SYMPLECTIC LEFSCHETZ FIBRATIONS

ALEXANDER CAVIEDES CASTRO

1. Introduction

A Lefschetz pencil is a construction that comes from algebraic geometry, but it is closely related with symplectic geometry. Indeed, as shown by Gompf and Donaldson, a four dimensional manifold has the structure of a Lefschetz pencil if and only if it admits a symplectic form. In this short summary, I present a brief introduction to this theory and show some of the connections between the Letschetz fibrations theory and symplectic geometry. For simplicity, I will work the four dimensional case, but most of the statements can be generalized with suitable hypotheses.

2 Symplectic Lefschetz Fibrations

Definition 2.1. A Lefschetz fibration on a 4-manifold X is a map $\pi : X \to \Sigma$, where Σ is a closed 2-manifold, such that (i) The critical points of π are isolated, (ii) If $p \in X$ is a critical point of π then there are local coordiantes (z_1, z_2) on X and z on Σ with p = (0, 0) and such that in these coordinates π is given by the complex map $z = \pi(z_1, z_2) = z_1^2 + z_2^2$.

Theorem 1 (**Gompf** [4]). Assume that a closed 4-manifold X admits a Lefschetz fibration $\pi : X \to \Sigma$, and let [F] denote the homology class of the fiber. Then X admits a symplectic structure with symplectic fibers if $[F] \neq 0$ in $H_2(X; \mathbb{R})$. If e_1, \dots, e_n is a finite set of sections of the Lefschetz fibration, the symplectic form ω can be chosen in such a way that all these sections are symplectic.

Proof. (Sketch) If $[F] \neq 0$ then there is some $c \in H^2(X, \mathbb{R})$ with $\int_F c > 0$. It is enough to build a closed form $\alpha \in \Omega^2(X)$, such that $[\alpha] = c$ and whose restriction to any fiber $\pi : X \to \Sigma$ is symplectic. Indeed, given such α , let $\omega = \alpha + K\pi^*\omega_{\Sigma}$ where K >> 0 and ω_{Σ} is an area form for Σ . Then ω is closed, $\omega|_{\text{fiber}} = \alpha|_{\text{fiber}}$, and ω is symplectic for K large enough.

Let $\eta_0 \in \Omega^2(X)$ be any closed 2-form which represents the class c, i.e., $[\eta_0] = c$. Near a smooth fiber $F_p = \pi^{-1}(p)$, trivialize a neighborhood so we have that $\pi^{-1}(U_p) \simeq F \times U_p$, where $U_p \subset \Sigma$ is a disc at p and consider an area form σ_p on F_p such that $[\sigma_p] = \iota_p^* c$, where $\iota_p : F_p \hookrightarrow X$ is the natural inclusion. Then $\alpha_p = pr_1^*(\sigma_p)$ is a 2-form on $\pi^{-1}(U_p)$. The form α_p is symplectic restricted on fibers and $[\alpha_p] = c|_{\pi^{-1}(U_p)}$.

Near a singular fiber, let $U \subset X$ be a neighborhood near a critical point of π so that there are local coordinates in which $\pi(z_1, z_2) = z_1^2 + z_2^2$. We have the standard symplectic structure ω_U on U. The map π is holomorphic, so if $p \in \Sigma$ then $\pi^{-1}(p) \cap U$ is a holomorphic curve, so that it is ω_U -symplectic. For fixed p extend the symplectic structure on $\pi^{-1}(p) \cap U$ to a symplectic structure α_p to a neighborhood of the rest of the fiber $\pi^{-1}(p)$. We can rescale α_p to make $\int_F \alpha_p = \int_F c$ so that $[\alpha_p] = c|_{\pi^{-1}(U_p)}$. Let $\{U_p\}_p$ be an appropriate open covering of Σ , and let α_p be as constructed above. If the open

