SYMPLECTIC LEFSCHETZ FIBRATIONS

ALEXANDER CAVIEDES CASTRO

1. Introduction

A Lefschetz pencil is a construction that comes from algebraic geometry, but it is closely related with symplectic geometry. Indeed, as shown by Gompf and Donaldson, a four dimensional manifold has the structure of a Lefschetz pencil if and only if it admits a symplectic form. In this short summary, I present a brief introduction to this theory and show some of the connections between the Letschetz fibrations theory and symplectic geometry. For simplicity, I will work the four dimensional case, but most of the statements can be generalized with suitable hypotheses.

2. Symplectic Lefschetz Fibrations

Definition 2.1. A Lefschetz fibration on a 4-manifold X is a map $\pi: X \rightarrow \Sigma$, where Σ is a closed 2-manifold, such that (i) The critical points of π are isolated, (ii) If $p \in X$ is a critical point of π then there are local coordiantes $\left(z_{1}, z_{2}\right)$ on X and z on Σ with $p=(0,0)$ and such that in these coordinates π is given by the complex map $z=\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}$.

Theorem 1 (Gompf [4]). Assume that a closed 4-manifold X admits a Lefschetz fibration $\pi: X \rightarrow \Sigma$, and let $[F]$ denote the homology class of the fiber. Then X admits a symplectic structure with symplectic fibers if $[F] \neq 0$ in $H_{2}(X ; \mathbb{R})$. If e_{1}, \cdots, e_{n} is a finite set of sections of the Lefschetz fibration, the symplectic form ω can be chosen in such a way that all these sections are symplectic.

Proof. (Sketch) If $[F] \neq 0$ then there is some $c \in H^{2}(X, \mathbb{R})$ with $\int_{F} c>0$. It is enough to build a closed form $\alpha \in \Omega^{2}(X)$, such that $[\alpha]=c$ and whose restriction to any fiber $\pi: X \rightarrow \Sigma$ is symplectic. Indeed, given such α, let $\omega=\alpha+K \pi^{*} \omega_{\Sigma}$ where $K \gg 0$ and ω_{Σ} is an area form for Σ. Then ω is closed, $\left.\omega\right|_{\text {fiber }}=\left.\alpha\right|_{\text {fiber }}$, and ω is symplectic for K large enough.

Let $\eta_{0} \in \Omega^{2}(X)$ be any closed 2-form which represents the class c, i.e., $\left[\eta_{0}\right]=c$. Near a smooth fiber $F_{p}=\pi^{-1}(p)$, trivialize a neighborhood so we have that $\pi^{-1}\left(U_{p}\right) \simeq F \times U_{p}$, where $U_{p} \subset \Sigma$ is a disc at p and consider an area form σ_{p} on F_{p} such that $\left[\sigma_{p}\right]=\iota_{p}^{*} c$, where $\iota_{p}: F_{p} \hookrightarrow X$ is the natural inclusion. Then $\alpha_{p}=p r_{1}^{*}\left(\sigma_{p}\right)$ is a 2-form on $\pi^{-1}\left(U_{p}\right)$. The form α_{p} is symplectic restricted on fibers and $\left[\alpha_{p}\right]=\left.c\right|_{\pi^{-1}\left(U_{p}\right)}$.

Near a singular fiber, let $U \subset X$ be a neighborhood near a critical point of π so that there are local coordinates in which $\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}$. We have the standard symplectic structure ω_{U} on U. The map π is holomorphic, so if $p \in \Sigma$ then $\pi^{-1}(p) \cap U$ is a holomorphic curve, so that it is ω_{U}-symplectic. For fixed p extend the symplectic structure on $\pi^{-1}(p) \cap U$ to a symplectic structure α_{p} to a neighborhood of the rest of the fiber $\pi^{-1}(p)$. We can rescale α_{p} to make $\int_{F} \alpha_{p}=\int_{F} c$ so that $\left[\alpha_{p}\right]=\left.c\right|_{\pi^{-1}\left(U_{p}\right)}$.

