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Given a Hamiltonian G-space (M,ω,A, µ), let us consider the topological subspace µ−1(0) of M .
Since 0 ∈ g∗ is a fixed point of the coadjoint representation, and since µ is G-equivariant, it follows
that A restricts to a G-action on µ−1(0). Accordingly, we may consider the quotient topological space
M0 := µ−1(0)/G, called the reduced space of (M,ω,A, µ).

In the presence of certain additional hypotheses, M0 is naturally a symplectic manifold1. However,
this will not hold for the general Hamiltonian G-space. Nevertheless, if one requires G to be compact,
then M0 will have intriguing topological properties. In particular, there is a partition of M0 into
symplectic manifolds fitting together in some desirable ways. This partition realizes M0 as a so-called
symplectic stratified space. We will develop the notions necessary to formulate a precise definition of
this object, and we will subsequently exhibit M0 as a symplectic stratified space.

Definition 0.1. Let X be a paracompact Hausdorff topological space, and I a partially ordered set.
An I-decomposition of X is a disjoint locally finite cover, {Si}i∈I , of X by locally closed subsets2,
satisfying the below two properties.

(i) For each i ∈ I, the subspace Si is a topological manifold.
(ii) If (i, j) ∈ I × I, then Si ∩ Sj 6= ∅ ⇐⇒ Si ⊆ Sj ⇐⇒ i ≤ j.3

A decomposed space is a paracompact Hausdorff topological space X, together with a distinguished I-
decomposition {Si}i∈I of X for some partially ordered set I. We shall call the partially ordered set I
the index set of the decomposed space, and the subspaces Si the pieces of the space.

Example 0.1. Let X be a topological space. Recall that the cone over X, CX, is defined to be the
quotient of X × [0,∞) obtained by identifying the points in X × {0}. If (X, {Si}i∈I) is a decomposed
space, then there is a canonical realization of CX as a decomposed space. Precisely, one defines the
set J = I t {0}, and augments it with the partial order coinciding with that on I ⊆ J , such that 0 ≤ i
for all i ∈ I. Now, for each i ∈ I, define S̃i to be the image of Si × (0,∞) under the quotient map
X× [0,∞)→ CX. Also, let S̃0 be the image of X×{0} under the quotient map. We note that {S̃j}j∈J
is a J-decomposition of CX, as desired.

Definition 0.2. Let X be a decomposed space, and S ⊆ X a piece. We define an S-chain in X of length
n ≥ 0 to be a sequence, S = A0, A1, . . . , An, of n+ 1 pieces, with the property that if i, j ∈ {0, . . . , n}
and j = i+ 1, then Ai 6= Aj and Ai ⊆ Aj. The depth of S, depthX(S), is defined to be

depthX(S) = sup{n ≥ 0 : ∃ an S-chain of length n}.

1Indeed, if G is compact and acts freely on µ−1(0), then µ−1(0) is an embedded submanifold of M , there exists a
unique smooth manifold structure on M0 for which the quotient map π : µ−1(0) → M0 is a submersion, and there is
a unique symplectic form ω0 on the smooth manifold M0 for which π∗(ω0) is the restriction of ω to µ−1(0). This is a

statement of the Marsden-Weinstein-Meyer Theorem.
2A subset of a topological space is called locally closed if it is open with respect to the subspace topology of its

closure.
3One calls this the Frontier Condition.
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Definition 0.3. Let X be a decomposed space with non-empty index set I and pieces {Si}i∈I . The
depth of X, depth(X), is defined by

depth(X) = sup
i∈I

depthX(Si).

Remark 0.1. In the interest of our being able to define the depth of an arbitrary decomposed space,
we shall require that each of our decomposed spaces come equipped with a non-empty index set.

Definition 0.4. A 0-stratified space is a decomposed space X of depth 0. An n-stratified space, n ≥ 1,
is a decomposed space (X, {Si}i∈I) of depth n, with the property that for each piece S of X and point
x ∈ S, there exist an open neighbourhood U(x) of x in X, an open coordinate ball B(x) of x in S, an
m-stratified stratified space (L, {Pj}j∈J) with m < n, and a homeomorphism ϕx : B(x)×CL→ U(x),
such that for each piece of B(x)× CL, ϕx restricts to a homeomorphism of that piece with a piece of
U(x)4. We shall refer to the pieces of a stratified space as strata.