Let $\{U_p\}_p$ be an appropriate open covering of Σ , and let α_p be as constructed above. If the open sets U_p in the cover are chosen to be contractible then the forms $\alpha_p - \eta_0 \in \Omega^2(\pi^{-1}(U_p))$ are exact. Choose a collection of 1-forms $\lambda_p \in \Omega^1(\pi^{-1}(U_p))$ such that

$$\alpha_p - \eta_0 = d\lambda_p$$

Now choose a partition of unity $\rho_p : \Sigma \to [0, 1]$ which is subordinate to the cover $\{U_p\}_p$ and define $\alpha \in \Omega^2(X)$ by

$$lpha = \eta_0 + \sum d((
ho_
ho \circ \pi)\lambda_
ho).$$

The 1-form $d(\rho_p \circ \pi)$ vanishes on vectors tangent to the fibre and hence

$$\iota_b^* \alpha = \iota_b^* \eta_0 + \sum (\rho_p \circ \pi) \iota_b^* d\lambda_p = \sum (\rho_p \circ \pi) \iota_b^* (\eta_0 + d\lambda_p) = \sum (\rho_p \circ \pi) \iota_b^* \alpha_p$$

We have constructed a closed 2-form $\alpha \in \Omega^2(M)$, with $[\alpha] = c$, whose restriction to any fiber of $\pi : X \to \Sigma$ is symplectic, as we wanted.

Corollary 2.2 (Thurston). If $\Sigma_g \to X \to \Sigma_h$ is a surface bundle with fiber non-torsion in homology, then X is symplectic

3. Lefschetz pencils

3.1. **Blow-up.** Let $L = \{(I, p) \in \mathbb{CP}^1 \times \mathbb{C}^2 : p \in I\}$. The projection $pr_1 : L \to \mathbb{CP}^1$ gives a complex line bundle structure to L. This fibration is called the tautological bundle over \mathbb{CP}^1 . The projection $pr_2 : L \to \mathbb{C}^2$ to the second factor has the following property that for a point $p \in \mathbb{C}^2$ the inverse image $pr_2^{-1}(p)$ is a single point if $p \neq 0$, and $pr_2^{-1}(0) = \mathbb{CP}^1$. Moreover the map pr_2 is a biholomorphism between $L - pr_2^{-1}(0)$ and $\mathbb{C}^2 - \{0\}$. Thus we may think of L as obtained from \mathbb{C}^2 by replacing the origin by the space of all lines through the origin. If S is a complex surface with $P \in S$ and a neighborhood $U \subset S$ of P which is biholomorphic to an open subset V of \mathbb{C}^2 (with P mapped to $0 \in \mathbb{C}^2$), then by removing U and replacing it with $pr_2^{-1}(V) \subset L$, we get a new complex manifold S' called the blow-up of S at P. Extending pr_2 to S', one obtains a map $pr : S' \to S$ which is a biholomorphism between $S' - pr^{-1}(P)$ and $S - \{P\}$, and $pr^{-1}(P)$ is biholomorphic to \mathbb{CP}^1 . The subset $pr^{-1}(P)$ is called the exceptional sphere. As a smooth manifold, S' is diffeomorphic to $S \sharp \mathbb{CP}^2$. In general, for a smooth, oriented four manifold X, the connected sum $X' = X \sharp \mathbb{CP}^2$ is called the blow-up of X. The sphere \mathbb{CP}^1 in the \mathbb{CP}^2 is called an exceptional sphere. The blow-up operation can be performed symplectically for a symplectic manifold (X, ω) and if $\Sigma \simeq \mathbb{CP}^1$ is a symplectically embedded 2-sphere with self intersection number -1, we can symplectically blow-down the manifold along this sphere (see [5] for more details).

3.2. Symplectic Lefschetz pencils.

Definition 3.1. A Lefschetz pencil on a 4-manifold X is a finite base locus $B \subset X$ and a map π : $X - B \to \mathbb{CP}^1$ such that, (i) Each $b \in B$ has an orientation preserving local coordinate map to $(\mathbb{C}^2, 0)$ under which π corresponds to projectivization $\mathbb{C}^2 - \{0\} \to \mathbb{CP}^1$, and (ii) Each critical point of f has an orientation-preserving local coordinate chart in which $\pi(z_1, z_2) = z_1^2 + z_2^2$ for some holomorphic local chart in \mathbb{CP}^1 . By the definition of a Lefschetz pencil, if we blow up X at the base locus, we get a new four manifold $pr: X' \to X$, and π extends over all of X' and gives a Lefschetz fibration $\pi': X' \to \mathbb{CP}^1$ with distinguished sections E_1, \dots, E_n (the exceptional curves of the blow-ups). Conversely given a Lefschetz fibration with section of selfintersection -1, we can blow down and get a Lefschetz pencil.

