th th ifold My fi hich #* is th tricti f w to p~1(0). This i

statement of the Marsden-Weinstein-Meyer Theorem.

2A subset of a topological space is called locally closed if it is open with respect to the subspace topology of its
closure.

30ne calls this the Frontier Condition.



Definition 0.3. Let X be a decomposed space with non-empty index set I and pieces {S;}icr. The
depth of X, depth(X), is defined by
depth(X) = sup depthx (S;).
icl
Remark 0.1. In the interest of our being able to define the depth of an arbitrary decomposed space,
we shall require that each of our decomposed spaces come equipped with a non-empty index set.

Definition 0.4. A 0-stratified space is a decomposed space X of depth 0. An n-stratified space, n > 1,
is a decomposed space (X,{S;}icr) of depth n, with the property that for each piece S of X and point
x € S, there exist an open neighbourhood U(z) of x in X, an open coordinate ball B(x) of x in S, an
m-stratified stratified space (L,{P;};cy) with m < n, and a homeomorphism ¢, : B(x) x CL — U(z),
such that for each piece of B(x) X CL, ¢, restricts to a homeomorphism of that piece with a piece of
U(xz)*. We shall refer to the pieces of a stratified space as strata.

Definition 0.5. A smooth stratified space consists of a stratified space X, together with the below data.

(i) a smooth manifold structure for each stratum of X
(ii) a distinguished subalgebra, C>=(X), of the R-algebra C°(X) of continuous maps X — R, with
the property that f|s € C*°(S) for all strata S of X and for all f € C*(X)

Definition 0.6. A symplectic stratified space consists of a smooth stratified space X, augmented with
the below additional data.

(i) a symplectic form, ws € Q2(S), for each stratum S of X
(ii) a Poisson algebraic structure®, {,} : O (X) x C®(X) — C*(X) on C=(X), for which the
restriction maps to strata, i : C>®(X) — C>(S), are Poisson algebra morphisms®

Let G be a group and M a set with a left G-action. We wish to associate a canonical partially
ordered set to this action. To this end, denote by G the collection of those subgroups of G' with the
property of being conjugate in G to the stabilizer subgroup of a point in M. More succinctly,

GS:={H <G:3pe M, ge G such that gHg~! = Stabg(p)}.

Identifying conjugate subgroups of G, we obtain an equivalence relation. Let I denote the resulting
quotient space. We define a partial order, <, on I by [H] < [K] if and only if K is contained in a
conjugate of H in G. Well-definedness follows from the observation that K is contained in a conjugate
of H if and only if for every conjugate H' of H and K’ of K, K’ is contained in a conjugate of H'.

For each « € I, consider the set M, := {p € M : [Staba(p)] = a}.

Let us specialize to the case in which G is a compact Lie group with Lie algebra g, and (M, w, A, 1)
is a Hamiltonian G-space. For future reference, we shall let Z := p~1(0), the zero-level set of the
moment map. Consider the quotient map m : Z — My, and for each « € I, set (Mp), := (M, N Z).
We observe that if v, 8 € I and (My)q N (Mo)s # 0, then we may choose p € M,NZ and ¢ € MgN Z,
such that 7(p) = 7w(q). By the definition of our quotient space My, it follows that p and ¢ lie in the same
G-orbit, and hence Stabg(p) and Stabg(q) are conjugate in G. Therefore, [Stabg(p)] = [Stabe(q)] in
I. However, p € M, and ¢ € Mg, implying that a = [Stabe(p)] and 8 = [Stabe(q)]. It follows that
a = (3, and we conclude that the sets {(My); : ¢ € I} are disjoint. Furthermore, the sets M; cover M,
meaning that the sets M; N Z cover Z, and hence that the sets (Mp); cover My (as 7 is surjective).

In light of our determinations, it perhaps seems sensible to regard the (Mp),’s as candidates for
strata of the reduced space My. However, there is an example of a reduced space in which one of these

4The decomposed space structures of B(z) x CL and U(x) are canonically induced by those of CL and X, respectively.
Specifically, the pieces of B(z) x CL are {B(z) X ﬁj}jeJu{O}, while those of U(z) are {U(z) NS; }ier
5A Poisson algebra over a field K is an associative K-algebra A, together with a Lie bracket on A that is simultaneously
a derivation of A.
6We view C (S) as the Poisson algebra canonically induced by the symplectic form wg.
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candidate strata has connected components of different dimensions (meaning that this stratum is not
a topological manifold). Fortunately, some semblance of a resolution is obtained via partitioning the
candidate strata into connected components.

