QUANTIZATION OF TORIC MANIFOLDS

ALEXANDER CAVIEDES CASTRO

1. Construction of Toric Manifolds

1.1. Symplectic construction. Given a convex polytope $\triangle \in \mathbb{R}^{n}$, it gives rise to a symplectic manifold $M^{2 n}$, together with an effective action of the torus $T^{n} \cong\left(S^{1}\right)^{n}$, whose image map is precisely \triangle. The polytope is required to satisty the Delzant conditions. Let \triangle be a Delzant polytope in \mathbb{R}^{n} with N facets (codimension 1 faces). For each facet of \triangle, let $v_{j} \in \mathbb{Z}^{n}$ be the primitive inward-pointing vector normal to the facet. Define a projection π from \mathbb{R}^{N} to \mathbb{R}^{n} by taking the j th basis vector in \mathbb{R}^{N} to v_{j} :

$$
\begin{align*}
\pi: \mathbb{R}^{N} & \rightarrow \mathbb{R}^{n} \tag{1}\\
e_{j} & \mapsto v_{j}
\end{align*}
$$

Since the n-vectors normal to the facets meeting at any one vertex form a \mathbb{Z}-basis for \mathbb{Z}^{n}, the projection π maps \mathbb{Z}^{N} onto \mathbb{Z}^{n} and so induces a map (also called π) between tori

$$
\pi: \mathbb{R}^{N} / \mathbb{Z}^{N} \rightarrow \mathbb{R}^{n} / \mathbb{Z}^{n}
$$

Let K be the kernel of this map and k be the kernel of the map (1) which is the Lie algebra of K. We then get two exact sequences

$$
\begin{align*}
& 1 \longrightarrow K \xrightarrow{i} T^{N} \xrightarrow{\pi} T^{n} \longrightarrow 1 \tag{2}\\
& 1 \longrightarrow \mathbb{R}^{N} \xrightarrow{\pi} \mathbb{R}^{n} \longrightarrow 1
\end{align*}
$$

and the dual sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{R}^{n} \xrightarrow{\pi^{*}} \mathbb{R}^{N} \xrightarrow{i^{*}} k^{*} \longrightarrow 0 \tag{3}
\end{equation*}
$$

(here \mathbb{R}^{n} and \mathbb{R}^{N} have been identifyed with $\left(\mathbb{R}^{n}\right)^{*}$ and $\left(\mathbb{R}^{N}\right)^{*}$ respectively). Using the vectors v_{j}, we can write the polytope as

$$
\triangle=\left\{x \in \mathbb{R}^{n}:\left\langle x, v_{j}\right\rangle \geq \lambda_{j}, 1 \leq j \leq N\right\}
$$

for some real numbers λ_{j}. This gives us a vector $\lambda \in \mathbb{R}^{N}$.
Claim 1. Let $\nu=i^{*}(-\lambda) \in k^{*}$ and $\triangle^{\prime}=i^{*-1}(\nu) \cap \mathbb{R}_{+}^{N}$, where \mathbb{R}_{+}^{N} is the positive quadrant in \mathbb{R}^{N}. Then the map $\pi^{*}-\lambda$ restricts to an affine bijection from \triangle to \triangle^{\prime}. If $\lambda \in \mathbb{Z}^{N}$, the integer lattice points in \triangle correspond to $\triangle^{\prime} \cap \mathbb{Z}_{+}^{N}$ via the map $\pi^{*}-\lambda$.

The torus T^{N} acts on \mathbb{C}^{N} by componentwise multiplication; this action is Hamiltonian with moment $\operatorname{map} \phi\left(z_{1}, \cdots, z_{N}\right)=\pi\left(\left\|z_{1}\right\|^{2}, \cdots,\left\|z_{N}\right\|^{2}\right)$ (here π means the number π). The inclusion $i: K \hookrightarrow T^{N}$ induces a Hamiltonian action of K on \mathbb{C}^{N} with moment map

$$
\mu=i^{*} \circ \phi
$$

from $\mathbb{C}^{N} \rightarrow k^{*}$.
Let $M_{\triangle}=\mu^{-1}(\nu) / K$ and ω_{\triangle} be the symplectic reduced form. The action of T^{N} on \mathbb{C}^{N} commutes with the action of K and thus descends to a Hamiltonian action on the quotient M_{\triangle}. This action is
not effective; however, the quotient torus $T^{n}=T^{N} / K$ acts effectively. It is a theorem of Delzant that M_{\triangle} with this action is a smooth toric manifold, with moment polytope \triangle.
1.2. Complex construction. Begin with a Delzant polytope \triangle as in the previous section, and construct the map and the exact sequences (1) and (2) described there. If we complexify the sequence (2), we get an exact sequence

$$
\begin{equation*}
1 \longrightarrow K_{\mathbb{C}} \xrightarrow{i}\left(\mathbb{C}^{*}\right)^{N} \xrightarrow{\pi}\left(\mathbb{C}^{*}\right)^{n} \longrightarrow 1 \tag{4}
\end{equation*}
$$