Example 3.2 (Lefschetz Pencil of cubics). Let p_0 and p_1 be two cubics intersecting in nine points P_1, \dots, P_9 . For $Q \in \mathbb{CP}^2 - \{P_1, \dots, P_9\}$ take the unique cubic $p_{[t_0:t_1]} = t_0p_0 + t_1p_1$ which passes through Q, and then define $\pi : \mathbb{CP}^2 - \{P_1, \dots, P_9\}$ by $\pi(Q) = [t_0 : t_1] \in \mathbb{CP}^1$. By blowing up \mathbb{CP}^2 at P_1, \dots, P_9 we extend π to a Lefschetz fibration $\pi' : \mathbb{CP}^2 \# 9\mathbb{CP}^2$ whose fibers are cubic curves and the generic fiber is a elliptic curve, i.e., a torus. This is an Elliptic surface usually denoted as E(1).

Example 3.3 (Fiber Sum of Lefschetz fibrations). Let $\pi_1 : X_1 \to \Sigma_1$ and $\pi_2 : X_2 \to \Sigma_2$ be two Lefschetz fibrations whose generic fibers have the same genus. One begins with neighborhoods ν_i of generic fibers F_i of π_i . These are diffeomorphic to $D^2 \times \Sigma_g$ where Σ_g is the Riemann surface with the same genus as the F_i . One then picks an orientation-reversing diffeomorphism $\phi : S^1 \times \Sigma_g$ of the boundaries of $X_i - \nu_i$ and identifies them via ϕ . We obtain a new Lefeschetz fibration $\pi : X_1 \sharp_{\phi} X_2 \to$ $\Sigma_1 \sharp \Sigma_2$. As one special case, we can form the elliptic surface $E(n) = E(n-1) \sharp_{\phi} E(1)$

Example 3.4 (Lefschetz Pencil of Complex projective surfaces). Let X be a complex submanifold of \mathbb{CP}^N . Let $A \subset \mathbb{CP}^N$ be a generic linear subspace of complex codimension 2, so it is copy of \mathbb{CP}^{N-2} cut out by two homogeneous linear equations $p_0(z) = p_1(z) = 0$. The set of all hyperplanes through A is parametrized by \mathbb{CP}^1 . They are given by the equations $y_0p_0(z) + y_1p_1(z) = 0$, for $(y_0, y_1) \in \mathbb{C}^2 \setminus \{0\}$ up to scale. These hyperplanes intersect X in a family of (possibly singular) complex curves $\{F_y : y \in \mathbb{CP}^1\}$. Since the hyperplanes fill \mathbb{CP}^N , we have $\bigcup_{y \in \mathbb{CP}^1} F_y = X$. Let $B = X \cap A$. The canonical map $\mathbb{CP}^N - A \to \mathbb{CP}^1$ induced by the hyperplanes restricts to X - B and gives to X the structure of a Lefschetz pencil (see [4] for further details).

Theorem 2 (Gompf). If a 4-manifold X admits a Lefschetz pencil, then it has a symplectic structure

Proof. (*Sketch*) By blowing up X in the *n* points of the base locus, we get a Lefschetz fibration $X' = X \sharp n \mathbb{CP}^2 \to \mathbb{CP}^1$ whose fibers are non-trivial in homology. The blow-up manifold admits a symplectic structure for which the exceptional spheres (a finite set of sections) are symplectic. Now symplectically blowing down the exceptional spheres results in a symplectic structure on the manifold X.

Theorem 3 (Donaldson [3]). Any symplectic 4-manifold X admits a Lefschetz pencil.

4. Monodromy

Let $\pi: X \to \mathbb{CP}^1$ be a Lefschetz fibration with a symplectic form ω on the total space which restricts to a symplectic form on the fibres and with symplectic fiber (F, σ) . We can define a symplectic orthogonal complement to $\mathcal{T}_x \pi^{-1}(p)$ inside $\mathcal{T}_x X$. This is a 2-real dimensional subspace projecting isomorphically to $\mathcal{T}_p \mathbb{CP}^1$ along $d\pi$ and we can use it as a connetion on the symplectic fibration $X - \pi^{-1}(\mathfrak{crit})$. **Proposition 4.1.** Parallel transport along a path $\gamma : [0, 1] \to \mathbb{CP}^1 - \mathfrak{crit}$ by using this connection gives a symplectomorphism $P_{\gamma} : \pi^{-1}(\gamma(0)) \to \pi^{-1}(\gamma(1))$

