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1. Introduction

This document is a brief overview of the Hamilton-Jacobi theory of Chaplygin systems based on [1].
In this paper, after reducing Chaplygin systems, Ohsawa et al. use a technique that they call Chaplygin
Hamiltonization to turn the reduced Chaplygin systems into Hamiltonian systems. This method was first
introduced in a paper by Chaplygin in 1911 where he reduced some nonholonomic systems by the action
of Rk, for some k, and turned the corresponding dynamical equations into the Hamilton’s equations.
In [1] Ohsawa et al. take another step forward and formulate the conventional Hamilton-Jacobi equation,
which they name Chaplygin Hamilton-Jacobi equation, in order to integrate Chaplygin systems. They also
establish the link between this approach and the direct approach of extending Hamilton-Jacobi equation
to the nonholonomic systems [2], which is called nonholonomic Hamilton-Jacobi equation.

Consider a conserved nonholonomic system with the constant energy E, the configuration manifold
Q equipped with a non-involutive distribution D ⊂ TQ (defined by the nonholonomic constraints), and
a Hamiltonian H : T ∗Q→ R, the corresponding nonholonomic Hamilton-Jacobi equation can be written
as

(1.1) H ◦ γ = E,

for a one-form γ on Q, along with the conditions that ∀q ∈ Q γ(q) ∈ M ⊂ T ∗Q and dγ|D×D = 0.
The codistribution M := FL(D) is the constrained momentum space corresponding to D, where FL is
the Legendre transformation. On the other hand, the Chaplygin Hamilton-Jacobi equation is a partial
differential equation for a function W̄ : Q/G → R, i.e., H̄C ◦ dW̄ = E, where H̄C : T ∗(Q/G) → R is the
reduced Hamiltonian and G is the symmetry group associated with the Chaplygin system. A comparison
of these two formulations reveals that as opposed to the nonholonomic Hamilton-Jacobi equation, which
involves a non-closed one form, in Chaplygin Hamilton-Jacobi equation we seek the exact one-form dW̄ .
Moreover, notice the difference between the spaces on which these two equations are formulated.

In the following sections, first Chaplygin systems are defined. Next, the Chaplygin Hamiltonization
is introduced and necessary and sufficient conditions for a Chaplygin system to be Hamiltonizable are
derived in Section 3. This result leads to the Hamilton-Jacobi theory for Hamiltonizable Chaplygin
systems. Then the relationship between the nonholonomic Hamilton-Jacobi equation and the Chaplygin
Hamilton-Jacobi equation is formalized in Section 4.

2. Chaplygin Systems

Consider an n-dimensional nonholonomic system with the constraint distribution D ⊂ TQ that can be
written in terms of the annihilators of a set of constraint one forms {ωs}ms=1, i.e., D := {v ∈ TQ|ωs(v) = 0, s

= 1, ...,m}. The Lagrangian of the system is a function L : TQ → R such that L(vq) = 1
2gq(vq, vq) −

V (q) ∀vq ∈ TqQ, where g is the kinetic energy metric and V : Q → R is a potential energy function.
Define the Legendre transformation FL : TQ → T ∗Q by ⟨FL(vq), wq⟩ := gq(vq, wq) and accordingly the
Hamiltonian function is H(pq) := ⟨pq,FL−1(pq)⟩ − L(FL−1(pq)). Therefore, Hamilton’s equation for the
nonholonomic system is ιXΩ = dH − λsπ

∗
Qω

s (Einstein summation convention is used) along with the
1
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constraint that ωs(TπQ(X)) = 0 for s = 1, ...,m, where λs’s are the Lagrange multipliers, Ω is the
tautological closed two form associated with T ∗Q, and πQ : T ∗Q→ Q is the cotangent bundle projection.

Definition 2.1. A nonholonomic system with Hamiltonian H and distribution D is called a Chap-
lygin system if there exists a Lie group G and a free and proper group action of it on Q, say Φh : Q →
Q ∀h ∈ G, such that

(i) H is invariant under the G-action; and,
(ii) ∀q ∈ Q, TqQ = D ⊕ TqOq, where Oq is the orbit of the group action through q, i.e., Oq :=

{Φh(q) ∈ Q|h ∈ G}.

