
SYMPLECTIC LEFSCHETZ FIBRATIONS
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1. Introduction

A Lefschetz pencil is a construction that comes from algebraic geometry, but it is closely related

with symplectic geometry. Indeed, as shown by Gompf and Donaldson, a four dimensional manifold has

the structure of a Lefschetz pencil if and only if it admits a symplectic form. In this short summary,

I present a brief introduction to this theory and show some of the connections between the Letschetz

�brations theory and symplectic geometry. For simplicity, I will work the four dimensional case, but

most of the statements can be generalized with suitable hypotheses.

2. Symplectic Lefschetz Fibrations

De�nition 2.1. A Lefschetz �bration on a 4-manifold X is a map � : X ! �, where � is a closed

2-manifold, such that (i) The critical points of � are isolated, (i i) If p 2 X is a critical point of � then

there are local coordiantes (z1; z2) on X and z on � with p = (0; 0) and such that in these coordinates

� is given by the complex map z = �(z1; z2) = z21 + z
2
2 :

Theorem 1 (Gompf [4]). Assume that a closed 4-manifold X admits a Lefschetz �bration � : X ! �,

and let [F ] denote the homology class of the �ber. Then X admits a symplectic structure with

symplectic �bers if [F ] 6= 0 in H2(X;R): If e1; � � � ; en is a �nite set of sections of the Lefschetz

�bration, the symplectic form ! can be chosen in such a way that all these sections are symplectic.

Proof. (Sketch) If [F ] 6= 0 then there is some c 2 H2(X;R) with
∫
F
c > 0: It is enough to build a

closed form � 2 
2(X); such that [�] = c and whose restriction to any �ber � : X ! � is symplectic.

Indeed, given such �; let ! = � + K��!� where K >> 0 and !� is an area form for �: Then ! is

closed, !j�ber = �j�ber; and ! is symplectic for K large enough.

Let �0 2 
2(X) be any closed 2-form which represents the class c; i.e., [�0] = c: Near a smooth

�ber Fp = ��1(p); trivialize a neighborhood so we have that ��1(Up) ' F � Up; where Up � � is a

disc at p and consider an area form �p on Fp such that [�p] = ��pc; where �p : Fp ,! X is the natural

inclusion. Then �p = pr �1 (�p) is a 2-form on ��1(Up): The form �p is symplectic restricted on �bers

and [�p] = c j��1(Up):
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Near a singular �ber, let U � X be a neighborhood near a critical point of � so that there are local

coordinates in which �(z1; z2) = z21 +z
2
2 :We have the standard symplectic structure !U on U: The map

� is holomorphic, so if p 2 � then ��1(p)\U is a holomorphic curve, so that it is !U-symplectic. For

�xed p extend the symplectic structure on ��1(p)\U to a symplectic structure �p to a neighborhood

of the rest of the �ber ��1(p): We can rescale �p to make
∫
F
�p =

∫
F
c so that [�p] = c j��1(Up):

Let fUpgp be an appropriate open covering of �; and let �p be as constructed above. If the open

sets Up in the cover are chosen to be contractible then the forms �p � �0 2 
2(��1(Up)) are exact.

Choose a collection of 1-forms �p 2 
1(��1(Up)) such that

�p � �0 = d�p:

Now choose a partition of unity �p : � ! [0; 1] which is subordinate to the cover fUpgp and de�ne

� 2 
2(X) by

� = �0 +
∑

d((�p � �)�p):

The 1-form d(�p � �) vanishes on vectors tangent to the �bre and hence

��b� = ��b�0 +
∑

(�p � �)�
�

bd�p =
∑

(�p � �)�
�

b(�0 + d�p) =
∑

(�p � �)�
�

b�p

We have constructed a closed 2-form � 2 
2(M); with [�] = c; whose restriction to any �ber of

