
QUANTIZATION OF TORIC MANIFOLDS

ALEXANDER CAVIEDES CASTRO

1. Construction of Toric Manifolds

1.1. Symplectic construction. Given a convex polytope 4 2 Rn; it gives rise to a symplectic manifold

M2n; together with an e�ective action of the torus T n �= (S1)n; whose image map is precisely 4: The

polytope is required to satisty the Delzant conditions. Let 4 be a Delzant polytope in Rn with N facets

(codimension 1 faces). For each facet of 4; let vj 2 Z
n be the primitive inward-pointing vector normal

to the facet. De�ne a projection � from R
N to Rn by taking the j th basis vector in RN to vj :

� : RN ! R
n(1)

ej 7! vj

Since the n-vectors normal to the facets meeting at any one vertex form a Z-basis for Zn; the projection

� maps ZN onto Zn and so induces a map (also called �) between tori

� : RN=ZN ! R
n=Zn

Let K be the kernel of this map and k be the kernel of the map (1) which is the Lie algebra of K: We

then get two exact sequences

(2)
1 ����! K

i
����! TN �

����! T n ����! 1

1 ����! k
i

����! R
N �
����! R

n ����! 1

and the dual sequence

(3) 0 ����! R
n ��

����! R
N i�

����! k� ����! 0

(here Rn and RN have been identifyed with (Rn)� and (RN)� respectively). Using the vectors vj ; we

can write the polytope as

4 = fx 2 Rn : hx; vji � �j ; 1 � j � Ng

for some real numbers �j : This gives us a vector � 2 RN :

Claim 1. Let � = i�(��) 2 k� and 40 = i��1(�)\RN
+; where R

N
+ is the positive quadrant in RN : Then

the map �� � � restricts to an a�ne bijection from 4 to 40: If � 2 ZN ; the integer lattice points in

4 correspond to 40 \ ZN
+ via the map �� � �:

The torus TN acts on CN by componentwise multiplication; this action is Hamiltonian with moment

map �(z1; � � � ; zN) = �(kz1k
2; � � � ; kzNk

2) (here � means the number �). The inclusion i : K ,! TN

induces a Hamiltonian action of K on CN with moment map

� = i� � �

from C
N ! k�:

Let M4 = ��1(�)=K and !4 be the symplectic reduced form. The action of TN on CN commutes

with the action of K and thus descends to a Hamiltonian action on the quotient M4: This action is
1
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not e�ective; however, the quotient torus T n = TN=K acts e�ectively. It is a theorem of Delzant that

M4 with this action is a smooth toric manifold, with moment polytope 4:

1.2. Complex construction. Begin with a Delzant polytope4 as in the previous section, and construct

the map and the exact sequences (1) and (2) described there. If we complexify the sequence (2), we

get an exact sequence

(4) 1 ����! KC
i

����! (C�)N
�

����! (C�)n ����! 1

Let F1; F2; � � � ; FN be the facets of 4: De�ne a family F of subsets of f1; 2; � � � ; Ng as follows:

�; 2 F

�I 2 F i� \j2J Fj 6= ;

Given a point (z1; � � � ; zN) 2 C
N , let Iz be the set fj : zj = 0g: Let UF = fz 2 CN : Iz 2 Fg: Notice

that UF = C
N � ZF ; where

ZF =
⋃
I

f(zi ; � � � ; zN) : zi = 0 8i 2 Ig

and where the union is taken over all the sets I � f1; � � � ; Ng for which \i2IFI = ;: Note that ZF is

the union of submanifolds of codimension at least 2.

Then it is a theorem that M = UF=KC; where KC acts via the inclusion i : kC ,! (C�)N ; is a

smooth toric manifold.

Remark: These two constructions yield the same manifold, since UF = KC � ��1(�); so that there

is a natural di�eomorphism UF=KC
�= ��1(�)=K:

2. Quantization

Let (M;!) be a manifold with a closed two-form !: A pre-quantization of (M;!), or prequatization

data for (M;!); is a Hermitian line bundle (L; h) equipped with a hermitian connection r whose

curvature is !: Such a line bundle exists if [!] 2 H2(M;R) is integral. Equivalently, a pre-quantization

of (M;!) is a principal U(1)-bundle � : P ! M and a connection form � on P with curvature !.