Definition 0.5. A smooth stratified space consists of a stratified space X, together with the below data.
(i) a smooth manifold structure for each stratum of X

(ii) a distinguished subalgebra, C∞(X), of the R-algebra C0(X) of continuous maps X → R, with
the property that f |S ∈ C∞(S) for all strata S of X and for all f ∈ C∞(X)

Definition 0.6. A symplectic stratified space consists of a smooth stratified space X, augmented with
the below additional data.

(i) a symplectic form, ωS ∈ Ω2(S), for each stratum S of X
(ii) a Poisson algebraic structure5, {, } : C∞(X) × C∞(X) → C∞(X) on C∞(X), for which the

restriction maps to strata, i∗S : C∞(X)→ C∞(S), are Poisson algebra morphisms6

Let G be a group and M a set with a left G-action. We wish to associate a canonical partially
ordered set to this action. To this end, denote by GS the collection of those subgroups of G with the
property of being conjugate in G to the stabilizer subgroup of a point in M . More succinctly,

GS := {H ≤ G : ∃p ∈M, g ∈ G such that gHg−1 = StabG(p)}.
Identifying conjugate subgroups of GS , we obtain an equivalence relation. Let I denote the resulting
quotient space. We define a partial order, ≤, on I by [H] ≤ [K] if and only if K is contained in a
conjugate of H in G. Well-definedness follows from the observation that K is contained in a conjugate
of H if and only if for every conjugate H ′ of H and K ′ of K, K ′ is contained in a conjugate of H ′.

For each α ∈ I, consider the set Mα := {p ∈M : [StabG(p)] = α}.
Let us specialize to the case in which G is a compact Lie group with Lie algebra g, and (M,ω,A, µ)

is a Hamiltonian G-space. For future reference, we shall let Z := µ−1(0), the zero-level set of the
moment map. Consider the quotient map π : Z → M0, and for each α ∈ I, set (M0)α := π(Mα ∩ Z).
We observe that if α, β ∈ I and (M0)α ∩ (M0)β 6= ∅, then we may choose p ∈Mα ∩Z and q ∈Mβ ∩Z,
such that π(p) = π(q). By the definition of our quotient space M0, it follows that p and q lie in the same
G-orbit, and hence StabG(p) and StabG(q) are conjugate in G. Therefore, [StabG(p)] = [StabG(q)] in
I. However, p ∈ Mα and q ∈ Mβ , implying that α = [StabG(p)] and β = [StabG(q)]. It follows that
α = β, and we conclude that the sets {(M0)i : i ∈ I} are disjoint. Furthermore, the sets Mi cover M ,
meaning that the sets Mi ∩ Z cover Z, and hence that the sets (M0)i cover M0 (as π is surjective).

In light of our determinations, it perhaps seems sensible to regard the (M0)α’s as candidates for
strata of the reduced space M0. However, there is an example of a reduced space in which one of these

4The decomposed space structures of B(x)×CL and U(x) are canonically induced by those of CL and X, respectively.

Specifically, the pieces of B(x)× CL are {B(x)× P̃j}j∈Jt{0}, while those of U(x) are {U(x) ∩ Si}i∈I
5A Poisson algebra over a fieldK is an associativeK-algebra A, together with a Lie bracket on A that is simultaneously

a derivation of A.
6We view C∞(S) as the Poisson algebra canonically induced by the symplectic form ωS .
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candidate strata has connected components of different dimensions (meaning that this stratum is not
a topological manifold). Fortunately, some semblance of a resolution is obtained via partitioning the
candidate strata into connected components.

Theorem 0.1. The reduced space M0 is a disjoint union of the subspaces {(M0)α : α ∈ I}. This
decomposition has the below properties.

(i) If α ∈ I, then each connected component of (M0)α is a topological manifold.
(ii) If (α, β) ∈ I× I, then α ≤ β ⇔ (M0)α∩ (M0)β 6= ∅ ⇔ (M0)α∩ (M0)β 6= ∅ and every connected

component of (M0)α intersecting (M0)β non-trivially belongs to (M0)β.
(iii) There is a canonical realization of M0 as a symplectic stratified space with strata the connected

components of the (M0)α’s.7

Claim 0.1. If α ∈ I and p ∈ Mα ∩ Z, then there is an open subset U ⊆ (M0)α containing [p], and a
realization of the subspace U as a symplectic manifold.

Given α ∈ I and p ∈ Mα ∩ Z, let Op denote the G-orbit of p in M . Since G is compact, Op is
an embedded submanifold of M . More intriguingly, perhaps, this embedding is isotropic (the proof of
which was given in the presentation).