Let $F_{1}, F_{2}, \cdots, F_{N}$ be the facets of \triangle. Define a family \mathcal{F} of subsets of $\{1,2, \cdots, N\}$ as follows:

$$
\begin{aligned}
& \bullet \emptyset \in \mathcal{F} \\
& \bullet / \in \mathcal{F} \text { iff } \cap_{j \in J} F_{j} \neq \emptyset
\end{aligned}
$$

Given a point $\left(z_{1}, \cdots, z_{N}\right) \in \mathbb{C}^{N}$, let I_{z} be the set $\left\{j: z_{j}=0\right\}$. Let $U_{\mathcal{F}}=\left\{z \in \mathbb{C}^{N}: I_{z} \in \mathcal{F}\right\}$. Notice that $U_{\mathcal{F}}=\mathbb{C}^{N}-Z_{\mathcal{F}}$, where

$$
Z_{\mathcal{F}}=\bigcup_{l}\left\{\left(z_{i}, \cdots, z_{N}\right): z_{i}=0 \quad \forall i \in I\right\}
$$

and where the union is taken over all the sets $I \subset\{1, \cdots, N\}$ for which $\cap_{i \in I} F_{l}=\emptyset$. Note that $Z_{\mathcal{F}}$ is the union of submanifolds of codimension at least 2.

Then it is a theorem that $M=U_{\mathcal{F}} / K_{\mathbb{C}}$, where $K_{\mathbb{C}}$ acts via the inclusion $i: k_{\mathbb{C}} \hookrightarrow\left(\mathbb{C}^{*}\right)^{N}$, is a smooth toric manifold.

Remark: These two constructions yield the same manifold, since $U_{\mathcal{F}}=K_{\mathbb{C}} \cdot \mu^{-1}(\nu)$, so that there is a natural diffeomorphism $U_{\mathcal{F}} / K_{\mathbb{C}} \cong \mu^{-1}(\mu) / K$.

2. Quantization

Let (M, ω) be a manifold with a closed two-form ω. A pre-quantization of (M, ω), or prequatization data for (M, ω), is a Hermitian line bundle (L, h) equipped with a hermitian connection ∇ whose curvature is ω. Such a line bundle exists if $[\omega] \in H^{2}(M, \mathbb{R})$ is integral. Equivalently, a pre-quantization of (M, ω) is a principal $U(1)$-bundle $\pi: P \rightarrow M$ and a connection form Θ on P with curvature ω. Recall that Θ is an $U(1)$-invariant one-form on P satisfying

$$
\Theta\left(\frac{\partial}{\partial \theta}\right)=1
$$

where $\frac{\partial}{\partial \theta}$ is the vector field which generates the principal $U(1)$-action, and $\pi^{*} \omega=-d \Theta$
Recall that the one-to-one correspondence between Hermitian line bundles and principal $U(1)$-bundles associates to (L, h) its unit circle bundle

$$
P=\{v \in L: h(v, v)=1\}
$$

and, conversely, associates to P the line bundle

$$
L=P \times_{U(1)} \mathbb{C} .
$$

The pre-quantization (L, h, ∇) uniquely determines the pre-quantization (P, Θ) and vice-versa, and the covariant derivative

$$
\nabla: \Gamma(L) \rightarrow \Omega^{1}(M ; L)
$$

satisfies the equation

$$
\frac{\nabla s}{s}=i s^{*} \Theta
$$

for any section $s \in P \subset L$.