Proof. Let v' denote the horizontal lift of a vector field v from the base $\mathbb{CP}^1 - \mathfrak{crit}$. Define $\alpha = \iota_{v'}\omega$ and notice that by definition α vanishes on vertical vectors. The derivative of ω under parallel transport along v' is

$$\mathcal{L}_{v'}\omega = d\iota_{v'}\omega + \iota_{v'}d\omega = d\alpha$$

Now let's take a single point and pick coordinates x_i centred at that point such that ∂_1 , ∂_2 are vertical and ∂_3 , ∂_4 are horizontal at that point (can't do it in a neighborhood because connection could be curved). Since α vanishes on vertical vectors, $d\alpha(\partial'_1, \partial'_2) = \partial'_1\alpha(\partial'_2) - \partial'_2\alpha(\partial'_1) - \alpha([\partial'_1, \partial'_2]) = 0$, where ∂_1 , ∂_2 are extended to vertical vector fields ∂'_1 , ∂'_2 respectively. Then $d\alpha$ applied to two vertical vectors must clearly vanish. Since this is measuring the derivative along v' of ω restricted to a fibre, we see that parallel transport preserves the symplectic form on fibres.

Lemma 4.2. If ψ_t is a path of symplectomorphisms with $\psi_0 = id$ then the flux is the cohomology class

$$\mathfrak{flug}(\psi_t)_0^{\mathsf{T}} = \left[\int_0^{\mathsf{T}} \iota_{X_t} \omega dt\right] \in H^1(X; \mathbb{R}) \quad \text{where } \dot{\psi}_t = X_t \circ \psi_t.$$

If $\mathfrak{flug}(\psi_t)_0^1 = 0$, then ψ_t is a isotopic with fixed endpoints to a Hamiltonian isotopy.

Proposition 4.3. With the same assumptions that were made in the previous Proposition, if γ is a nullhomotopic loop then P_{γ} is a Hamiltonian symplectomorphism of $\pi^{-1}(\gamma(0))$

Proof. Let $\gamma : S^1 \to \mathbb{CP}^1 - \operatorname{crit}$ and $h : D^2 \to \mathbb{CP}^1 - \operatorname{crit}$ be a nullhomotopy. Let z = x + iydenote the coordinate on the unit disc D^2 . Pullback the fibration along h, since a bundle over the disc is trivialisable we may pick a trivialization $\tau : D^2 \times F \to h^*X$ which is symplectic in the sense that $\tau : (\{p\} \times F, \sigma) \to (F_p, \omega|_{F_p})$ is a symplectomorphism for all $p \in D^2$. The pull-back of the form ω is given by

$$\tau^*\omega = \sigma + \alpha \wedge dx + \beta \wedge dy + f dx \wedge dy$$

where $\alpha(z), \beta(z) \in \Omega^1(F)$ and $f(z) \in \Omega^0(F)$ for $z \in D$. Since ω is closed and $\sigma(z) = \sigma$ for all $z \in D$, we have

$$d\alpha = d\beta = 0, \quad df = \partial_x \beta - \partial_y \alpha$$

Now the holonomy of the connection form $\tau^* \omega$ around the loop $z(t) = e^{2\pi i t} = x(t) + iy(t)$ is the path of symplectomorphisms $\Psi_t : F \to F$ given by $\Psi_t = X_t \circ \Psi_t$, and $\iota_{X_t} \sigma := \alpha_t = \alpha(z)\dot{x} + \beta(z)\dot{y}$

The formula $df = \partial_x \beta - \partial_y \alpha$ shows that the differential of the 1-form $\alpha dx + \beta dy \in \Omega^1(D, \Omega^1(F))$ is given by $df dx \wedge dy \in \Omega^2(D, \Omega^1(F))$. Hence the 1-form

$$\int_0^1 \alpha_t dt = d \int_D f(x, y) dx dy$$

is exact, and this implies that the flux $\mathfrak{flur}(\Psi_t)_0^1 = \int_0^1 [\alpha_t] dt$ is zero and $\Psi_1 : F \to F$ is a Hamiltonian symplectomorphism.