� : X ! � is symplectic, as we wanted. �

Corollary 2.2 (Thurston). If �g ! X ! �h is a surface bundle with �ber non-torsion in homology,

then X is symplectic

3. Lefschetz pencils

3.1. Blow-up. Let L = f(l ; p) 2 CP
1 � C

2 : p 2 lg: The projection pr1 : L ! CP
1 gives a complex

line bundle structure to L: This �bration is called the tautological bundle over CP1: The projection

pr2 : L! C
2 to the second factor has the following property that for a point p 2 C2 the inverse image

pr�12 (p) is a single point if p 6= 0; and pr�12 (0) = CP
1: Moreover the map pr2 is a biholomorphism

between L�pr�12 (0) and C2�f0g: Thus we may think of L as obtained from C
2 by replacing the origin

by the space of all lines through the origin. If S is a complex surface with P 2 S and a neighborhood

U � S of P which is biholomorphic to an open subset V of C2 (with P mapped to 0 2 C2), then by

removing U and replacing it with pr�12 (V ) � L; we get a new complex manifold S0 called the blow-up

of S at P: Extending pr2 to S0; one obtains a map pr : S0 ! S which is a biholomorphism between

S0 � pr�1(P ) and S � fPg; and pr�1(P ) is biholomorphic to CP1: The subset pr�1(P ) is called the

exceptional sphere. As a smooth manifold, S0 is di�eomorphic to S]CP2: In general, for a smooth,

oriented four manifold X; the connected sum X 0 = X]CP2 is called the blow-up of X: The sphere CP1

in the CP2 is called an exceptional sphere. The blow-up operation can be performed symplectically for a

symplectic manifold (X;!) and if � ' CP
1 is a symplectically embedded 2-sphere with self intersection

number -1, we can symplectically blow-down the manifold along this sphere (see [5] for more details).

3.2. Symplectic Lefschetz pencils.

De�nition 3.1. A Lefschetz pencil on a 4-manifold X is a �nite base locus B � X and a map � :

X �B ! CP
1 such that, (i) Each b 2 B has an orientation preserving local coordinate map to (C2; 0)

under which � corresponds to projectivization C2�f0g ! CP
1; and (i i) Each critical point of f has an

orientation-preserving local coordinate chart in which �(z1; z2) = z21 + z22 for some holomorphic local

chart in CP1:
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By the de�nition of a Lefschetz pencil, if we blow up X at the base locus, we get a new four

manifold pr : X 0 ! X; and � extends over all of X 0 and gives a Lefschetz �bration �0 : X 0 ! CP
1

with distinguished sections E1; � � � ; En (the exceptional curves of the blow-ups). Conversely given a

Lefschetz �bration with section of sel�ntersection -1, we can blow down and get a Lefschetz pencil.

Example 3.2 (Lefschetz Pencil of cubics). Let p0 and p1 be two cubics intersecting in nine points

P1; � � � ; P9: For Q 2 CP
2 � fP1; � � � ; P9g take the unique cubic p[t0:t1] = t0p0 + t1p1 which passes

through Q; and then de�ne � : CP2 � fP1; � � � ; P9g by �(Q) = [t0 : t1] 2 CP
1: By blowing up CP2 at

P1; � � � ; P9 we extend � to a Lefschetz �bration �0 : CP2]9CP2 whose �bers are cubic curves and the

generic �ber is a elliptic curve, i.e., a torus. This is an Elliptic surface usually denoted as E(1):

Example 3.3 (Fiber Sum of Lefschetz �brations). Let �1 : X1 ! �1 and �2 : X2 ! �2 be two

Lefschetz �brations whose generic �bers have the same genus. One begins with neighborhoods �i of

generic �bers Fi of �i : These are di�eomorphic to D2 � �g where �g is the Riemann surface with

the same genus as the Fi : One then picks an orientation-reversing di�eomorphism � : S1 � �g of the

boundaries of Xi � �i and identi�es them via �: We obtain a new Lefeschetz �bration � : X1]�X2 !