Theorem 1. The toric manifold $\left(M_{\triangle}, \omega_{\triangle}\right)$ constructed from a Delzant polytope \triangle is prequantizable if the $\lambda \in \mathbb{R}^{N}$ appearing in the symplectic construction is in \mathbb{Z}^{n}. Moreover, if the toric manifold M is presented as $U_{\mathcal{F}} / K_{\mathbb{C}}$ then

$$
L=U_{\mathcal{F}} \times K_{\mathbb{C}} \mathbb{C}
$$

is a prequantization line bundle, where $K_{\mathbb{C}}$ acts on \mathbb{C} with weight $\nu=i^{*}(-\lambda) \in k^{*}$
Proof. I will work with the same notation that was used in the section 1.1 Let $\omega=-\pi i \sum_{i=1}^{N} d z_{i} \wedge d \bar{z}_{i}$ be the standard symplectic form of \mathbb{C}^{N} and let β be a K invariant one-form on \mathbb{C}^{N} with $d \beta=-\omega$ and $\iota_{\xi_{\mathbb{C}^{N}}} \beta=-\mu^{\xi}$ for all $\xi \in k$. Then $\left(\mathbb{C}^{N}, \omega\right)$ can be pre-quantized by the trivial $U(1)$-bundle $P=\mathbb{C}^{N} \times U(1)$ with connection one-form $\Theta=d \theta+p r^{*} \beta$, where θ is the angle coordinate on $U(1)$ and $p r: P \rightarrow \mathbb{C}^{N}$ is the projection on the first component. Let the torus $K \subset T^{n}$ acts on $\mathbb{C}^{N} \times U(1)$ with weight ν on the second component, and via the inclusion $i: K \hookrightarrow T^{N}$ and the standard action of T^{N} on \mathbb{C}^{N} on the first component.

Notice that $d \Theta=-p r^{*} \omega, \xi_{P}=\xi_{\mathbb{C}^{N}}+\nu^{\xi} \frac{\partial}{\partial \theta}$, and $\Theta\left(\xi_{P}\right)=p r^{*}\left(-\mu^{\xi}+\nu^{\xi}\right)$ for all $\xi \in k$. The quotient

$$
((-\mu+\nu) \circ p r)^{-1}(0) / K=\mu^{-1}(\nu) \times_{K} U(1)
$$

is a $U(1)$-bundle over $\mu^{-1}(\nu) / K$. Since $\Theta\left(\xi_{P}\right)=p r^{*}\left(-\mu^{\xi}+\nu^{\xi}\right)=0$ on $\mu^{-1}(\nu)$, the restriction to

$$
((-\mu+\nu) \circ p r)^{-1}(0) \in P
$$

of the connection form Θ is horizontal with respect to the fibration

$$
(p r \circ(-\mu+\nu))^{-1}(0) \rightarrow \mu^{-1}(\nu) \times_{k} U(1)
$$

and hence is basic. Thus it descends to a connection Θ_{0} on the principal bundle $\mu^{-1}(\nu) \times_{K} U(1) \rightarrow M$. The pair $\left(\mu^{-1}(\nu) \times_{K} U(1), \Theta_{0}\right)$ provide us with a pre-quantization for $\left(M_{\triangle}, \omega_{\triangle}\right)$
Definition 2.1. If (M, ω) is a toric manifold, and (L, h, ∇) is a prequantization for (M, ω) where L is taken to be a holomorphic line bundle, the quantization space $\mathcal{Q}(M)$ is the space of holomorphic sections of L over $M: \mathcal{Q}(M)=\Gamma_{\mathcal{O}}(M, L)$.
Theorem 2. Let M_{\triangle} be a toric manifold, with moment polytope $\triangle \subset \mathbb{R}^{n}$. Then the dimension of the space of holomorphic sections of $U_{\mathcal{F}} \times{ }_{K_{\mathbb{C}}} \mathbb{C}$, the quantization space, is equal to the number of integer lattice points in \triangle,

$$
\operatorname{dim} \Gamma_{\mathcal{O}}(M, L)=\sharp\left(\triangle \cap \mathbb{Z}^{n}\right)
$$

Proof (Sketch). A holomorphic section of $L=\left(U_{\mathcal{F}} \times \mathbb{C}\right) / K_{\mathbb{C}}$ over $M=U_{\mathcal{F}} / K_{\mathbb{C}}$ corresponds to a $K_{\mathbb{C}}$-equivariant holomorphic function $s^{\prime}: U_{\mathcal{F}} \rightarrow \mathbb{C}$. As a consequence of Hartog's theorem s^{\prime} extends to a holomorphic function s on all of \mathbb{C}^{N} (here is used that the complement of $U_{\mathcal{F}}$ is the union of submanifolds of codimension at least 2).

