SYMPLECTIC LEFSCHETZ FIBRATIONS

ALEXANDER CAVIEDES CASTRO

1. Introduction

A Lefschetz pencil is a construction that comes from algebraic geometry, but it is closely related
with symplectic geometry. Indeed, as shown by Gompf and Donaldson, a four dimensional manifold has
the structure of a Lefschetz pencil if and only if it admits a symplectic form. In this short summary,
| present a brief introduction to this theory and show some of the connections between the Letschetz
fibrations theory and symplectic geometry. For simplicity, | will work the four dimensional case, but
most of the statements can be generalized with suitable hypotheses.

2. Symplectic Lefschetz Fibrations

Definition 2.1. A Lefschetz fibration on a 4-manifold X is a map ™ : X — %, where ¥ is a closed
2-manifold, such that (i) The critical points of w are isolated, (ii) If p € X is a critical point of w then
there are local coordiantes (z1, z2) on X and z on ¥ with p = (0, 0) and such that in these coordinates
7 is given by the complex map z = w(z1, z2) = z¥ + Z3.
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Theorem 1 (Gompf [4]). Assume that a closed 4-manifold X admits a Lefschetz fibrationm : X — X,
and let [F] denote the homology class of the fiber. Then X admits a symplectic structure with
symplectic fibers if [F] # 0 in Ho(X;R). If e,- -, e, is a finite set of sections of the Lefschetz
fibration, the symplectic form w can be chosen in such a way that all these sections are symplectic.

Proof. (Sketch) If [F] # 0 then there is some ¢ € H*(X,R) with [ ¢ > 0. It is enough to build a
closed form a € Q2(X), such that [a] = ¢ and whose restriction to any fiber  : X — ¥ is symplectic.
Indeed, given such a, let w = a + Kn*ws where K >> 0 and wy is an area form for £. Then w is
closed, wlsiber = lfiber, and w is symplectic for K large enough.

Let 1o € Q22(X) be any closed 2-form which represents the class ¢, i.e., [ng] = c. Near a smooth
fiber F, = w~1(p), trivialize a neighborhood so we have that 7~ 1(U,) ~ F x U,, where U, C L is a
disc at p and consider an area form o, on F, such that [o,] = ¢} ¢, where ¢, : F, < X is the natural
inclusion. Then a, = pr{(o,) is a 2-form on 7= *(U,). The form a, is symplectic restricted on fibers
and [Ocp] = C|7r*1(Up)-
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Near a singular fiber, let U C X be a neighborhood near a critical point of 7 so that there are local
coordinates in which 7(zy, z) = z2+ z3. We have the standard symplectic structure wy on U. The map
7 is holomorphic, so if p € & then w=(p) N U is a holomorphic curve, so that it is wy-symplectic. For
fixed p extend the symplectic structure on w—!(p) N U to a symplectic structure a, to a neighborhood
of the rest of the fiber m~*(p). We can rescale a, to make [, = [, ¢ so that [ap] = clr1(u,)-

Let {U,}, be an appropriate open covering of ¥, and let a, be as constructed above. If the open
sets U, in the cover are chosen to be contractible then the forms a, — ng € Q?(w~1(U,)) are exact.
Choose a collection of 1-forms X, € Q(n~1(U,)) such that

op — Mo = dX,.

Now choose a partition of unity p, : £ — [0, 1] which is subordinate to the cover {U,}, and define
a € Q%(X) by

o ="po+ Zd((PP o m)Ap).

The 1-form d(p, o ) vanishes on vectors tangent to the fibre and hence

Lhor = LMo + Z(pp o M)LpdAp = Z(pp om)ty(Mo + dAp) = Z(pp o T)LypQp

We have constructed a closed 2-form a € Q?(M), with [a] = ¢, whose restriction to any fiber of
7 X = X is symplectic, as we wanted. O

Corollary 2.2 (Thurston). /f X, — X — X, is a surface bundle with fiber non-torsion in homology,
then X is symplectic

3. Lefschetz pencils

3.1. Blow-up. Let L = {(/,p) € CP! x C? : p € I}. The projection pr; : L — CP* gives a complex
line bundle structure to L. This fibration is called the tautological bundle over CP!. The projection
pr> : L — C? to the second factor has the following property that for a point p € C? the inverse image
pry t(p) is a single point if p # 0, and pr, *(0) = CP’. Moreover the map pr, is a biholomorphism
between L — pry*(0) and C*—{0}. Thus we may think of L as obtained from C? by replacing the origin
by the space of all lines through the origin. If S is a complex surface with P € S and a neighborhood
U C S of P which is biholomorphic to an open subset V of €2 (with P mapped to 0 € C2), then by
removing U and replacing it with prz_l(V) C L, we get a new complex manifold S’ called the blow-up
of S at P. Extending pr, to S', one obtains a map pr : S’ — S which is a biholomorphism between
S'—pr }(P) and S — {P}, and pr—'(P) is biholomorphic to CP'. The subset pr—1(P) is called the
exceptional sphere. As a smooth manifold, S’ is diffeomorphic to SHCP?. In general, for a smooth,
oriented four manifold X, the connected sum X' = X§CP? is called the blow-up of X. The sphere CP*
in the CP? is called an exceptional sphere. The blow-up operation can be performed symplectically for a
symplectic manifold (X, w) and if £ ~ CP? is a symplectically embedded 2-sphere with self intersection
number -1, we can symplectically blow-down the manifold along this sphere (see [5] for more details).