�1]�2: As one special case, we can form the elliptic surface E(n) = E(n � 1)]�E(1)

Example 3.4 (Lefschetz Pencil of Complex projective surfaces). Let X be a complex submanifold

of CPN : Let A � CP
N be a generic linear subspace of complex codimension 2, so it is copy of CPN�2

cut out by two homogeneous linear equations p0(z) = p1(z) = 0. The set of all hyperplanes through A

is parametrized by CP1: They are given by the equations y0p0(z) + y1p1(z) = 0; for (y0; y1) 2 C
2nf0g

up to scale. These hyperplanes intersect X in a family of (possibly singular) complex curves fFy : y 2

CP
1g: Since the hyperplanes �ll CPN ; we have

∪
y2CP

1 Fy = X: Let B = X \ A: The canonical map

CP
N � A ! CP

1 induced by the hyperplanes restricts to X � B and gives to X the structure of a

Lefschetz pencil (see [4] for further details).

Theorem 2 (Gompf). If a 4-manifold X admits a Lefschetz pencil, then it has a symplectic structure

Proof. (Sketch) By blowing up X in the n points of the base locus, we get a Lefschetz �bration

X 0 = X]nCP2 ! CP
1 whose �bers are non-trivial in homology. The blow-up manifold admits a

symplectic structure for which the exceptional spheres (a �nite set of sections) are symplectic. Now

symplectically blowing down the exceptional spheres results in a symplectic structure on the manifold

X: �

Theorem 3 (Donaldson [3]). Any symplectic 4-manifold X admits a Lefschetz pencil.

4. Monodromy

Let � : X ! CP
1 be a Lefschetz �bration with a symplectic form ! on the total space which restricts

to a symplectic form on the �bres and with symplectic �ber (F; �). We can de�ne a symplectic

orthogonal complement to Tx�
�1(p) inside TxX: This is a 2-real dimensional subspace projecting

isomorphically to TpCP
1 along d� and we can use it as a connetion on the symplectic �bration X �

��1(crit):
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Proposition 4.1. Parallel transport along a path 
 : [0; 1]! CP
1 � crit by using this connection gives

a symplectomorphism P
 : ��1(
(0))! ��1(
(1))

Proof. Let v 0 denote the horizontal lift of a vector �eld v from the base CP1 � crit: De�ne � = �v 0!

and notice that by de�nition � vanishes on vertical vectors. The derivative of ! under parallel transport

along v 0 is

Lv 0! = d�v 0! + �v 0d! = d�

Now let's take a single point and pick coordinates xi centred at that point such that @1; @2 are vertical

and @3; @4 are horizontal at that point (can't do it in a neighborhood because connection could be

curved). Since � vanishes on vertical vectors, d�(@01; @
0

2) = @01�(@
0

2) � @02�(@
0

1) � �([@01; @
0

2]) = 0;

where @1; @2 are extended to vertical vector �elds @01; @
0

2 respectively. Then d� applied to two vertical

vectors must clearly vanish. Since this is measuring the derivative along v 0 of ! restricted to a �bre,

we see that parallel transport preserves the symplectic form on �bres. �

Lemma 4.2. If  t is a path of symplectomorphisms with  0 = id then the 
ux is the cohomology class

flux( t)
T
0 =

[∫ T

0

�Xt
!dt

]
2 H1(X;R) where _ t = Xt �  t :

If flux( t)
1
0 = 0; then  t is a isotopic with �xed endpoints to a Hamiltonian isotopy.