Let $\left\{U_{p}\right\}_{p}$ be an appropriate open covering of Σ, and let α_{p} be as constructed above. If the open sets U_{p} in the cover are chosen to be contractible then the forms $\alpha_{p}-\eta_{0} \in \Omega^{2}\left(\pi^{-1}\left(U_{p}\right)\right)$ are exact. Choose a collection of 1-forms $\lambda_{p} \in \Omega^{1}\left(\pi^{-1}\left(U_{p}\right)\right)$ such that

$$
\alpha_{p}-\eta_{0}=d \lambda_{p}
$$

Now choose a partition of unity $\rho_{p}: \Sigma \rightarrow[0,1]$ which is subordinate to the cover $\left\{U_{p}\right\}_{p}$ and define $\alpha \in \Omega^{2}(X)$ by

$$
\alpha=\eta_{0}+\sum d\left(\left(\rho_{p} \circ \pi\right) \lambda_{p}\right)
$$

The 1-form $d\left(\rho_{p} \circ \pi\right)$ vanishes on vectors tangent to the fibre and hence

$$
\iota_{b}^{*} \alpha=\iota_{b}^{*} \eta_{0}+\sum\left(\rho_{p} \circ \pi\right) \iota_{b}^{*} d \lambda_{p}=\sum\left(\rho_{p} \circ \pi\right) \iota_{b}^{*}\left(\eta_{0}+d \lambda_{p}\right)=\sum\left(\rho_{p} \circ \pi\right) \iota_{b}^{*} \alpha_{p}
$$

We have constructed a closed 2-form $\alpha \in \Omega^{2}(M)$, with $[\alpha]=c$, whose restriction to any fiber of $\pi: X \rightarrow \Sigma$ is symplectic, as we wanted.

Corollary 2.2 (Thurston). If $\Sigma_{g} \rightarrow X \rightarrow \Sigma_{h}$ is a surface bundle with fiber non-torsion in homology, then X is symplectic

3. Lefschetz pencils

3.1. Blow-up. Let $L=\left\{(I, p) \in \mathbb{C P}^{1} \times \mathbb{C}^{2}: p \in I\right\}$. The projection $p r_{1}: L \rightarrow \mathbb{C P}^{1}$ gives a complex line bundle structure to L. This fibration is called the tautological bundle over $\mathbb{C P}^{1}$. The projection $p r_{2}: L \rightarrow \mathbb{C}^{2}$ to the second factor has the following property that for a point $p \in \mathbb{C}^{2}$ the inverse image $p r_{2}^{-1}(p)$ is a single point if $p \neq 0$, and $p r_{2}^{-1}(0)=\mathbb{C P} \mathbb{P}^{1}$. Moreover the map $p r_{2}$ is a biholomorphism between $L-p r_{2}^{-1}(0)$ and $\mathbb{C}^{2}-\{0\}$. Thus we may think of L as obtained from \mathbb{C}^{2} by replacing the origin by the space of all lines through the origin. If S is a complex surface with $P \in S$ and a neighborhood $U \subset S$ of P which is biholomorphic to an open subset V of \mathbb{C}^{2} (with P mapped to $0 \in \mathbb{C}^{2}$), then by removing U and replacing it with $p r_{2}^{-1}(V) \subset L$, we get a new complex manifold S^{\prime} called the blow-up of S at P. Extending $p r_{2}$ to S^{\prime}, one obtains a map $p r: S^{\prime} \rightarrow S$ which is a biholomorphism between $S^{\prime}-p r^{-1}(P)$ and $S-\{P\}$, and $p r^{-1}(P)$ is biholomorphic to $\mathbb{C P}^{1}$. The subset $p r^{-1}(P)$ is called the exceptional sphere. As a smooth manifold, S^{\prime} is diffeomorphic to $S \sharp \overline{\mathbb{C P}^{2}}$. In general, for a smooth, oriented four manifold X, the connected sum $X^{\prime}=X \not \mathbb{\mathbb { C P } ^ { 2 }}$ is called the blow-up of X. The sphere $\overline{\mathbb{C P}^{1}}$ in the $\overline{\mathbb{C P}^{2}}$ is called an exceptional sphere. The blow-up operation can be performed symplectically for a symplectic manifold (X, ω) and if $\Sigma \simeq \mathbb{C P}^{1}$ is a symplectically embedded 2 -sphere with self intersection number -1 , we can symplectically blow-down the manifold along this sphere (see [5] for more details).