3.2. Symplectic Lefschetz pencils.

Definition 3.1. A Lefschetz pencil on a 4-manifold X is a finite base locus B C X and a map =« :
X — B — CP! such that, (i) Each b € B has an orientation preserving local coordinate map to (C2,0)
under which m corresponds to projectivization C* — {0} — CP*, and (ii) Each critical point of f has an
orientation-preserving local coordinate chart in which w(zy, zy) = z? + z3 for some holomorphic local
chart in CP*.
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By the definition of a Lefschetz pencil, if we blow up X at the base locus, we get a new four
manifold pr : X' — X, and 7 extends over all of X’ and gives a Lefschetz fibration ' : X’ — CP!

with distinguished sections Ey,---, E, (the exceptional curves of the blow-ups). Conversely given a
Lefschetz fibration with section of selfintersection -1, we can blow down and get a Lefschetz pencil.
P E2
Blow up
E—
T E1

Example 3.2 (Lefschetz Pencil of cubics). Let py and p; be two cubics intersecting in nine points

Pi,---,Py. For Q € CP? — {Py,---, Py} take the unique cubic Plto:t] = toPo + tip1 which passes
through Q, and then define w : CP> — {Py,--- , Py} by m(Q) = [to : t1] € CP. By blowing up CP? at
Pi,---, Py we extend T to a Lefschetz fibration 7' : CP?#9CP? whose fibers are cubic curves and the

generic fiber is a elliptic curve, i.e., a torus. This is an Elliptic surface usually denoted as E(1).

Example 3.3 (Fiber Sum of Lefschetz fibrations). Let m; : X; — X1 and 7 : Xo — ¥, be two
Lefschetz fibrations whose generic fibers have the same genus. One begins with neighborhoods v; of
generic fibers F; of ;. These are diffeomorphic to D? x ¥4 where L4 is the Riemann surface with
the same genus as the F;. One then picks an orientation-reversing diffeomorphism ¢ : S x 24 of the
boundaries of X; — v; and identifies them via ¢. We obtain a new Lefeschetz fibration w : XifigXo —
Y115, As one special case, we can form the elliptic surface E(n) = E(n— L){l4E(1)

Example 3.4 (Lefschetz Pencil of Complex projective surfaces). Let X be a complex submanifold
of CPV. Let A C CP" be a generic linear subspace of complex codimension 2, so it is copy of CPN=2
cut out by two homogeneous linear equations pa(z) = p1(z) = 0. The set of all hyperplanes through A
is parametrized by CP'. They are given by the equations yopo(z) + yip1(z) = 0, for (v, y1) € C2\{0}
up to scale. These hyperplanes intersect X in a family of (possibly singular) complex curves {F, : y €
CP'}. Since the hyperplanes fill CPV, we have Uye(CIP’l F, = X. Let B = XN A. The canonical map

CPN — A — CP? induced by the hyperplanes restricts to X — B and gives to X the structure of a
Lefschetz pencil (see [4] for further details).

Theorem 2 (Gompf). If a 4-manifold X admits a Lefschetz pencil, then it has a symplectic structure

Proof. (Sketch) By blowing up X in the n points of the base locus, we get a Lefschetz fibration
X' = X{nCP?> — CP' whose fibers are non-trivial in homology. The blow-up manifold admits a
symplectic structure for which the exceptional spheres (a finite set of sections) are symplectic. Now
symplectically blowing down the exceptional spheres results in a symplectic structure on the manifold
X. O

Theorem 3 (Donaldson [3]). Any symplectic 4-manifold X admits a Lefschetz pencil.

4. Monodromy

Let m : X — CP! be a Lefschetz fibration with a symplectic form w on the total space which restricts
to a symplectic form on the fibres and with symplectic fiber (F,o). We can define a symplectic
orthogonal complement to T,m !(p) inside T,X. This is a 2-real dimensional subspace projecting
isomorphically to Tp(CIP’l along dm and we can use it as a connetion on the symplectic fibration X —
w1 (crit).
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Proposition 4.1. Parallel transport along a path v : [0, 1] — CP* — ctit by using this connection gives
a symplectomorphism Py : w1 (y(0)) = 7 1((1))

Proof. Let v' denote the horizontal lift of a vector field v from the base CIP* — crit. Define a = ¢, w
and notice that by definition a vanishes on vertical vectors. The derivative of w under parallel transport
along v’ is
Low=di,w+t,dw=da

