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Abstract. We summarize the de Rham model for symplectic quotients, which

was introduced by Sjamaar [1]. This theory gives a nice definition for differen-

tial forms on the symplectic quotient of a Hamiltonian G-manifold even if the
quotient itself is not a manifold. We prove a version of the Poincaré lemma

and describe how this result implies a version of the de Rham theorem.

1. The symplectic quotient

Let (M,ω) be a connected symplectic manifold, and G a compact Lie group
acting on M with moment map φ : M → g∗. Let

Z = φ−1(0)

and define the symplectic quotient of M by G to be X := Z/G. If G acts freely on
Z, we have seen that Z and X are manifolds and Ω(X) can be identified with the
basic forms on Z. But if G does not act freely on Z, we have no guarantee that
either Z or X is a manifold, but we do know that they are both stratified spaces
(Sjamaar and Lerman [2]).

Recall that for any closed subgroup H of G,

M(H) = {m ∈M : StabG(m) is conjugate to H}
is a smooth submanifold of M , and its connected components are the orbit-type
strata. We have shown that there exists a partial order defined on the orbit type
strata, given by Ma ≤ Mb if Ma ⊂ Mb, and that there exists a unique maximal
element Mtop ⊂M , called the principal stratum, which is open and dense.

Define Z(H) = Z ∩M(H). Then Z(H) is indeed a smooth G-stable submanifold
of M , and the decomposition

Z =
∐
a∈A

Za

is a stratification of Z, where {Za : a ∈ A} is the collection of connected components
of manifolds of the form Z(H), so Z has a principal stratum, Ztop. In fact, the
stratification is a Whitney stratification (Sjamaar and Lerman [2]), so it satisfies
Whitney’s condition A:

Given any two strata Za and Zb, if a sequence of points {zn}∞n=1 in Za converges
to z ∈ Zb, and the sequence of tangent spaces {TznZa}∞n=1 converges to some
tangent space T , then TzZb ⊂ T .

This stratification on Z induces a stratification on X into symplectic manifolds,
given by Xa = Za/G, and the principal stratum Xtop is open and dense in X.
Denote the standard inclusion and projection by ia : Za ↪→ M and πa : Za → Xa

respectively. If U is an open subset of X, then we get a stratification on U from
the stratification on X via U(H) := U ∩X(H), so in particular, there is a principal
stratum Utop, which is open and dense in U .
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2. Differential forms on the symplectic quotient

We define a differential form on the symplectic quotient to be a differential form
α ∈ Ω(Xtop) such that there exists a form α̃ ∈ Ω(M) satisfying π∗topα = i∗topα̃.
We say that α̃ induces α, and denote the collection of such forms on X by Ω(X).
Notice that if X = Xtop, then X and Z are manifolds, and the lift of any form
can be extended to M , so this definition agrees with the standard definition. By
the standard averaging argument of replacing α̃ by

∫
g∈G g

∗α̃ dg, we may assume

without loss of generality that α̃ is G-invariant.
If α ∈ Ω(X), there exists α̃ such that π∗topα = i∗topα̃. Hence,

π∗top(dα) = d(π∗topα) = d(i∗topα̃) = i∗top(dα̃),

so dα ∈ Ω(X). Thus, Ω(X) is a subcomplex of Ω(Xtop). With a similar computa-
tion, we see that it is closed under the wedge product. We refer to this complex as
the de Rham complex of X.

If U is an open subset of X, a differential form on U is a differential form on
Utop such that, for every x ∈ U , there exists α′ ∈ Ω(X) and an open neighbourhood
U ′ of x in U s.t. α|U ′

top
= α. Denote the set of differential forms on U by Ω(U). It

can be verified that Ω : U → Ω(U) is indeed a sheaf, and that its space of global
sections is Ω(X).

We say that a differential form β ∈ Ω(M) is φ-basic if it is G-invariant and
i∗topβ ∈ Ω(Ztop) is G-horizontal. Denote the set of φ-basic forms by Ωφ(M). If

β̃ ∈ Ωφ(M), then i∗topβ̃ descends to a form β ∈ Ω(Xtop) because it is G-invariant.