Recall that � is an U(1)-invariant one-form on P satisfying

�
( @

@�

)
= 1

where @
@�

is the vector �eld which generates the principal U(1)-action, and ��! = �d�

Recall that the one-to-one correspondence between Hermitian line bundles and principal U(1)-bundles

associates to (L; h) its unit circle bundle

P = fv 2 L : h(v ; v) = 1g;

and, conversely, associates to P the line bundle

L = P �U(1) C:

The pre-quantization (L; h;r) uniquely determines the pre-quantization (P;�) and vice-versa, and the

covariant derivative

r : �(L)! 
1(M;L)

satis�es the equation
rs

s
= i s��

for any section s 2 P � L:
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Theorem 1. The toric manifold (M4; !4) constructed from a Delzant polytope 4 is prequantizable

if the � 2 RN appearing in the symplectic construction is in Zn: Moreover, if the toric manifold M is

presented as UF=KC then

L = UF �K
C
C

is a prequantization line bundle, where KC acts on C with weight � = i�(��) 2 k�

Proof. I will work with the same notation that was used in the section 1.1. Let ! = ��i
∑N

i=1 dzi ^d �zi
be the standard symplectic form of CN and let � be a K invariant one-form on CN with d� = �! and

��CN � = ��� for all � 2 k: Then (CN ; !) can be pre-quantized by the trivial U(1)-bundle P = C
N�U(1)

with connection one-form � = d� + pr ��; where � is the angle coordinate on U(1) and pr : P ! C
N

is the projection on the �rst component. Let the torus K � T n acts on CN � U(1) with weight � on

the second component, and via the inclusion i : K ,! TN and the standard action of TN on CN on the

�rst component.

Notice that d� = �pr �!; �P = �
C
N +�� @

@�
; and �(�P ) = pr �(���+��) for all � 2 k: The quotient

((��+ �) � pr)�1(0)=K = ��1(�)�K U(1)

is a U(1)-bundle over ��1(�)=K: Since �(�P ) = pr �(��� + ��) = 0 on ��1(�); the restriction to

((��+ �) � pr)�1(0) 2 P

of the connection form � is horizontal with respect to the �bration

(pr � (��+ �))�1(0)! ��1(�)�K U(1);

and hence is basic. Thus it descends to a connection �0 on the principal bundle ��1(�)�K U(1)! M:

The pair (��1(�)�K U(1);�0) provide us with a pre-quantization for (M4; !4) �

De�nition 2.1. If (M;!) is a toric manifold, and (L; h;r) is a prequantization for (M;!) where L

is taken to be a holomorphic line bundle, the quantization space Q(M) is the space of holomorphic

sections of L over M : Q(M) = �O(M;L):

Theorem 2. Let M4 be a toric manifold, with moment polytope 4 � R
n: Then the dimension of the

space of holomorphic sections of UF �K
C
C, the quantization space, is equal to the number of integer

lattice points in 4;

dim�O(M;L) = ](4\ Zn)

Proof (Sketch). A holomorphic section of L = (UF � C)=KC over M = UF=KC corresponds to a

KC-equivariant holomorphic function s 0 : UF ! C: As a consequence of Hartog's theorem s 0 extends

to a holomorphic function s on all of CN (here is used that the complement of UF is the union of

submanifolds of codimension at least 2).

We are looking for a KC-equivariant, holomorphic function s : CN ! C; where the action of KC on

C is with weight �; and the action on CN is via the inclusion i : KC ,! (C�)N and the standard action

of (C�)N on CN : Write such a function s with a Taylor series

s =
∑
I2Z

N

+

aIz
I :

Suppose that s(z) = z I ; and see when it is equivariant. First for k 2 KC � (C�)N and z 2 CN

s(k � z) = s(i(k) � z) = (i(k) � z)I = i(k)Iz I = k i
�(I)z I :

On the other hand,

k � s(z) = k� � z I :
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Thus s(k � z) = k � s(z) when i�(I) = �: Therefore a basis for �O(M;L) is

fz I : i�(I) = �; I 2 ZN
+g = fz I : I 2 ZN

+ \ i��1(�)g;

which corresponds with the set of integer lattice points in the moment polytope 4:

�

3. Example

Let's consider the polytope shown in the picture:

.......................................................................................................................................................................................
............
............
................
..................
..................
..................
..................
..................
..................
..................
..................
..................
.................................................................................................................................................................................................................................

(0; 0) (4; 0)

(4; 1)

(1; 4)(0; 4)

The �ve normal vectors are

v1 = (0; 1) v2 = (�1; 0) v3 = (�1;�1) v4 = (0;�1) v5 = (1; 0)

and � is (0;�4;�5;�4; 0): The map � : R5 ! R
2 is represented by the matrix(

0 �1 �1 0 1

1 0 �1 �1 0

)
;

or writing the coordinates of R5 as (x1; x2; x3; x4; x5);

�(x1; x2; x3; x4; x5) = (�x2 � x3 + x5; x1 � x3 � x4)