3.2. Symplectic Lefschetz pencils.

Definition 3.1. A Lefschetz pencil on a 4-manifold X is a finite base locus $B \subset X$ and a map π : $X-B \rightarrow \mathbb{C P}^{1}$ such that, (i) Each $b \in B$ has an orientation preserving local coordinate map to $\left(\mathbb{C}^{2}, 0\right)$ under which π corresponds to projectivization $\mathbb{C}^{2}-\{0\} \rightarrow \mathbb{C P}^{1}$, and (ii) Each critical point off has an orientation-preserving local coordinate chart in which $\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}$ for some holomorphic local chart in $\mathbb{C P}^{1}$.

By the definition of a Lefschetz pencil, if we blow up X at the base locus, we get a new four manifold $p r: X^{\prime} \rightarrow X$, and π extends over all of X^{\prime} and gives a Lefschetz fibration $\pi^{\prime}: X^{\prime} \rightarrow \mathbb{C P}^{1}$ with distinguished sections E_{1}, \cdots, E_{n} (the exceptional curves of the blow-ups). Conversely given a Lefschetz fibration with section of selfintersection -1, we can blow down and get a Lefschetz pencil.

Example 3.2 (Lefschetz Pencil of cubics). Let p_{0} and p_{1} be two cubics intersecting in nine points P_{1}, \cdots, P_{9}. For $Q \in \mathbb{C P}^{2}-\left\{P_{1}, \cdots, P_{9}\right\}$ take the unique cubic $p_{\left[t_{0}: t_{1}\right]}=t_{0} p_{0}+t_{1} p_{1}$ which passes through Q, and then define $\pi: \mathbb{C P}^{2}-\left\{P_{1}, \cdots, P_{9}\right\}$ by $\pi(Q)=\left[t_{0}: t_{1}\right] \in \mathbb{C P}^{1}$. By blowing up $\mathbb{C P}^{2}$ at P_{1}, \cdots, P_{9} we extend π to a Lefschetz fibration $\pi^{\prime}: \mathbb{C P}^{2} \sharp 9 \overline{\mathbb{C P}^{2}}$ whose fibers are cubic curves and the generic fiber is a elliptic curve, i.e., a torus. This is an Elliptic surface usually denoted as $E(1)$.

Example 3.3 (Fiber Sum of Lefschetz fibrations). Let $\pi_{1}: X_{1} \rightarrow \Sigma_{1}$ and $\pi_{2}: X_{2} \rightarrow \Sigma_{2}$ be two Lefschetz fibrations whose generic fibers have the same genus. One begins with neighborhoods ν_{i} of generic fibers F_{i} of π_{i}. These are diffeomorphic to $D^{2} \times \Sigma_{g}$ where Σ_{g} is the Riemann surface with the same genus as the F_{i}. One then picks an orientation-reversing diffeomorphism $\phi: S^{1} \times \Sigma_{g}$ of the boundaries of $X_{i}-\nu_{i}$ and identifies them via ϕ. We obtain a new Lefeschetz fibration $\pi: X_{1} H_{\phi} X_{2} \rightarrow$ $\Sigma_{1} \sharp \Sigma_{2}$. As one special case, we can form the elliptic surface $E(n)=E(n-1) \sharp_{\phi} E(1)$