4.1. Vanishing cycles. Let's consider a path $\gamma : [0,1] \to \mathbb{CP}^1$ with $\gamma(t) \in \mathbb{CP}^1 - \operatorname{crit}$ for t < 1 and $\gamma(1) = y \in \operatorname{crit}$. We'll write $\gamma(0) = x$ and \star for the critical point in $\pi^{-1}(y)$. The vanishing thimble D_{γ} associated with the path γ is the set of points $v \in \pi^{-1}\gamma$ such that $P_{\gamma}(t)(v) \to \star$ as $t \to 1$. A vanishing cycle is the intersection of the vanishing thimble with a fibre. The thimble D_{γ} is an embedded Lagrangian disc whose boundary S_{γ} (a vanishing cycle) is an embedded Lagrangian "sphere" S_{γ} in the fiber $\pi^{-1}(x)$. If we now consider an arc γ joining two critical values y_1, y_2 of π passing through y with corresponding Lagrangian thimbles D_1 and D_2 such that the boundary of the discs D_1 and D_2 coincide,

i.e, the same cycle degenerates at each of the paths, then $D_1 \cup D_2$ is a Lagrangian sphere embedded in X. The arc γ is called a matching path in the Lefschetz fibration π . Matching paths are an important source of Lagrangian spheres and more generally of embedded Lagrangian submanifolds.

Theorem 4. If $p \in \mathfrak{crit}, \gamma \subset \mathbb{CP}^1 - \mathfrak{crit}$ is a small loop encircling p and no other critical point and δ is a path from p to $\gamma(0)$, then the symplectomorphism $P_{\gamma}: \pi^{-1}(\gamma(0)) \to \pi^{-1}(\gamma(0))$ is a Dehn twist in the vanishing circle associated to δ

Proof. Let's work in the local model and consider the singular symplectic fibration π : \mathbb{C}^2 o \mathbb{C} : $(z_1, z_2) \rightarrow z_1^2 + z_2^2$ equipped with the standard symplectic form ω on \mathbb{C}^2 . We will compute the holonomy around the loop $t \rightarrow e^{2\pi i t}$ in the base. Let $F = \pi^{-1}(1) = \{x + iy \in \mathbb{C}^2 : ||x||^2 - ||y||^2 = 1, \langle x, y \rangle = 0\}$. The horizontal subspace at $z \in \mathbb{C}^2$ is given by $Hor_z = \mathbb{C} \cdot \overline{z}$. It is not difficult to see that the

horizontal lifts of $t \rightarrow e^{2\pi i t}$ satisfy the differential equation

$$z = \frac{\pi i e^{2\pi i t}}{\|z\|^2} \bar{z}$$

After solving this differential equation, the holonomy of the fibration $\mathbb{C}^2 \to \mathbb{C}$ around the loop $[0, 1] \to$ $\mathbb{C}: t \to e^{2\pi i t}$ is the symplectomorphim $\psi: F \to F$ given by $\psi(x_0, y_0) = (x_1, y_1)$ where

$$\frac{x_1}{\|x_1\|} + i\frac{y_1}{\|y_1\|} = -\exp\Big(\frac{2\pi i \|x_0\| \|y_0\|}{\sqrt{1+4\|x_0\|^2\|y_0\|^2}}\Big)\Big(\frac{x_0}{\|x_0\|} + i\frac{y_0}{\|y_0\|}\Big)$$

Note that ψ is close to the identity when $\|y_0\|$ is very large and is equal to the antipodal map for $y_0 = 0$, i.e., $\psi(x_0, 0) = (-x_0, 0)$.

Bibliography

- [1] Denis Auroux, Fabrizio Catanese, Marco Manetti, Paul Seidel, Bern Siebert, Ivan Smith, and Gang Tian. Symplectic 4-manifolds and Algebraic surfaces. Number 1938 in Lectures Notes in Mathematics. Springer, 2003.
- [2] Ana Cannas da Silva. Lectures on Symplectic Geometry, volume 1764 of Lecture Notes in Mathematics. Springer, 2001.
- [3] S. Donaldson. Lefchetz pencils on symplectic manifolds. J. Differential Geom., 53:205-236, 1999.
- [4] Robert E. Gompf and Andrs I. Stipsicz. 4-Manifolds and Kirby Calculus. American Mathematical Society, 1999.
- [5] Dusa McDuff and Dietmar Salamon. Introduction to Symplectic Topology. Clarendon Press, second edition, 1998.