Now let’s take a single point and pick coordinates x; centred at that point such that &, 9, are vertical
and 03,9, are horizontal at that point (can’'t do it in a neighborhood because connection could be
curved). Since o vanishes on vertical vectors, da(9;,85) = 0ja(8h) — dha(dy) — a([d], 85]) = 0,
where 0y, 0, are extended to vertical vector fields 0], 8, respectively. Then da applied to two vertical
vectors must clearly vanish. Since this is measuring the derivative along v’ of w restricted to a fibre,
we see that parallel transport preserves the symplectic form on fibres. O

Lemma 4.2. /f; is a path of symplectomorphisms with 1y = id then the flux is the cohomology class
T
flur(w,)] = [/ szwdt} € HX(X;R) where ), = X; o 9.
0

If flur(:)§ = 0, then ¥, is a isotopic with fixed endpoints to a Hamiltonian isotopy.

Proposition 4.3. With the same assumptions that were made in the previous Proposition, if y is a
nullhomotopic loop then P, is a Hamiltonian symplectomorphism of m~1(~y(0))

Proof. Let v : S — CP! — crit and h : D? — CP! — ctit be a nullhomotopy. Let z = x + iy
denote the coordinate on the unit disc D?. Pullback the fibration along h, since a bundle over the disc
is trivialisable we may pick a trivialization 7 : D? x F — h*X which is symplectic in the sense that
T : ({p} x F,0) = (Fp, wl|f,) is a symplectomorphism for all p € D?. The pull-back of the form w is
given by
T'"w=0c+aAdx+BAdy+fdxAdy
where a(z), B(z) € Q(F) and f(z) € Q°(F) for z € D. Since w is closed and ¢(z) = o for all z € D,
we have
da=dg=0 df =0,6—-9,a

Now the holonomy of the connection form 7*w around the loop z(t) = €*™* = x(t) +iy(t) is the path
of symplectomorphisms W, : F — F given by W; = X; o W,, and tx,0 =ar=a(z)x+ B(z2)y

The formula df = 8,8 — 9, shows that the differential of the 1-form adx + Bdy € QY(D, Q(F))
is given by dfdx A dy € Q2(D,Q*(F)). Hence the 1-form

1
/ atdt:d/ f(x,y)dxdy
0 D

is exact, and this implies that the flux flup(W,)3 = fol[at]dt is zero and Wy : F — F is a Hamiltonian
symplectomorphism. O

4.1. Vanishing cycles. Let’s consider a path v : [0, 1] — CP* with (t) € CP! — cit for t < 1 and
v(1) = y € crit. We'll write y(0) = x and « for the critical point in w=1(y). The vanishing thimble
D, associated with the path <y is the set of points v € w1 such that Py(t)(v) = xas t — 1. A
vanishing cycle is the intersection of the vanishing thimble with a fibre. The thimble D., is an embedded
Lagrangian disc whose boundary S, (a vanishing cycle) is an embedded Lagrangian “sphere” S, in the
fiber 771(x). If we now consider an arc -y joining two critical values y;, y» of 7 passing through y with
corresponding Lagrangian thimbles D; and D, such that the boundary of the discs D1 and D, coincide,
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i.e, the same cycle degenerates at each of the paths, then D; U D, is a Lagrangian sphere embedded in
X. The arc «v is called a matching path in the Lefschetz fibration . Matching paths are an important
source of Lagrangian spheres and more generally of embedded Lagrangian submanifolds.

T
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Theorem 4. If p € crit,y C CP! — ctit is a small loop encircling p and no other critical point and ¢ is
a path from p to v(0), then the symplectomorphism Py : 7=1(y(0)) — 7=1(y(0)) is a Dehn twist in
the vanishing circle associated to §

Proof. Let's work in the local model and consider the singular symplectic fibration 7 : C? — C :
(21, z2) = z2 + Z5 equipped with the standard symplectic form w on C2. We will compute the holonomy
around the loop t — 2™t in the base. Let F = 7 1(1) = {x+iy € C?: ||x|> = |ly|]? = 1, {x, y) = 0}.
The horizontal subspace at z € C? is given by Hor, = C - Z. It is not difficult to see that the
horizontal lifts of t — 2™t satisfy the differential equation
. 7”'627rit ~
=—7
llz]I2
After solving this differential equation, the holonomy of the fibration C*> — C around the loop [0, 1] —
C:t — e?™t is the symplectomorphim v : F — F given by ¥(xo, o) = (x1, y1) where

X . 27| x X )
L g 2milelllbol_yxoe y
Xl lhall 1+ 4lx0l12llyol27 Xl lIyoll

Note that % is close to the identity when ||yq]| is very large and is equal to the antipodal map for y, = 0,

i.e., ¥(xg,0) = (—xp,0).
%
2
-
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