We are looking for a $K_{\mathbb{C}}$-equivariant, holomorphic function $s: \mathbb{C}^{N} \rightarrow \mathbb{C}$, where the action of $K_{\mathbb{C}}$ on \mathbb{C} is with weight ν, and the action on \mathbb{C}^{N} is via the inclusion $i: K_{\mathbb{C}} \hookrightarrow\left(\mathbb{C}^{*}\right)^{N}$ and the standard action of $\left(\mathbb{C}^{*}\right)^{N}$ on \mathbb{C}^{N}. Write such a function s with a Taylor series

$$
s=\sum_{l \in \mathbb{Z}_{+}^{N}} a_{l} z^{\prime}
$$

Suppose that $s(z)=z^{\prime}$, and see when it is equivariant. First for $k \in K_{\mathbb{C}} \subset\left(\mathbb{C}^{*}\right)^{N}$ and $z \in \mathbb{C}^{N}$

$$
s(k \cdot z)=s(i(k) \cdot z)=(i(k) \cdot z)^{\prime}=i(k)^{\prime} z^{\prime}=k^{i^{*}(I)} z^{\prime} .
$$

On the other hand,

$$
k \cdot s(z)=k^{\nu} \cdot z^{\prime}
$$

Thus $s(k \cdot z)=k \cdot s(z)$ when $i^{*}(I)=\nu$. Therefore a basis for $\Gamma_{\mathcal{O}}(M, L)$ is

$$
\left\{z^{\prime}: i^{*}(I)=\nu, I \in \mathbb{Z}_{+}^{N}\right\}=\left\{z^{\prime}: I \in \mathbb{Z}_{+}^{N} \cap i^{*-1}(\nu)\right\}
$$

which corresponds with the set of integer lattice points in the moment polytope \triangle.

3. Example

Let's consider the polytope shown in the picture:

The five normal vectors are

$$
v_{1}=(0,1) \quad v_{2}=(-1,0) \quad v_{3}=(-1,-1) \quad v_{4}=(0,-1) \quad v_{5}=(1,0)
$$

and λ is $(0,-4,-5,-4,0)$. The map $\pi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ is represented by the matrix

$$
\left(\begin{array}{ccccc}
0 & -1 & -1 & 0 & 1 \\
1 & 0 & -1 & -1 & 0
\end{array}\right)
$$

or writing the coordinates of \mathbb{R}^{5} as $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$,

$$
\pi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(-x_{2}-x_{3}+x_{5}, x_{1}-x_{3}-x_{4}\right)
$$

The kernel of this map is $k=\left\{x_{1}=x_{3}+x_{4}, x_{5}=x_{2}+x_{3}\right\}=\operatorname{span}\{(0,1,0,0,1),(1,0,1,0,1),(1,0,0,1,0)\}$ which is identified with \mathbb{R}^{3} by the map $i: \mathbb{R}^{3} \rightarrow k \subset \mathbb{R}^{5}, i\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}+x_{3}, x_{1}, x_{2}, x_{3}, x_{1}+x_{2}\right)$. The map π on tori is

$$
\pi\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right)=\left(\frac{\theta_{5}}{\theta_{2} \cdot \theta_{3}}, \frac{\theta_{1}}{\theta_{3} \cdot \theta_{4}}\right)
$$

with kernel K which is identified with T^{3} by the map $i: T^{3} \rightarrow K \subset T^{5}, i\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\theta_{2} \theta_{3}, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{1} \theta_{2}\right)$. The map i^{*} is given by the transpose matrix

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

or writing in coordinates $i^{*}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{2}+x_{5}, x_{1}+x_{3}+x_{5}, x_{1}+x_{4}\right)$, so $\nu=i^{*}(-(0,-4,-5,-4,0))=$ (4, 5, 4).

The hamiltonian action of $K=T^{3}$ on \mathbb{C}^{5} is given by

$$
\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \cdot\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=\left(\theta_{2} \theta_{3} z_{1}, \theta_{1} z_{2}, \theta_{2} z_{3}, \theta_{3} z_{4}, \theta_{1} \theta_{2} z_{5}\right)
$$

with moment $\operatorname{map} \mu: \mathbb{C}^{5} \rightarrow k^{*} \cong \mathbb{R}^{3}, \mu\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=\pi\left(\left\|z_{2}\right\|^{2}+\left\|z_{5}\right\|^{2},\left\|z_{1}\right\|^{2}+\left\|z_{3}\right\|^{2}+\right.$ $\left\|z_{5}\right\|^{2},\left\|z_{1}\right\|^{2}+\left\|z_{4}\right\|^{2}$) (here π is the number). So that $\mu^{-1}(\nu)=\left\{z \in \mathbb{C}^{5}:\left\|z_{2}\right\|^{2}+\left\|z_{5}\right\|^{2}=\right.$ $\left.\frac{4}{\pi},\left\|z_{1}\right\|^{2}+\left\|z_{3}\right\|^{2}+\left\|z_{5}\right\|^{2}=\frac{5}{\pi},\left\|z_{1}\right\|^{2}+\left\|z_{4}\right\|^{2}=\frac{4}{\pi}\right\}$ and $M_{\Delta}=\mu^{-1}(\nu) / K$ which is diffeomorphic to $\left(\mathbb{C P}^{1} \times \mathbb{C P}^{1}\right) \sharp \overline{\mathbb{C P}^{2}} \cong \mathbb{C P}^{2} \sharp \mathbb{C P}^{2} \sharp \mathbb{C P}^{2}$.