The kernel of this map is k = fx1 = x3+x4; x5 = x2+x3g = spanf(0; 1; 0; 0; 1); (1; 0; 1; 0; 1); (1; 0; 0; 1; 0)g

which is identi�ed with R3 by the map i : R3 ! k � R
5; i(x1; x2; x3) = (x2 + x3; x1; x2; x3; x1 + x2):

The map � on tori is

�(�1; �2; �3; �4; �5) =
( �5

�2 � �3
;

�1

�3 � �4

)
with kernelK which is identi�ed with T 3 by the map i : T 3 ! K � T 5; i(�1; �2; �3) = (�2�3; �1; �2; �3; �1�2):

The map i� is given by the transpose matrix0 1 0 0 1

1 0 1 0 1

1 0 0 1 0

 ;

or writing in coordinates i�(x1; x2; x3; x4; x5) = (x2+x5; x1+x3+x5; x1+x4); so � = i�(�(0;�4;�5;�4; 0)) =

(4; 5; 4):

The hamiltonian action of K = T 3 on C5 is given by

(�1; �2; �3) � (z1; z2; z3; z4; z5) = (�2�3z1; �1z2; �2z3; �3z4; �1�2z5)

with moment map � : C5 ! k� �= R
3; �(z1; z2; z3; z4; z5) = �(kz2k

2 + kz5k
2; kz1k

2 + kz3k
2 +

kz5k
2; kz1k

2 + kz4k
2) (here � is the number). So that ��1(�) = fz 2 C

5 : kz2k
2 + kz5k

2 =
4
�
; kz1k

2 + kz3k
2 + kz5k

2 = 5
�
; kz1k

2 + kz4k
2 = 4

�
g and M4 = ��1(�)=K which is di�eomorphic

to (CP1 � CP1)]CP2 �= CP
2]CP2]CP2.
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For the complex construction, labelling the faces using the same numbering that was used for the

normal vector the collection of subsets F corresponding to this polytope is

F = f;; f1g; f2g; f3g; f4g; f5g; f1; 2g; f2; 3g; f3; 4g; f4; 5g; f5; 1gg

and

UF = C
5
r ffz1 = 0 = z3g [ fz1 = 0 = z4g [ fz2 = 0 = z4g [ fz2 = 0 = z5g [ fz3 = 0 = z5gg

The quotient of UF by the complexi�ed action of KC is M4: The prequantum line bundle will be L =

UF�K
C
C where KC

�= (C�)3 acts on C with weight (4; 5; 4); i.e, for (k1; k2; k3) 2 C
3; (k1; k2; k3) �z =

k41k
5
2k

4
3 z:

For the space of sections we are looking for KC-equivariant holomorphic functions s : C5 ! C: So,

take s to be a monomial z j11 z
j2
2 z

j3
3 z

j4
4 z

j5
5 ; ji 2 Z�0: For (k1; k2; k3) 2 (C�)3 �= KC;

s(k � z) = (k1; k2; k3) � (z1; z2; z3; z4; z5) = (k2k3z1)
j1(k1z2)

j2(k2z3)
j3(k3z4)

j4(k1k2z5)
j5

= k j2+j51 k j1+j3+j52 k j1+j43 z j11 z
j2
2 z

j3
3 z

j4
4 z

j5
5 ;

on the other hand

k � s(z) = k41k
5
2k

4
3 z

j1
1 z

j2
2 z

j3
3 z

j4
4 z

j5
5 ;

so that j2 + j5 = 4; j1 + j3 + j5 = 5; j1 + j4 = 4; which is precisely the set of integer points in

i�(4; 5; 4)�1 \Z3+: Recall that 4\Z2 is in correspondence with i�(4; 5; 4)�1 \Z3+ by the map �� � �:

So every integer point of 4 represents a basis element of �O(M;L) :

..............................................................................................................................................................................................................................................................................................................................................................................................
............
............
............
............
............
............
...............
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

z
4
2
z
5
3
z
4
4

z
3
2
z
4
3
z
4
4
z5 z

2
2
z
3
3
z
4
4
z
2
5

z2z
2
3
z
4
4
z
3
5

z3z
4
4
z
4
5

z1z
4
2
z
4
3
z
3
4

z1z
3
2
z
3
3
z
3
4
z5 z1z

2
2
z
2
3
z
3
4
z
2
5

z1z2z3z
3
4
z
3
5

z1z
3
4
z
4
5

z
2
1
z
4
2
z
3
3
z
2
4

z
2
1
z
3
2
z
2
3
z
2
4
z5 z

2
1
z
2
2
z3z

2
4
z
2
5

z
2
1
z2z

2
4
z
3
5

z
3
1
z
4
2
z
2
3
z4 z

3
1
z
3
2
z3z4z5 z

3
1
z
2
2
z4z

2
5

z
4
1
z
4
2
z3 z

4
1
z
3
2
z5
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