DIFFERENTIAL FORMS ON SYMPLECTIC QUOTIENTS

KIRILL LEVIN

ABSTRACT. We summarize the de Rham model for symplectic quotients, which was introduced by Sjamaar [1]. This theory gives a nice definition for differential forms on the symplectic quotient of a Hamiltonian *G*-manifold even if the quotient itself is not a manifold. We prove a version of the Poincaré lemma and describe how this result implies a version of the de Rham theorem.

1. The symplectic quotient

Let (M, ω) be a connected symplectic manifold, and G a compact Lie group acting on M with moment map $\phi: M \to \mathfrak{g}^*$. Let

$$Z = \phi^{-1}(0)$$

and define the symplectic quotient of M by G to be X := Z/G. If G acts freely on Z, we have seen that Z and X are manifolds and $\Omega(X)$ can be identified with the basic forms on Z. But if G does not act freely on Z, we have no guarantee that either Z or X is a manifold, but we do know that they are both stratified spaces (Sjamaar and Lerman [2]).

Recall that for any closed subgroup H of G,

 $M_{(H)} = \{m \in M : \operatorname{Stab}_G(m) \text{ is conjugate to } H\}$

is a smooth submanifold of M, and its connected components are the orbit-type strata. We have shown that there exists a partial order defined on the orbit type strata, given by $M_a \leq M_b$ if $M_a \subset \overline{M_b}$, and that there exists a unique maximal element $M_{\text{top}} \subset M$, called *the principal stratum*, which is open and dense.

Define $Z_{(H)} = Z \cap M_{(H)}$. Then $Z_{(H)}$ is indeed a smooth G-stable submanifold of M, and the decomposition

$$Z = \coprod_{a \in A} Z_a$$

is a stratification of Z, where $\{Z_a : a \in A\}$ is the collection of connected components of manifolds of the form $Z_{(H)}$, so Z has a principal stratum, Z_{top} . In fact, the stratification is a Whitney stratification (Sjamaar and Lerman [2]), so it satisfies *Whitney's condition* A:

Given any two strata Z_a and Z_b , if a sequence of points $\{z_n\}_{n=1}^{\infty}$ in Z_a converges to $z \in Z_b$, and the sequence of tangent spaces $\{T_{z_n}Z_a\}_{n=1}^{\infty}$ converges to some tangent space T, then $T_zZ_b \subset T$.

This stratification on Z induces a stratification on X into symplectic manifolds, given by $X_a = Z_a/G$, and the principal stratum X_{top} is open and dense in X. Denote the standard inclusion and projection by $i_a : Z_a \hookrightarrow M$ and $\pi_a : Z_a \to X_a$ respectively. If U is an open subset of X, then we get a stratification on U from the stratification on X via $U_{(H)} := U \cap X_{(H)}$, so in particular, there is a principal stratum U_{top} , which is open and dense in U.

KIRILL LEVIN

2. DIFFERENTIAL FORMS ON THE SYMPLECTIC QUOTIENT

We define a differential form on the symplectic quotient to be a differential form $\alpha \in \Omega(X_{\text{top}})$ such that there exists a form $\tilde{\alpha} \in \Omega(M)$ satisfying $\pi^*_{\text{top}}\alpha = i^*_{\text{top}}\tilde{\alpha}$. We say that $\tilde{\alpha}$ induces α , and denote the collection of such forms on X by $\Omega(X)$. Notice that if $X = X_{\text{top}}$, then X and Z are manifolds, and the lift of any form can be extended to M, so this definition agrees with the standard definition. By the standard averaging argument of replacing $\tilde{\alpha}$ by $\int_{g \in G} g^* \tilde{\alpha} \, dg$, we may assume without loss of generality that $\tilde{\alpha}$ is G-invariant.