For the complex construction, labelling the faces using the same numbering that was used for the normal vector the collection of subsets \mathcal{F} corresponding to this polytope is

$$
\mathcal{F}=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{5\},\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\}\}
$$

and

$$
U_{\mathcal{F}}=\mathbb{C}^{5} \backslash\left\{\left\{z_{1}=0=z_{3}\right\} \cup\left\{z_{1}=0=z_{4}\right\} \cup\left\{z_{2}=0=z_{4}\right\} \cup\left\{z_{2}=0=z_{5}\right\} \cup\left\{z_{3}=0=z_{5}\right\}\right\}
$$

The quotient of $U_{\mathcal{F}}$ by the complexified action of $K_{\mathbb{C}}$ is M_{\triangle}. The prequantum line bundle will be $L=$ $U_{\mathcal{F}} \times K_{\mathbb{C}} \mathbb{C}$ where $K_{\mathbb{C}} \cong\left(\mathbb{C}^{*}\right)^{3}$ acts on \mathbb{C} with weight $(4,5,4)$, i.e, for $\left(k_{1}, k_{2}, k_{3}\right) \in \mathbb{C}^{3},\left(k_{1}, k_{2}, k_{3}\right) \cdot z=$ $k_{1}^{4} k_{2}^{5} k_{3}^{4} z$.

For the space of sections we are looking for $K_{\mathbb{C}}$-equivariant holomorphic functions $s: \mathbb{C}^{5} \rightarrow \mathbb{C}$. So, take s to be a monomial $z_{1}^{j_{1}} z_{2}^{j_{2}} z_{3}^{j_{3}} z_{4}^{j_{4}} z_{5}^{j_{5}}, j_{i} \in \mathbb{Z}_{\geq 0}$. For $\left(k_{1}, k_{2}, k_{3}\right) \in\left(\mathbb{C}^{*}\right)^{3} \cong K_{\mathbb{C}}$,

$$
\begin{aligned}
s(k \cdot z) & =\left(k_{1}, k_{2}, k_{3}\right) \cdot\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=\left(k_{2} k_{3} z_{1}\right)^{j_{1}}\left(k_{1} z_{2}\right)^{j_{2}}\left(k_{2} z_{3}\right)^{j_{3}}\left(k_{3} z_{4}\right)^{j_{4}}\left(k_{1} k_{2} z_{5}\right)^{j_{5}} \\
& =k_{1}^{j_{2}+j_{5}} k_{2}^{j_{1}+j_{3}+j_{5}} k_{3}^{j_{1}+j_{4}} z_{1}^{j_{1}} z_{2}^{j_{2}} z_{3}^{j_{3}} z_{4}^{j_{4}} z_{5}^{j_{5}},
\end{aligned}
$$

on the other hand

$$
k \cdot s(z)=k_{1}^{4} k_{2}^{5} k_{3}^{4} z_{1}^{j_{1}} z_{2}^{j_{2}} z_{3}^{j_{3}} z_{4}^{j_{4}} z_{5}^{j_{5}},
$$

so that $j_{2}+j_{5}=4, j_{1}+j_{3}+j_{5}=5, j_{1}+j_{4}=4$; which is precisely the set of integer points in $i^{*}(4,5,4)^{-1} \cap \mathbb{Z}_{+}^{3}$. Recall that $\triangle \cap \mathbb{Z}^{2}$ is in correspondence with $i^{*}(4,5,4)^{-1} \cap \mathbb{Z}_{+}^{3}$ by the map $\pi^{*}-\lambda$. So every integer point of \triangle represents a basis element of $\Gamma_{\mathcal{O}}(M, L)$:

Bibliography
[1] Ana Cannas da Silva. Lectures on Symplectic Geometry, volume 1764. Springer, 2001.
[2] Mark D. Hamilton. The quantization of a toric manifold is given by the integer lattice points in the moment polytope. arXiv: 0708.2710v2, 2008.
[3] Victor Guillemin Viktor Ginzburg and Yael Karshon. Moment maps, cobordisms, and hamiltonian group actions. Mathematical Surveys and Monographs, 98, 2002.