It is easy to verify that i∗top(dβ̃) is G-horizontal, and clearly dβ̃ is G-invariant, so

dβ̃ ∈ Ωφ(M), and thus Ωφ(M) is a subcomplex of Ω(M).

We get a natural surjection Ωφ(M) → Ω(X) given by sending β̃ to the form

induced on the quotient from i∗topβ̃. It is clear that the kernel of this map is the
ideal

Iφ(M) = {β̃ ∈ Ω(M)G : i∗topβ̃ = 0}.
Thus, we conclude that this gives an isomorphism of complexes

(2.1) Ω(X) ∼= Ωφ(M)/Iφ(M).

Lemma 2.2.

(1) Let β ∈ Ωφ(M). Then i∗aβ is a horizontal form on Za for all a.
(2) Let β ∈ Iφ(M). Then i∗aβ = 0 for all a.
(3) There is a well-defined restriction map Ω(X) → Ω(Xa) for each stratum

Xa.

Proof. Let β ∈ Ωφ(M) and z ∈ Za. Since Ztop is dense, choose a sequence {zn}∞n=1

converging to z. Then by compactness of the Grassmanian, after passing to a sub-
sequence, {TznZtop}∞n=1 converges to a subspace T of TzM . Then from Whitney’s
Condition A, we have TzZa ⊂ T . By definition, ι(ξM )β|zn = 0 on TznZtop for all
ξ ∈ g, so by continuity, ι(ξM )β|z = 0 on T for all ξ. In particular, ι(ξM )β|z = 0
on TzZa. This proves the first claim. Similarly, if β ∈ Iφ(M), then β|zn = 0
on TznZtop, so by continuity, β|z = 0 on T . Thus, βz = 0 on TzZa. Finally, if
β ∈ Ωφ(M), then i∗aβ descends to a form βa on Xa. This map β 7→ βa defines a
homomorphism Ωφ(M) → Ω(Xa) for each a. Thus, by the isomorphism (2.1), we
get the required restriction map Ω(X)→ Ω(Xa). �
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3. The Poincaré lemma

Our goal in this section is to prove the following lemma:

Lemma 3.1. (Poincaré Lemma)
Every x ∈ X has a basis of open neighbourhoods U such that the sequence

0→ R i→ Ω0(U)
d→ Ω1(U)

d→ · · ·
is exact, where i : R→ Ω0(U) is natural inclusion.

Let (M ′, ω′, φ′) be another Hamiltonian G-manifold, with Z ′ := (φ′)−1(0) and
X ′ = Z ′/G. As before, we have a stratification of Z ′ and X ′.

We now give an appropriate definition of homotopy in this setting of stratified
symplectic quotients. Call a smooth homotopy F : M × [0, 1]→M ′ allowable if:

(1) F is G-equivariant with respect to the given G-actions on M and M ′ and
the trivial action on [0, 1];

(2) Ft(Z) ⊂ Z ′ for all t ∈ [0, 1];
(3) dF(z,t)(TzZtop) ⊂ TF (z,t)Z

′
a(z,t) and dF(z,t)

(
∂
∂t

)
∈ TF (z,t)Z

′
a(z,t) for almost

all t ∈ [0, 1] and all z ∈ Ztop, where Z ′a(z,t) ⊂ Z
′ is the stratum of F (z, t).

Given an allowable homotopy F , define an operator κF : Ω(M ′) → Ω(M) via

κF (γ) =
∫ 1

0
ι(∂/∂t)F ∗γ dt. Then κF is a chain homotopy, i.e. it lowers degree by

1 and
κF d+ dκF = F ∗1 − F ∗0 .