Lemma 0.1. The embedding i : Op ↪→M is isotropic.

Theorem 0.2. (Weinstein’s Equivariant Isotropic Embedding Theorem) Let K be a compact Lie group,
B a smooth K-manifold, and (E,ω), (E′, ω′) symplectic manifolds, each augmented with a K-action
by symplectic automorphisms. Suppose that i : B ↪→ E and i′ : B ↪→ E′ are K-equivariant isotropic
embeddings with isomorphic symplectic normal bundles8. Then, there exist K-invariant open neighbour-
hoods, U and U ′, of i(B) in E and i′(B) in E′, respectively, and a K-equivariant symplectomorphism,
ϕ : U → U ′, such that

ϕ ◦ i = i′

as maps B → E′

With the Equivariant Isotropic Embedding Theorem in mind, we observe that the inclusionOp ↪→M
is a G-equivariant isotropic embedding of Op into a symplectic manifold. Seeking to apply our theorem,
we will G-equivariantly and isotropically embed Op into another symplectic G-manifold, such that the
associated symplectic normal bundle is isomorphic to that of the embedding Op ↪→M .

To this end, consider the fibre V := (NωOp)p of the symplectic normal bundle of Op ↪→ M . It is
easily verified that ω(p) descends to a symplectic form on V . Setting H := StabG(p), we note that H
acts on V by symplectic vector space automorphisms. Now, let h = Lie(H) ⊆ g, noting that H is a
closed subgroup (hence an embedded submanifold) of G. Note that h is an invariant subspace of the
restricted adjoint representation H → Aut(g), allowing for us to induce an H-representation on g/h.
Of course, one then has the canonical dual representation on (g/h)∗. Furthermore, we may consider
the direct sum (g/h)∗ ⊕ V of linear H-representations.

Now, consider the principal H-bundle G→ Op, g 7→ g · p, and form the so-called associated bundle
Y := G ×H ((g/h)∗ ⊕ V ). Recall that Y is the product manifold G × ((g/h)∗ ⊕ V ), modulo the free
left H-action h · (g, v) = (gh−1, h · v). It is natural, then, to consider the map π : Y → Op given by
[(g, v)] 7→ g · p. This constitutes a vector bundle with total space Y and base space Op. Accordingly,

7Since we do not claim to have exhibited M0 as a decomposed space in the sense of Definition 1.2, we must specify

precisely what is meant by item (iii). To this end, we mean that each of our advertised strata has a canonical symplectic
manifold structure, and that M0 has a canonical C0(M0)-subalgebra, C∞(M0), with a Poisson bracket for which the

restriction maps to strata S define Poisson algebra morphisms C∞(M0)→ C∞(S).
8Recall that the symplectic perpendicular of the embedding i : B ↪→ E, TωB, is the subbundle of the restricted

tangent bundle TE|B with fibres (TωB)p = {v ∈ TpE : ω(p)(v, w) = 0 ∀w ∈ TpB}, p ∈ B. The symplectic normal

bundle of the isotropic embedding, Nω(B), is then defined to be the quotient bundle Nω(B) := TωB/TB, noting that
our embedding induces an inclusion TB ⊆ Tω(B) ⊆ TE|B .
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we consider the zero-section embedding s : Op ↪→ Y , g · p 7→ [(g, 0)]. If one endows Y with the left
G-action g · [(g′, v)] = [(gg′, v)], then s becomes a G-equivariant embedding. It therefore remains to
exhibit Y as a symplectic manifold, such that G acts on Y by symplectic automorphisms, and such
that s is an isotropic embedding whose symplectic normal bundle is isomorphic to that of Op ↪→M .

Consider the trivialization Ψ : G × g∗ → T ∗G of the cotangent bundle of G defined by Ψ(g, θ) =
(g, θ ◦ dLg−1(g)). One then considers the G-action on G× g∗ given by g · (g′, θ) = (g′g−1, Ad∗(g)(θ)),
where Ad∗ : G → Aut(g∗) is the coadjoint representation of G. Deploying our trivialization, we
obtain a Hamiltonian G-action on T ∗G (where we are regarding T ∗G as augmented with its canonical
symplectic form). This restricts to a Hamiltonian H-action, as an associated moment map is obtained
by composing the previous moment map with the projection g∗ → h∗.