If $\alpha \in \Omega(X)$, there exists $\tilde{\alpha}$ such that $\pi^*_{top}\alpha = i^*_{top}\tilde{\alpha}$. Hence,

$$\pi^*_{\rm top}(d\alpha) = d(\pi^*_{\rm top}\alpha) = d(i^*_{\rm top}\tilde{\alpha}) = i^*_{\rm top}(d\tilde{\alpha}),$$

so $d\alpha \in \Omega(X)$. Thus, $\Omega(X)$ is a subcomplex of $\Omega(X_{top})$. With a similar computation, we see that it is closed under the wedge product. We refer to this complex as the de Rham complex of X.

If U is an open subset of X, a differential form on U is a differential form on U_{top} such that, for every $x \in U$, there exists $\alpha' \in \Omega(X)$ and an open neighbourhood U' of x in U s.t. $\alpha|_{U'_{\text{top}}} = \alpha$. Denote the set of differential forms on U by $\Omega(U)$. It can be verified that $\Omega: U \to \Omega(U)$ is indeed a sheaf, and that its space of global sections is $\Omega(X)$.

We say that a differential form $\beta \in \Omega(M)$ is ϕ -basic if it is *G*-invariant and $i^*_{top}\beta \in \Omega(Z_{top})$ is *G*-horizontal. Denote the set of ϕ -basic forms by $\Omega_{\phi}(M)$. If $\tilde{\beta} \in \Omega_{\phi}(M)$, then $i^*_{top}\tilde{\beta}$ descends to a form $\beta \in \Omega(X_{top})$ because it is *G*-invariant. It is easy to verify that $i^*_{top}(d\tilde{\beta})$ is *G*-horizontal, and clearly $d\tilde{\beta}$ is *G*-invariant, so $d\tilde{\beta} \in \Omega_{\phi}(M)$, and thus $\Omega_{\phi}(M)$ is a subcomplex of $\Omega(M)$.

We get a natural surjection $\Omega_{\phi}(M) \to \Omega(X)$ given by sending $\hat{\beta}$ to the form induced on the quotient from $i^*_{top}\tilde{\beta}$. It is clear that the kernel of this map is the ideal

$$I_{\phi}(M) = \{ \hat{\beta} \in \Omega(M)^G : i_{\text{top}}^* \hat{\beta} = 0 \}.$$

Thus, we conclude that this gives an isomorphism of complexes

(2.1)
$$\Omega(X) \cong \Omega_{\phi}(M)/I_{\phi}(M).$$

Lemma 2.2.

- (1) Let $\beta \in \Omega_{\phi}(M)$. Then $i_a^*\beta$ is a horizontal form on Z_a for all a.
- (2) Let $\beta \in I_{\phi}(M)$. Then $i_a^*\beta = 0$ for all a.
- (3) There is a well-defined restriction map $\Omega(X) \to \Omega(X_a)$ for each stratum X_a .

Proof. Let $\beta \in \Omega_{\phi}(M)$ and $z \in Z_a$. Since Z_{top} is dense, choose a sequence $\{z_n\}_{n=1}^{\infty}$ converging to z. Then by compactness of the Grassmanian, after passing to a subsequence, $\{T_{z_n}Z_{\text{top}}\}_{n=1}^{\infty}$ converges to a subspace T of T_zM . Then from Whitney's Condition A, we have $T_zZ_a \subset T$. By definition, $\iota(\xi_M)\beta|_{z_n} = 0$ on $T_{z_n}Z_{\text{top}}$ for all $\xi \in \mathfrak{g}$, so by continuity, $\iota(\xi_M)\beta|_z = 0$ on T for all ξ . In particular, $\iota(\xi_M)\beta|_z = 0$ on T_zZ_a . This proves the first claim. Similarly, if $\beta \in I_{\phi}(M)$, then $\beta|_{z_n} = 0$ on $T_{z_n}Z_{\text{top}}$, so by continuity, $\beta|_z = 0$ on T. Thus, $\beta_z = 0$ on T_zZ_a . Finally, if $\beta \in \Omega_{\phi}(M)$, then $i_a^*\beta$ descends to a form β_a on X_a . This map $\beta \mapsto \beta_a$ defines a homomorphism $\Omega_{\phi}(M) \to \Omega(X_a)$ for each a. Thus, by the isomorphism (2.1), we get the required restriction map $\Omega(X) \to \Omega(X_a)$.