Theorem 0.1. The reduced space My is a disjoint union of the subspaces {(Mo)o : o € I}. This
decomposition has the below properties.
(i) If a € I, then each connected component of (My)a is a topological manifold.
(ii) If (o, B) € I X1, thena < < (Mo)aN(Mo)g # 0 < (Mo)a N (Mo)s # 0 and every connected
component of (My)a intersecting (My)s non-trivially belongs to (Mp)g.
(iii) There is a canonical realization of My as a symplectic stratified space with strata the connected
components of the (My)’s.”

Claim 0.1. Ifa € I and p € M, N Z, then there is an open subset U C (My)a containing [p], and a
realization of the subspace U as a symplectic manifold.

Given o € I and p € M, N Z, let O, denote the G-orbit of p in M. Since G is compact, O, is
an embedded submanifold of M. More intriguingly, perhaps, this embedding is isotropic (the proof of
which was given in the presentation).

Lemma 0.1. The embedding i : O, — M 1is isotropic.

Theorem 0.2. (Weinstein’s Equivariant Isotropic Embedding Theorem) Let K be a compact Lie group,
B a smooth K-manifold, and (E,w), (E',w") symplectic manifolds, each augmented with a K-action
by symplectic automorphisms. Suppose that i : B — E and i : B — E' are K -equivariant isotropic
embeddings with isomorphic symplectic normal bundles®. Then, there exist K -invariant open neighbour-
hoods, U and U’', of i(B) in E and i'(B) in E’, respectively, and a K -equivariant symplectomorphism,
p:U — U, such that
poi=71
as maps B — E’

With the Equivariant Isotropic Embedding Theorem in mind, we observe that the inclusion O, — M
is a G-equivariant isotropic embedding of O, into a symplectic manifold. Seeking to apply our theorem,
we will G-equivariantly and isotropically embed O, into another symplectic G-manifold, such that the
associated symplectic normal bundle is isomorphic to that of the embedding O, — M.

To this end, consider the fibre V := (N¥O,), of the symplectic normal bundle of O, — M. It is
easily verified that w(p) descends to a symplectic form on V. Setting H := Stabs(p), we note that H
acts on V' by symplectic vector space automorphisms. Now, let h = Lie(H) C g, noting that H is a
closed subgroup (hence an embedded submanifold) of G. Note that b is an invariant subspace of the
restricted adjoint representation H — Aut(g), allowing for us to induce an H-representation on g/b.
Of course, one then has the canonical dual representation on (g/h)*. Furthermore, we may consider
the direct sum (g/h)* @ V of linear H-representations.

Now, consider the principal H-bundle G — O,, g — g - p, and form the so-called associated bundle
Y := G xg ((g/b)* @ V). Recall that Y is the product manifold G x ((g/h)* & V), modulo the free
left H-action h - (g,v) = (gh™', h-v). It is natural, then, to consider the map 7 : ¥ — O, given by
[(g,v)] — g - p. This constitutes a vector bundle with total space ¥ and base space O,. Accordingly,

"Since we do not claim to have exhibited My as a decomposed space in the sense of Definition 1.2, we must specify
precisely what is meant by item (iii). To this end, we mean that each of our advertised strata has a canonical symplectic
manifold structure, and that Moy has a canonical C°(Mp)-subalgebra, C>°(Mp), with a Poisson bracket for which the
restriction maps to strata S define Poisson algebra morphisms C*°(Mg) — C°(S).

8Recall that the symplectic perpendicular of the embedding i : B — E, T%B, is the subbundle of the restricted
tangent bundle TE|g with fibres (T“B), = {v € Tp,FE : w(p)(v,w) = 0 Vw € Tp,B}, p € B. The symplectic normal
bundle of the isotropic embedding, N“(B), is then defined to be the quotient bundle N“(B) := T* B/T B, noting that
our embedding induces an inclusion TB C T*(B) C TE|p.
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we consider the zero-section embedding s : O, — Y, g-p +— [(g,0)]. If one endows Y with the left
G-action g - [(¢',v)] = [(gg’,v)], then s becomes a G-equivariant embedding. It therefore remains to
exhibit Y as a symplectic manifold, such that G acts on Y by symplectic automorphisms, and such
that s is an isotropic embedding whose symplectic normal bundle is isomorphic to that of O, — M.