Therefore, a Chaplygin system gives rise to the principal bundle π : Q → Q/G =: Q̄ and the
connection A : TQ → g, where g is the Lie algebra of G, such that kerAq = Dq. Therefore, one
has TqQ = kerAq ⊕ kerTqπ and the map Tqπ|Dq : Dq → Tq̄Q̄ is a linear isomorphism, where ∀q ∈ Q

q̄ := π(q) ∈ Q̄. Define the horizontal lift map as hlDq : Tq̄Q̄ → Dq such that vq̄ 7→ (Tqπ|Dq)
−1(vq̄) =: vhq .

Consequently, the reduced Lagrangian L̄ : TQ̄→ Rmay be defined as L̄ := L◦hlD. Considering the metric
ḡ on Q̄ induced by g, FL̄ : TQ̄→ T ∗Q̄ can be defined as ⟨FL̄(vq̄), wq̄⟩ := ḡq̄(vq̄, wq̄) ∀vq̄, wq̄ ∈ Tq̄Q̄. The
same geometric structure can be carried over to T ∗Q by defining the horizontal lift hlMq : T ∗

q̄ Q̄ → Mq

by hlMq (αq̄) := FLq ◦ hlDq ◦ (FL̄q̄)−1(αq̄) =: (αhq ). The reduced Hamiltonian can also be defined as

H̄ := H ◦ hlM. Based on nonholonomic reduction performed by Koiller [3], the reduced Hamilton’s
equation for Chaplygin systems is

(2.2) ιX̄Ω̄
nh = dH̄,

where X̄ is a vector field on T ∗Q̄, and where Ω̄nh is the almost symplectic form Ω̄ − Ξ, and Ω̄ is
the tautological two form on T ∗Q̄. For any αq̄ ∈ T ∗

q̄ Q̄ and Yαq̄ ,Zαq̄ ∈ Tαq̄T
∗Q̄, Ξαq̄(Yαq̄ ,Zαq̄) :=

⟨J(αhq ),Bq(Y h
q , Z

h
q )⟩, where J : T ∗Q → g∗ is the momentum map associated with the G-action, B = dA

is the curvature two form of A, Yq̄ := TπQ̄(Yαq̄) and Zq̄ := TπQ̄(Zαq̄), and πQ̄ : T ∗Q̄→ Q̄.

3. Chaplygin Hamiltonization

Hamiltonization of a Chaplygin system is the process of transforming (2.2) to the Hamilton’s equation
ιX̄C

Ω̄ = dH̄C for a Hamiltonian H̄C : T ∗Q̄ → R. This process is closely linked to the existence of
an invariant measure for the Chaplygin system. In sequel, a constructive approach is taken to the
Hamiltonization of a Chaplygin system.

Let f : T ∗Q̄→ R be a smooth nowhere vanishing function (at least on an open subset U ⊂ T ∗Q̄) that is
constant on each fibre, i.e., f(αq̄) = f(βq̄), ∀αq̄, βq̄ ∈ T ∗

q̄ Q̄. Consider the vector field X̄/f ∈ X(T ∗Q̄) and

its flow ϕ
X̄/f
t : T ∗Q̄→ T ∗Q̄. Define ψf : T ∗Q̄→ T ∗Q̄ to be ψf : α 7→ fα. Now, let ϕX̄C

t := ψf ◦ϕ
X̄/f
t ◦ψ1/f .

Hence, X̄/f and X̄C are ψf -related, i.e., Tψf ◦ (X̄/f) = X̄C ◦ ψf .

Theorem 3.1. If X̄C ∈ X(T ∗Q̄) is symplectic, i.e., LX̄C
Ω̄ = 0, then the reduced system in (2.2) has

the invariant measure f n̄−1Λ̄, i.e., LX̄(f n̄−1Λ̄) = 0. Here, n̄ := dim Q̄ and Λ̄ is the Liouville volume
form.