Example 3.4 (Lefschetz Pencil of Complex projective surfaces). Let X be a complex submanifold of $\mathbb{C P}^{N}$. Let $A \subset \mathbb{C P}^{N}$ be a generic linear subspace of complex codimension 2 , so it is copy of $\mathbb{C P}^{N-2}$ cut out by two homogeneous linear equations $p_{0}(z)=p_{1}(z)=0$. The set of all hyperplanes through A is parametrized by $\mathbb{C P}^{1}$. They are given by the equations $y_{0} p_{0}(z)+y_{1} p_{1}(z)=0$, for $\left(y_{0}, y_{1}\right) \in \mathbb{C}^{2} \backslash\{0\}$ up to scale. These hyperplanes intersect X in a family of (possibly singular) complex curves $\left\{F_{y}: y \in\right.$ $\left.\mathbb{C P}^{1}\right\}$. Since the hyperplanes fill $\mathbb{C P}^{N}$, we have $\bigcup_{y \in \mathbb{C P}^{1}} F_{y}=X$. Let $B=X \cap A$. The canonical map $\mathbb{C P}^{N}-A \rightarrow \mathbb{C P}^{1}$ induced by the hyperplanes restricts to $X-B$ and gives to X the structure of a Lefschetz pencil (see [4] for further details).

Theorem 2 (Gompf). If a 4-manifold X admits a Lefschetz pencil, then it has a symplectic structure
Proof. (Sketch) By blowing up X in the n points of the base locus, we get a Lefschetz fibration $X^{\prime}=X \sharp n \overline{\mathbb{C P}^{2}} \rightarrow \mathbb{C P}^{1}$ whose fibers are non-trivial in homology. The blow-up manifold admits a symplectic structure for which the exceptional spheres (a finite set of sections) are symplectic. Now symplectically blowing down the exceptional spheres results in a symplectic structure on the manifold X.

Theorem 3 (Donaldson [3]). Any symplectic 4-manifold X admits a Lefschetz pencil.

4. Monodromy

Let $\pi: X \rightarrow \mathbb{C P}^{1}$ be a Lefschetz fibration with a symplectic form ω on the total space which restricts to a symplectic form on the fibres and with symplectic fiber (F, σ). We can define a symplectic orthogonal complement to $T_{x} \pi^{-1}(p)$ inside $T_{x} X$. This is a 2 -real dimensional subspace projecting isomorphically to $T_{p} \mathbb{C P}^{1}$ along $d \pi$ and we can use it as a connetion on the symplectic fibration X -$\pi^{-1}(\mathfrak{c r i t})$.

Proposition 4.1. Parallel transport along a path $\gamma:[0,1] \rightarrow \mathbb{C P}^{1}-\mathfrak{c r i t}$ by using this connection gives a symplectomorphism $P_{\gamma}: \pi^{-1}(\gamma(0)) \rightarrow \pi^{-1}(\gamma(1))$

Proof. Let v^{\prime} denote the horizontal lift of a vector field v from the base $\mathbb{C P}^{1}-\mathfrak{c r i t}$. Define $\alpha=\iota_{v^{\prime}} \omega$ and notice that by definition α vanishes on vertical vectors. The derivative of ω under parallel transport along v^{\prime} is

$$
\mathcal{L}_{v^{\prime}} \omega=d \iota_{v^{\prime}} \omega+\iota_{v^{\prime}} d \omega=d \alpha
$$

Now let's take a single point and pick coordinates x_{i} centred at that point such that $\partial_{1}, \partial_{2}$ are vertical and $\partial_{3}, \partial_{4}$ are horizontal at that point (can't do it in a neighborhood because connection could be curved). Since α vanishes on vertical vectors, $d \alpha\left(\partial_{1}^{\prime}, \partial_{2}^{\prime}\right)=\partial_{1}^{\prime} \alpha\left(\partial_{2}^{\prime}\right)-\partial_{2}^{\prime} \alpha\left(\partial_{1}^{\prime}\right)-\alpha\left(\left[\partial_{1}^{\prime}, \partial_{2}^{\prime}\right]\right)=0$, where $\partial_{1}, \partial_{2}$ are extended to vertical vector fields $\partial_{1}^{\prime}, \partial_{2}^{\prime}$ respectively. Then $d \alpha$ applied to two vertical vectors must clearly vanish. Since this is measuring the derivative along v^{\prime} of ω restricted to a fibre, we see that parallel transport preserves the symplectic form on fibres.