Now, recall that H acts on V by symplectic vector space automorphisms. Indeed, this action
is actually Hamiltonian. Accordingly, it will be advantageous to consider the Hamiltonian H-space
T ∗G×V . To see that this H-action is free, suppose h ∈ H fixes ((g, θ), v) ∈ (G× g∗)×V ∼= T ∗G×V .
By definition, ((gh−1, Ad∗(h)(θ)), h · v) = ((g, θ), v). In particular, g = gh−1, meaning that h = e.
Note also that H is a compact Lie group by virtue of being a closed subspace of the compact Lie group
G. The Marsden-Weinstein-Meyer Theorem therefore gives a canonical symplectic manifold structure
on the reduced space Φ−1(0)/H, where Φ : T ∗G× V → h∗ is the moment map.

Next, one constructs an H-equivariant diffeomorphism, G × ((g/h)∗ ⊕ V ) → Φ−1(0), and obtains
an induced diffeomorphism Y = G × ((g/h)∗ ⊕ V )/H → Φ−1(0)/H. Hence, we endow Y with the
symplectic manifold structure for which this diffeomorphism is a symplectomorphism. We leave it to
the interested reader to verify that G acts on Y by symplectomorphisms, and that s : Op ↪→ Y is an
isotropic embedding with symplectic normal bundle isomorphic to that of Op ↪→M .

By Theorem 1.1, we may choose G-invariant open submanifolds U and U ′ of Op in M and of the
zero-section in Y , respectively, and a G-equivariant symplectomorphism ϕ : U → U ′ respecting the
embeddings Op ↪→ M and Op ↪→ Y . The G-action on Y is incidentally Hamiltonian, with a moment
map J : Y → g∗ explicitly constructed in [3]. Hence, J |U ′ ◦ ϕ : U → g∗ is a moment map of the
Hamiltonian G-action on U , meaning that µ|U = J |U ′ ◦ϕ+f for some constant map f : U → g∗. Since
µ(p) = 0, it follows that f = −J(ϕ(p)). Because ϕ respects the embeddings Op ↪→ M and Op ↪→ Y ,
ϕ(p) belongs to the zero-section of the vector bundle Y → Op. However, the moment map J vanishes
on the zero-section, meaning that f = −J(ϕ(p)) = 0. It follows that J |U ′ ◦ϕ = µ|U . Therefore, ϕ is an
isomorphism of the Hamiltonian G-spaces (U, µ|U ) and (U ′, J |U ′). In particular, for a given α ∈ I, ϕ
must therefore induce an identification of the quotients (Uα ∩ µ−1(0))/G = (Mα ∩U ∩ µ−1(0))/G and
(U ′α∩J−1(0))/G = (Yα∩U ′∩J−1(0))/G. We will realize (Yα∩U ′∩J−1(0))/G as a symplectic manifold
and our identification will then induce a symplectic manifold structure on (Mα∩U ∩µ−1(0))/G. Since
the quotient projectionMα∩µ−1(0)→ (Mα∩µ−1(0))/G = (M0)α is an open map, (Mα)∩U∩µ−1(0))/G
is an open subset of (M0)α, and we will therefore have realized an open neighbourhood of an arbitrary
point of (M0)α as a symplectic manifold.

Since the quotient projection Yα ∩ J−1(0)→ (Yα ∩ J−1(0))/G is also an open map, it follows that
(Yα ∩ U ′ ∩ J−1(0))/G is an open subset of (Yα ∩ J−1(0))/G. Accordingly, it will suffice to exhibit
(Yα ∩ J−1(0))/G as a symplectic manifold, as one will then obtain an induced symplectic structure on
the open submanifold (Yα ∩ U ′ ∩ J−1(0))/G.

Now, consider the linear subspace VH := {v ∈ V : h · v = v ∀h ∈ H} of V . It is easily established
that the restriction of the symplectic form on V to VH yields a symplectic form on VH . This realizes
VH as a symplectic manifold. Furthermore, the authors in [3] use properties of the moment map J to
identify the quotient (Yα ∩ J−1(0))/G with VH , and in so doing, they endow this quotient with the
structure of a symplectic manifold (as desired). We have thus outlined the proof of our claim.

Let us briefly address the symplectic structure on M0. To this end, let π : Z →M0 be the quotient
map, and define f ∈ C0(M0) to be an element of C∞(M0) if f ◦π = F |Z for some F ∈ C∞(M)G. The
Poisson bracket, {f, g}M0 , of f, g ∈ C∞(M0) is given by {f, g}M0(p) = {f |S , g|S}S(p), where p ∈ M0,
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S is the stratum of M0 containing p, and {, }S : C∞(S)×C∞(S)→ C∞(S) is the Poisson bracket on
C∞(S).
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