Consider the trivialization ¥ : G x g* — T*G of the cotangent bundle of G defined by ¥(g,0) =
(9,0 0dLy-1(g)). One then considers the G-action on G x g* given by g- (¢,0) = (¢'g*, Ad*(g9)(9)),
where Ad* : G — Aut(g*) is the coadjoint representation of G. Deploying our trivialization, we
obtain a Hamiltonian G-action on T*G (where we are regarding 7*G as augmented with its canonical
symplectic form). This restricts to a Hamiltonian H-action, as an associated moment map is obtained
by composing the previous moment map with the projection g* — h*.

Now, recall that H acts on V by symplectic vector space automorphisms. Indeed, this action
is actually Hamiltonian. Accordingly, it will be advantageous to consider the Hamiltonian H-space
T*G x V. To see that this H-action is free, suppose h € H fixes ((g,0),v) € (Gx g*) xV =2T*Gx V.
By definition, ((gh=1, Ad*(h)(6)),h -v) = ((g,0),v). In particular, g = gh™!, meaning that h = e.
Note also that H is a compact Lie group by virtue of being a closed subspace of the compact Lie group
G. The Marsden-Weinstein-Meyer Theorem therefore gives a canonical symplectic manifold structure
on the reduced space ®~1(0)/H, where ® : T*G x V — b* is the moment map.

Next, one constructs an H-equivariant diffeomorphism, G x ((g/h)* & V) — ®71(0), and obtains
an induced diffeomorphism Y = G x ((g/h)* ® V)/H — ®71(0)/H. Hence, we endow Y with the
symplectic manifold structure for which this diffeomorphism is a symplectomorphism. We leave it to
the interested reader to verify that G' acts on Y by symplectomorphisms, and that s : O, — Y is an
isotropic embedding with symplectic normal bundle isomorphic to that of O, — M.

By Theorem 1.1, we may choose G-invariant open submanifolds U and U’ of O, in M and of the
zero-section in Y, respectively, and a G-equivariant symplectomorphism ¢ : U — U’ respecting the
embeddings O, — M and O, — Y. The G-action on Y is incidentally Hamiltonian, with a moment
map J : Y — g* explicitly constructed in [3]. Hence, J|y o ¢ : U — g* is a moment map of the
Hamiltonian G-action on U, meaning that p|y = J|ys 0@+ f for some constant map f : U — g*. Since
p(p) =0, it follows that f = —J(¢(p)). Because ¢ respects the embeddings O, — M and O, — Y,
©(p) belongs to the zero-section of the vector bundle Y — O,. However, the moment map J vanishes
on the zero-section, meaning that f = —J(¢(p)) = 0. It follows that J|y o = p|y. Therefore, ¢ is an
isomorphism of the Hamiltonian G-spaces (U, p|y) and (U’, J|y/). In particular, for a given a € I, ¢
must therefore induce an identification of the quotients (U, N u=1(0))/G = (M, NU Np=1(0))/G and
(U,NJ~10))/G = (YoNU'NJ~1(0))/G. We will realize (Y,NU'NJ~1(0))/G as a symplectic manifold
and our identification will then induce a symplectic manifold structure on (M, NUNp=1(0))/G. Since
the quotient projection M,Nu=(0) — (MaNu=1(0))/G = (Mp), is an open map, (M, )NUNu~1(0))/G
is an open subset of (M), and we will therefore have realized an open neighbourhood of an arbitrary
point of (Mp), as a symplectic manifold.

Since the quotient projection Y, N J~1(0) — (Y, N J~1(0))/G is also an open map, it follows that
(Yo NU' N J710))/G is an open subset of (Y, N J~1(0))/G. Accordingly, it will suffice to exhibit
(YoNJ~1(0))/G as a symplectic manifold, as one will then obtain an induced symplectic structure on
the open submanifold (Y, N U’ N J~1(0))/G.

Now, consider the linear subspace Vi :={v € V: h-v=vVh € H} of V. It is easily established
that the restriction of the symplectic form on V' to Vi yields a symplectic form on Vg. This realizes
Vi as a symplectic manifold. Furthermore, the authors in [3] use properties of the moment map J to
identify the quotient (Y, N J~1(0))/G with Vg, and in so doing, they endow this quotient with the
structure of a symplectic manifold (as desired). We have thus outlined the proof of our claim.

Let us briefly address the symplectic structure on My. To this end, let 7 : Z — M be the quotient
map, and define f € C°(My) to be an element of C> (M) if for = F|z for some F € C*(M)%. The
Poisson bracket, {f, g}n,, of f,g € C°(My) is given by {f, g}rm, (p) = {fls,9ls}s(p), where p € My,
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S is the stratum of M containing p, and {, }s : C*°(S) x C*(S) — C>(S) is the Poisson bracket on
C=(9).
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