Lemma 4.2. If ψ_{t} is a path of symplectomorphisms with $\psi_{0}=i d$ then the flux is the cohomology class

$$
\mathfrak{f l u x}\left(\psi_{t}\right)_{0}^{T}=\left[\int_{0}^{T} \iota_{X_{t}} \omega d t\right] \in H^{1}(X ; \mathbb{R}) \quad \text { where } \dot{\psi}_{t}=X_{t} \circ \psi_{t}
$$

If $\mathfrak{f l h x}\left(\psi_{t}\right)_{0}^{1}=0$, then ψ_{t} is a isotopic with fixed endpoints to a Hamiltonian isotopy.
Proposition 4.3. With the same assumptions that were made in the previous Proposition, if γ is a nullhomotopic loop then P_{γ} is a Hamiltonian symplectomorphism of $\pi^{-1}(\gamma(0))$
Proof. Let $\gamma: S^{1} \rightarrow \mathbb{C P}^{1}-\mathfrak{c r i t}$ and $h: D^{2} \rightarrow \mathbb{C P}^{1}-\mathfrak{c r i t}$ be a nullhomotopy. Let $z=x+i y$ denote the coordinate on the unit disc D^{2}. Pullback the fibration along h, since a bundle over the disc is trivialisable we may pick a trivialization $\tau: D^{2} \times F \rightarrow h^{*} X$ which is symplectic in the sense that $\tau:(\{p\} \times F, \sigma) \rightarrow\left(F_{p},\left.\omega\right|_{F_{p}}\right)$ is a symplectomorphism for all $p \in D^{2}$. The pull-back of the form ω is given by

$$
\tau^{*} \omega=\sigma+\alpha \wedge d x+\beta \wedge d y+f d x \wedge d y
$$

where $\alpha(z), \beta(z) \in \Omega^{1}(F)$ and $f(z) \in \Omega^{0}(F)$ for $z \in D$. Since ω is closed and $\sigma(z)=\sigma$ for all $z \in D$, we have

$$
d \alpha=d \beta=0, \quad d f=\partial_{x} \beta-\partial_{y} \alpha
$$

Now the holonomy of the connection form $\tau^{*} \omega$ around the loop $z(t)=e^{2 \pi i t}=x(t)+i y(t)$ is the path of symplectomorphisms $\Psi_{t}: F \rightarrow F$ given by $\dot{\Psi}_{t}=X_{t} \circ \Psi_{t}$, and $\iota_{X_{t}} \sigma:=\alpha_{t}=\alpha(z) \dot{x}+\beta(z) \dot{y}$

The formula $d f=\partial_{x} \beta-\partial_{y} \alpha$ shows that the differential of the 1 -form $\alpha d x+\beta d y \in \Omega^{1}\left(D, \Omega^{1}(F)\right)$ is given by $d f d x \wedge d y \in \Omega^{2}\left(D, \Omega^{1}(F)\right)$. Hence the 1 -form

$$
\int_{0}^{1} \alpha_{t} d t=d \int_{D} f(x, y) d x d y
$$

is exact, and this implies that the flux $\mathfrak{f l u x}\left(\Psi_{t}\right)_{0}^{1}=\int_{0}^{1}\left[\alpha_{t}\right] d t$ is zero and $\Psi_{1}: F \rightarrow F$ is a Hamiltonian symplectomorphism.
4.1. Vanishing cycles. Let's consider a path $\gamma:[0,1] \rightarrow \mathbb{C P}^{1}$ with $\gamma(t) \in \mathbb{C P}^{1}-\mathfrak{c r i t}$ for $t<1$ and $\gamma(1)=y \in$ crit. We'll write $\gamma(0)=x$ and \star for the critical point in $\pi^{-1}(y)$. The vanishing thimble D_{γ} associated with the path γ is the set of points $v \in \pi^{-1} \gamma$ such that $P_{\gamma}(t)(v) \rightarrow \star$ as $t \rightarrow 1$. A vanishing cycle is the intersection of the vanishing thimble with a fibre. The thimble D_{γ} is an embedded Lagrangian disc whose boundary S_{γ} (a vanishing cycle) is an embedded Lagrangian "sphere" S_{γ} in the fiber $\pi^{-1}(x)$. If we now consider an arc γ joining two critical values y_{1}, y_{2} of π passing through y with corresponding Lagrangian thimbles D_{1} and D_{2} such that the boundary of the discs D_{1} and D_{2} coincide,
i.e, the same cycle degenerates at each of the paths, then $D_{1} \cup D_{2}$ is a Lagrangian sphere embedded in X. The arc γ is called a matching path in the Lefschetz fibration π. Matching paths are an important source of Lagrangian spheres and more generally of embedded Lagrangian submanifolds.