3. The Poincaré Lemma

Our goal in this section is to prove the following lemma:

Lemma 3.1. (Poincaré Lemma)

Every $x \in X$ has a basis of open neighbourhoods U such that the sequence

$$0 \to \mathbb{R} \xrightarrow{i} \Omega^0(U) \xrightarrow{d} \Omega^1(U) \xrightarrow{d} \cdots$$

is exact, where $i : \mathbb{R} \to \Omega^0(U)$ is natural inclusion.

Let (M', ω', ϕ') be another Hamiltonian *G*-manifold, with $Z' := (\phi')^{-1}(0)$ and X' = Z'/G. As before, we have a stratification of Z' and X'.

We now give an appropriate definition of homotopy in this setting of stratified symplectic quotients. Call a smooth homotopy $F: M \times [0,1] \to M'$ allowable if:

- (1) F is G-equivariant with respect to the given G-actions on M and M' and the trivial action on [0, 1];
- (2) $F_t(Z) \subset Z'$ for all $t \in [0, 1]$;
- (3) $dF_{(z,t)}(T_z Z_{\text{top}}) \subset T_{F(z,t)} Z'_{a(z,t)}$ and $dF_{(z,t)}\left(\frac{\partial}{\partial t}\right) \in T_{F(z,t)} Z'_{a(z,t)}$ for almost all $t \in [0,1]$ and all $z \in Z_{\text{top}}$, where $Z'_{a(z,t)} \subset Z'$ is the stratum of F(z,t).

Given an allowable homotopy F, define an operator $\kappa_F : \Omega(M') \to \Omega(M)$ via $\kappa_F(\gamma) = \int_0^1 \iota(\partial/\partial t) F^* \gamma \, dt$. Then κ_F is a chain homotopy, i.e. it lowers degree by 1 and

$$\kappa_F d + d\kappa_F = F_1^* - F_0^*$$

Furthermore, for any $g \in G$, $\xi \in \mathfrak{g}$, $\gamma \in \Omega(M')$: (3.2) $\kappa_F \circ q^*(\gamma) = q^* \circ \kappa_F(\gamma)$

(3.3)

$$\begin{aligned}
\kappa_F \circ \iota(\xi_{M'})(\gamma) &= \int_0^1 \iota\left(\frac{\partial}{\partial t}\right) F^* \iota(\xi_{M'})\gamma \, dt \\
&= \int_0^1 \iota\left(\frac{\partial}{\partial t}\right) \iota(F_*(\xi_{M'}))F^*\gamma \, dt \\
&= \int_0^1 \iota\left(\frac{\partial}{\partial t}\right) \iota(\xi_M)F^*\gamma \, dt \\
&= -\int_0^1 \iota(\xi_M)\iota\left(\frac{\partial}{\partial t}\right)F^*\gamma \, dt \\
&= -\iota(\xi_M)\int_0^1 \iota\left(\frac{\partial}{\partial t}\right)F^*\gamma \, dt \\
&= -\iota(\xi_M) \circ \kappa_F(\gamma)
\end{aligned}$$

Example 3.4. Let (V, ω) be a symplectic vector space on which G acts linearly and symplectically. Then a moment map is given by $\phi_V^{\xi} = \frac{1}{2}\omega(\xi v, v)$. Define $F: V \times [0,1] \to V$ via F(v,t) = tv. Clearly, this map is smooth, G-equivariant, and preserves Z. Also, for $t \neq 0$, $F_t(v)$ has the same stabilizer as v, so $F_t(Z_{top}) \subset Z_{top}$, so this is an allowable homotopy. If B is any G-invariant open ball centred at the origin, F defines an allowable homotopy $B \times [0,1] \to B$.

Lemma 3.5. Let $F : M \times [0,1] \to M'$ be an allowable homotopy. Then the homotopy operator $\kappa_F : \Omega(M') \to \Omega(M)$ sends $\Omega_{\phi'}(M')$ to $\Omega_{\phi}(M)$ and $I_{\phi'}(M')$ to $I_{\phi}(M)$, so it induces a homotopy $\kappa_F : \Omega(X') \to \Omega(X)$.