Furthermore, for any g ∈ G, ξ ∈ g, γ ∈ Ω(M ′):

(3.2) κF ◦ g∗(γ) = g∗ ◦ κF (γ)

κF ◦ ι(ξM ′)(γ) =

∫ 1

0

ι

(
∂

∂t

)
F ∗ι(ξM ′)γ dt

=

∫ 1

0

ι

(
∂

∂t

)
ι(F∗(ξM ′))F ∗γ dt

=

∫ 1

0

ι

(
∂

∂t

)
ι(ξM )F ∗γ dt

= −
∫ 1

0

ι(ξM )ι

(
∂

∂t

)
F ∗γ dt

= −ι(ξM )

∫ 1

0

ι

(
∂

∂t

)
F ∗γ dt

= −ι(ξM ) ◦ κF (γ)

(3.3)

Example 3.4. Let (V, ω) be a symplectic vector space on which G acts linearly

and symplectically. Then a moment map is given by φξV = 1
2ω(ξv, v). Define

F : V × [0, 1]→ V via F (v, t) = tv. Clearly, this map is smooth, G-equivariant, and
preserves Z. Also, for t 6= 0, Ft(v) has the same stabilizer as v, so Ft(Ztop) ⊂ Ztop,
so this is an allowable homotopy. If B is any G-invariant open ball centred at the
origin, F defines an allowable homotopy B × [0, 1]→ B.

Lemma 3.5. Let F : M × [0, 1] → M ′ be an allowable homotopy. Then the
homotopy operator κF : Ω(M ′)→ Ω(M) sends Ωφ′(M ′) to Ωφ(M) and Iφ′(M ′) to
Iφ(M), so it induces a homotopy κF : Ω(X ′)→ Ω(X).
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Proof. Let γ ∈ Ωkφ′(M ′), and let z ∈ Ztop, v ∈ Λk−1(TzZtop). Then by (3.3),

ι(ξM )(κF γ)z(v) =

∫ 1

0

ψ(t) dt,

where ψ(t) = −γF (z,t)(ξM ′ , F∗
∂
∂t , (Ft)∗v). Let Z ′a(z,t) be the stratum of Z ′ contain-

ing F (z, t). Since F is allowable,

F∗
∂
∂t ∈ TF (z,t)Z

′
a(z,t) and (Ft)∗v ∈ Λk−1(TF (z,t)Z

′
a(z,t))

for almost all t. But by Lemma 2.2, the restriction of γ to Z ′a(z,t) is horizontal,

so ψ(t) = 0 for almost all t. Thus, ι(ξM )(κF γ)z(v) = 0, i.e. κF γ ∈ Ωk−1φ (M). A

similar argument shows that κF Iφ′(M ′) ⊂ Iφ(M). �

As a consequence, we conclude by Example 3.4 that H(Ω(B)) = H(Ω(∗)) for any
G-invariant ball in a symplectic vector space (with a linear, symplectic G-action).

Proof of Lemma 3.1. Let x ∈ X and z ∈ Z such that π(z) = x. Let H = Stab(z),
and V = (TzG · z)ω/(TzG · z) be the symplectic slice at z. Let B be an H-
invariant ball in V and let O := (T ∗G × B)//H, where H acts on T ∗G by left
multiplication. By the symplectic slice theorem, for a sufficiently small B, z has
a G-invariant open neighbourhood that is isomorphic to O as a Hamiltonian G-
manifold. Let Y = B//H and U = O//G. Then Y ∼= U via a stratification-
preserving isomorphism which restricts to a symplectomorphism on each stratum.
By Proposition 4.2 in Sjamaar [1], Ω(U) ∼= Ω(Y ). But Y is an invariant ball in
a symplectic vector space, so H(Ω(Y )) is trivial, and hence H(Ω(U)) is trivial as
well. Letting B shrink to a point yields a basis for the topology at x. �

4. A de Rham theorem

Let R be the sheaf of locally constant real-valued functions on X. By Lemma 3.1,
the sequence

0→ R i→ Ω0 d→ Ω1 d→ · · · ,
where i : R → Ω0 is the natural inclusion, is an exact sequence. Furthermore, it
can be shown that Ω is an acyclic sheaf (i.e. it has trivial sheaf cohomology), so
that it is an acyclic resolution of the constant sheaf. Then arguments from sheaf
theory (see Warner [3], Section 5) yield a de Rham theorem:

Theorem 4.1. The de Rham cohomology ring H(Ω(X)) is naturally isomorphic
to H(X;R), the singular (or Čech) cohomology ring of X.
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