Proof. The proof relies on the following two lemmas.

Lemma 3.2. Let f be a nowhere vanishing smooth function on T ∗Q̄ that is fibre-wise constant. Then,
(ψ∗

f Ω̄) ∧ ... ∧ (ψ∗
f Ω̄)︸ ︷︷ ︸

n̄−times

= f n̄ Ω̄ ∧ ... ∧ Ω̄︸ ︷︷ ︸
n̄−times

.

Proof. This result follows from the facts that for the tautological one-form Θ̄ on T ∗Q̄,

(3.3) (ψ∗
f Θ̄)α = fΘ̄α,

and f is fibre-wise constant. �

Lemma 3.3. For a volume form µ and a smooth vector field X on an orientable manifold M , define
divµ(X)µ := LXµ. Let f be a nowhere vanishing smooth function on M . Then, divµ(fX) = fdivfµ(X).
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Now, going back to the proof of the theorem, since X̄/f and X̄C are ψf -related and by the hypothesis
LX̄C

Ω̄ = 0,

LX̄/f (ψ∗
f Ω̄) = ψ∗

fLX̄C
Ω̄ = 0.

Thus, based on Lemma 3.2, LX̄/f [
n̄−times︷ ︸︸ ︷

(ψ∗
f Ω̄) ∧ ... ∧ (ψ∗

f Ω̄)] = LX̄/f [f n̄
n̄−times︷ ︸︸ ︷

Ω̄ ∧ ... ∧ Ω̄] = 0 and hence LX̄/f (f n̄Λ̄) =
divf n̄Λ̄(X̄/f)(f

n̄Λ̄) = 0. Then, by Lemma 3.3, divf n̄−1Λ̄(X̄) = fdivf n̄Λ̄(X̄/f) = 0, which implies

LX̄(f n̄−1Λ̄) = divf n̄−1Λ̄(X̄)(f n̄−1Λ̄) = 0. �
In order to find necessary and sufficient conditions for the existence of the Chaplygin Hamiltonization

of (2.2), first the equation that X̄C satisfies should be identified.

Lemma 3.4. The vector field X̄C ∈ X(T ∗Q̄) satisfies the following equation:

ιX̄C

(
Ω̄ +

1

f
(df ∧ Θ̄− fΞ)

)
= dH̄C ,

where H̄C := H̄ ◦ ψ1/f .

Proof. Since the vector fields X̄/f and X̄C are ψf -related, ψ
∗
f ιX̄C

Ω̄ = ιX̄/fψ
∗
f Ω̄. By straightforward

calculation and using (2.2) and (3.3), one can show that ψ∗
f ιX̄C

Ω̄ = ιX̄/fψ
∗
f Ω̄ = dH̄ − ιX̄/f (df ∧ Θ̄− fΞ).

By applying ψ∗
1/f to both sides, ιX̄C

Ω̄ + ψ∗
1/f ιX̄/f (df ∧ Θ̄ − fΞ) = dH̄C . Using (3.3), the definition

of Ξ, and the facts that the vector fields X̄/f and X̄C are ψf -related and f is fibre-wise constant,

ψ∗
1/f ιX̄/f (df ∧ Θ̄− fΞ) = ιX̄C

(
1
f (df ∧ Θ̄− fΞ)

)
. This completes the proof. �

Therefore, necessary and sufficient condition for the vector field X̄C to satisfy the Hamilton’s equation
for the Hamiltonian H̄C is that the one-form ιX̄C

(df∧Θ̄−fΞ) vanishes. Now, one can define the Chaplygin
Hamiltonization as the process of finding an f satisfying the above condition. The resulting Hamiltonian
equation is called the Hamiltonized system and H̄C is the Chaplygin Hamiltonian.

Theorem 3.5. Suppose that there exists a nowhere vanishing, fibre-wise constant, smooth function
f : T ∗Q̄→ R that satisfies the equation

(3.4) df ∧ Θ̄ = fΞ.