Proposition 4.3. With the same assumptions that were made in the previous Proposition, if 
 is a

nullhomotopic loop then P
 is a Hamiltonian symplectomorphism of ��1(
(0))

Proof. Let 
 : S1 ! CP
1 � crit and h : D2 ! CP

1 � crit be a nullhomotopy. Let z = x + iy

denote the coordinate on the unit disc D2: Pullback the �bration along h; since a bundle over the disc

is trivialisable we may pick a trivialization � : D2 � F ! h�X which is symplectic in the sense that

� : (fpg � F; �) ! (Fp; !jFp
) is a symplectomorphism for all p 2 D2: The pull-back of the form ! is

given by

��! = � + � ^ dx + � ^ dy + f dx ^ dy

where �(z); �(z) 2 
1(F ) and f (z) 2 
0(F ) for z 2 D: Since ! is closed and �(z) = � for all z 2 D;

we have

d� = d� = 0; df = @x� � @y�

Now the holonomy of the connection form ��! around the loop z(t) = e2�it = x(t)+ iy(t) is the path

of symplectomorphisms 	t : F ! F given by _	t = Xt �	t ; and �Xt
� := �t = �(z) _x + �(z) _y

The formula df = @x� � @y� shows that the di�erential of the 1-form �dx + �dy 2 
1(D;
1(F ))

is given by df dx ^ dy 2 
2(D;
1(F )): Hence the 1-form∫ 1

0

�tdt = d

∫
D

f (x; y)dxdy

is exact, and this implies that the 
ux flux(	t)
1
0 =

∫ 1

0 [�t ]dt is zero and 	1 : F ! F is a Hamiltonian

symplectomorphism. �

4.1. Vanishing cycles. Let's consider a path 
 : [0; 1] ! CP
1 with 
(t) 2 CP1 � crit for t < 1 and


(1) = y 2 crit: We'll write 
(0) = x and ? for the critical point in ��1(y): The vanishing thimble

D
 associated with the path 
 is the set of points v 2 ��1
 such that P
(t)(v) ! ? as t ! 1: A

vanishing cycle is the intersection of the vanishing thimble with a �bre. The thimble D
 is an embedded

Lagrangian disc whose boundary S
 (a vanishing cycle) is an embedded Lagrangian \sphere" S
 in the

�ber ��1(x): If we now consider an arc 
 joining two critical values y1; y2 of � passing through y with

corresponding Lagrangian thimbles D1 and D2 such that the boundary of the discs D1 and D2 coincide,
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i.e, the same cycle degenerates at each of the paths, then D1[D2 is a Lagrangian sphere embedded in

X: The arc 
 is called a matching path in the Lefschetz �bration �: Matching paths are an important

source of Lagrangian spheres and more generally of embedded Lagrangian submanifolds.

S2

γ

Theorem 4. If p 2 crit; 
 � CP
1 � crit is a small loop encircling p and no other critical point and � is

a path from p to 
(0); then the symplectomorphism P
 : ��1(
(0)) ! ��1(
(0)) is a Dehn twist in

the vanishing circle associated to �

Proof. Let's work in the local model and consider the singular symplectic �bration � : C2 ! C :

(z1; z2)! z21 +z
2
2 equipped with the standard symplectic form ! on C2:We will compute the holonomy

around the loop t ! e2�it in the base. Let F = ��1(1) = fx + iy 2 C2 : kxk2�kyk2 = 1; hx; yi = 0g:

The horizontal subspace at z 2 C
2 is given by Horz = C � �z . It is not di�cult to see that the

horizontal lifts of t ! e2�it satisfy the di�erential equation

_z =
�ie2�it

kzk2
�z

After solving this di�erential equation, the holonomy of the �bration C2 ! C around the loop [0; 1]!

C : t ! e2�it is the symplectomorphim  : F ! F given by  (x0; y0) = (x1; y1) where

x1

kx1k
+ i

y1

ky1k
= � exp

( 2�ikx0kky0k√
1 + 4kx0k2ky0k2

)( x0

kx0k
+ i

y0

ky0k

)
Note that  is close to the identity when ky0k is very large and is equal to the antipodal map for y0 = 0,

i.e.,  (x0; 0) = (�x0; 0):

�
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