KIRILL LEVIN

Proof. Let $\gamma \in \Omega^k_{\phi'}(M')$, and let $z \in Z_{top}$, $v \in \Lambda^{k-1}(T_z Z_{top})$. Then by (3.3),

$$\iota(\xi_M)(\kappa_F\gamma)_z(v) = \int_0^1 \psi(t) \ dt,$$

where $\psi(t) = -\gamma_{F(z,t)}(\xi_{M'}, F_* \frac{\partial}{\partial t}, (F_t)_* v)$. Let $Z'_{a(z,t)}$ be the stratum of Z' containing F(z,t). Since F is allowable,

$$F_* \frac{\partial}{\partial t} \in T_{F(z,t)} Z'_{a(z,t)} \quad \text{and} \quad (F_t)_* v \in \Lambda^{k-1}(T_{F(z,t)} Z'_{a(z,t)})$$

for almost all t. But by Lemma 2.2, the restriction of γ to $Z'_{a(z,t)}$ is horizontal, so $\psi(t) = 0$ for almost all t. Thus, $\iota(\xi_M)(\kappa_F\gamma)_z(v) = 0$, i.e. $\kappa_F\gamma \in \Omega_{\phi}^{k-1}(M)$. A similar argument shows that $\kappa_F I_{\phi'}(M') \subset I_{\phi}(M)$.

As a consequence, we conclude by Example 3.4 that $H(\Omega(B)) = H(\Omega(*))$ for any *G*-invariant ball in a symplectic vector space (with a linear, symplectic *G*-action).

Proof of Lemma 3.1. Let $x \in X$ and $z \in Z$ such that $\pi(z) = x$. Let $H = \operatorname{Stab}(z)$, and $V = (T_z G \cdot z)^{\omega}/(T_z G \cdot z)$ be the symplectic slice at z. Let B be an Hinvariant ball in V and let $O := (T^*G \times B)//H$, where H acts on T^*G by left multiplication. By the symplectic slice theorem, for a sufficiently small B, z has a G-invariant open neighbourhood that is isomorphic to O as a Hamiltonian Gmanifold. Let Y = B//H and U = O//G. Then $Y \cong U$ via a stratificationpreserving isomorphism which restricts to a symplectomorphism on each stratum. By Proposition 4.2 in Sjamaar [1], $\Omega(U) \cong \Omega(Y)$. But Y is an invariant ball in a symplectic vector space, so $H(\Omega(Y))$ is trivial, and hence $H(\Omega(U))$ is trivial as well. Letting B shrink to a point yields a basis for the topology at x. \Box

4. A de Rham theorem

Let $\underline{\mathbb{R}}$ be the sheaf of locally constant real-valued functions on X. By Lemma 3.1, the sequence

$$0 \to \underline{\mathbb{R}} \xrightarrow{i} \Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d} \cdots$$

where $i : \mathbb{R} \to \Omega^0$ is the natural inclusion, is an exact sequence. Furthermore, it can be shown that Ω is an acyclic sheaf (i.e. it has trivial sheaf cohomology), so that it is an acyclic resolution of the constant sheaf. Then arguments from sheaf theory (see Warner [3], Section 5) yield a de Rham theorem:

Theorem 4.1. The de Rham cohomology ring $H(\Omega(X))$ is naturally isomorphic to $H(X;\mathbb{R})$, the singular (or Čech) cohomology ring of X.

References

- R. SJAMAAR A de Rham theorem for symplectic quotients. Pacific J. Math., 220(1), 153-166, 2005. arXiv:math/0208080
- [2] R. SJAMAAR, E. LERMAN Stratified symplectic spaces and reduction. Ann. of Math., 134(2), 375-422, 1991.
- [3] F. WARNER Foundations of Differentiable Manifolds and Lie Groups. Springer. New York, 1971.

E-mail address: kirill.levin@math.toronto.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO M5S 2E4, CANADA