Then, the vector field X̄C ∈ X(T ∗Q̄) satisfies the Hamilton’s equation for the Hamiltonian H̄C , i.e.,

(3.5) ιX̄C
Ω̄ = dH̄C ,

and the reduced nonholonomic dynamics in (2.2) has the invariant measure f n̄−1Λ̄.

4. Chaplygin Hamilton-Jacobi Theory

Since the Hamiltonized Chaplygin system (3.5) is a canonical Hamiltonian system on T ∗Q̄, the con-
ventional Hamilton-Jacobi theory for an unknown function W̄ : Q̄ → R may be employed to obtain
the Hamilton-Jacobi equation H̄C ◦ dW̄ = E, where H̄C is the Chaplygin Hamiltonian and E is the
constant total energy of the system. This equation is called the Chaplygin Hamilton-Jacobi equation
whose solution plays a central role in recovering the dynamics of the nonholonomic system on Q. In the
following, first the relationship between this equation and (1.1) is summarized in a commutative diagram,
and subsequently a set of solutions to (1.1) is found.

(4.6) Q Q

M T ∗Q T ∗Q
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According to the diagram (4.6) one can integrate the full dynamics of the system by solving the Chaplygin
Hamilton-Jacobi equation for the reduced system, as it is summarized in the following theorem.

Theorem 4.1. Suppose that there exists a nowhere vanishing, fibre-wise constant function f : T ∗Q̄→
R that satisfies (3.4). Let W̄ : Q̄→ R be a solution of the Chaplygin Hamilton-Jacobi equation and define
γ by

(4.7) γ(q) := hlMq ◦ ψ1/f ◦ dW̄ ◦ π(q) = hlMq

(
1

f(q̄
)dW̄ (q̄)

)
,

Then γ satisfies the nonholonomic Hamilton-Jacobi equation (1.1) with its conditions.

Proof. The fact that the one form γ satisfies (1.1) follows immediately from the diagram (4.6).
The only thing left to show is that it also satisfies the required conditions for the equation (1.1),
i.e., dγ(Y h, Zh) = 0 for arbitrary horizontal vector fields. Starting from the identity dγ(Y h, Zh) =
LY h(γ(Zh))−LZh(γ(Y h))− γ([Y h, Zh]), and calculating the right-hand-side terms at an arbitrary point
q ∈ Q would lead to the desired result. Some of the lengthy calculations are included in the sequel. Let
Zq̄ := TqπQ(Z

h
q ) and Yq̄ := TqπQ(Y

h
q ); hence Z

h
q = hlDq (Zq̄) and Y

h
q = hlDq (Yq̄). Then the identities

γ(Zh)(q) =
1

f(q̄)
dW̄ (Z)(q̄),

and

LY h(γ(Zh))(q) =

(
1

f
LY LZW̄ − 1

f2
df(Y )dW̄ (Z)

)
(q̄),

result in

LY h(γ(Zh))− LZh(γ(Y h)) =
1

f
dW̄ ([Y, Z])− 1

f2
df(Y ) ∧ dW̄ (Y, Z).

For the last term on the right-hand-side, first [Y h, Zh]q is decomposed into the horizontal and vertical

components, i.e., [Y h, Zh]q = hlDq ([Y
h, Zh]q̄) − (Bq(Y h

q , Z
h
q ))Q(q), where ξQ ∈ X(Q) is the infinitesimal

generator of ξ ∈ g. Therefore, using the definition of the momentum map J, the linearity of hlM and J
in the fibre variables, and the definition of Ξ, one has

γ([Y h, Zh])(q) =
1

f(q̄)

(
dW̄ ([Y,Z])(q̄)− (dW̄ )∗Ξ(Y, Z)(q̄)

)
.

By substituting the terms,

dγ(Y h, Zh) = − 1

f2
df ∧ dW̄ (Y,Z) +

1

f
(dW̄ )∗Ξ(Y, Z)

= − 1

f2
(dW̄ )∗

(
df ∧ dΘ̄− fΞ

)
(Y, Z),

which is identically zero because of the hypothesis of the theorem.
�
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