Theorem 4. If $p \in \mathfrak{c r i t}, \gamma \subset \mathbb{C} \mathbb{P}^{1}-\mathfrak{c r i t}$ is a small loop encircling p and no other critical point and δ is a path from p to $\gamma(0)$, then the symplectomorphism $P_{\gamma}: \pi^{-1}(\gamma(0)) \rightarrow \pi^{-1}(\gamma(0))$ is a Dehn twist in the vanishing circle associated to δ
Proof. Let's work in the local model and consider the singular symplectic fibration $\pi: \mathbb{C}^{2} \rightarrow \mathbb{C}$: $\left(z_{1}, z_{2}\right) \rightarrow z_{1}^{2}+z_{2}^{2}$ equipped with the standard symplectic form ω on \mathbb{C}^{2}. We will compute the holonomy around the loop $t \rightarrow e^{2 \pi i t}$ in the base. Let $F=\pi^{-1}(1)=\left\{x+i y \in \mathbb{C}^{2}:\|x\|^{2}-\|y\|^{2}=1,\langle x, y\rangle=0\right\}$.

The horizontal subspace at $z \in \mathbb{C}^{2}$ is given by $\operatorname{Hor}_{z}=\mathbb{C} \cdot \bar{z}$. It is not difficult to see that the horizontal lifts of $t \rightarrow e^{2 \pi i t}$ satisfy the differential equation

$$
\dot{z}=\frac{\pi i e^{2 \pi i t}}{\|z\|^{2}} \bar{z}
$$

After solving this differential equation, the holonomy of the fibration $\mathbb{C}^{2} \rightarrow \mathbb{C}$ around the loop $[0,1] \rightarrow$ $\mathbb{C}: t \rightarrow e^{2 \pi i t}$ is the symplectomorphim $\psi: F \rightarrow F$ given by $\psi\left(x_{0}, y_{0}\right)=\left(x_{1}, y_{1}\right)$ where

$$
\frac{x_{1}}{\left\|x_{1}\right\|}+i \frac{y_{1}}{\left\|y_{1}\right\|}=-\exp \left(\frac{2 \pi i\left\|x_{0}\right\|\left\|y_{0}\right\|}{\sqrt{1+4\left\|x_{0}\right\|^{2}\left\|y_{0}\right\|^{2}}}\right)\left(\frac{x_{0}}{\left\|x_{0}\right\|}+i \frac{y_{0}}{\left\|y_{0}\right\|}\right)
$$

Note that ψ is close to the identity when $\left\|y_{0}\right\|$ is very large and is equal to the antipodal map for $y_{0}=0$, i.e., $\psi\left(x_{0}, 0\right)=\left(-x_{0}, 0\right)$.

Bibliography

[1] Denis Auroux, Fabrizio Catanese, Marco Manetti, Paul Seidel, Bern Siebert, Ivan Smith, and Gang Tian. Symplectic 4-manifolds and Algebraic surfaces. Number 1938 in Lectures Notes in Mathematics. Springer, 2003.
[2] Ana Cannas da Silva. Lectures on Symplectic Geometry, volume 1764 of Lecture Notes in Mathematics. Springer, 2001.
[3] S. Donaldson. Lefchetz pencils on symplectic manifolds. J. Differential Geom., 53:205-236, 1999.
[4] Robert E. Gompf and Andrs I. Stipsicz. 4-Manifolds and Kirby Calculus. American Mathematical Society, 1999.
[5] Dusa McDuff and Dietmar Salamon. Introduction to Symplectic Topology. Clarendon Press, second edition, 1998.

