DIFFERENTIAL FORMS ON SYMPLECTIC QUOTIENTS

KIRILL LEVIN

ABSTRACT. We summarize the de Rham model for symplectic quotients, which
was introduced by Sjamaar [1]. This theory gives a nice definition for differen-
tial forms on the symplectic quotient of a Hamiltonian G-manifold even if the
quotient itself is not a manifold. We prove a version of the Poincaré lemma
and describe how this result implies a version of the de Rham theorem.

1. THE SYMPLECTIC QUOTIENT

Let (M,w) be a connected symplectic manifold, and G a compact Lie group
acting on M with moment map ¢ : M — g*. Let

Z=¢71(0)

and define the symplectic quotient of M by G to be X := Z/G. If G acts freely on
Z, we have seen that Z and X are manifolds and (X) can be identified with the
basic forms on Z. But if G does not act freely on Z, we have no guarantee that
either Z or X is a manifold, but we do know that they are both stratified spaces
(Sjamaar and Lerman [2]).

Recall that for any closed subgroup H of G,

Mgy = {m € M : Stabg(m) is conjugate to H}

is a smooth submanifold of M, and its connected components are the orbit-type
strata. We have shown that there exists a partial order defined on the orbit type
strata, given by M, < M, if M, C M,, and that there exists a unique maximal
element Mo, C M, called the principal stratum, which is open and dense.
Define Z(yy = Z N M(gy. Then Z(py is indeed a smooth G-stable submanifold
of M , and the decomposition
Z=1] %

acA
is a stratification of Z, where {Z, : a € A} is the collection of connected components
of manifolds of the form Z g, so Z has a principal stratum, Zi,,. In fact, the
stratification is a Whitney stratification (Sjamaar and Lerman [2]), so it satisfies
Whitney’s condition A:

Given any two strata Z, and Z,, if a sequence of points {z,}°2 1 in Z, converges
to z € Zp, and the sequence of tangent spaces {T, Z,}5°, converges to some
tangent space T, then T, 7, C T

This stratification on Z induces a stratification on X into symplectic manifolds,
given by X, = Z,/G, and the principal stratum Xi,, is open and dense in X.
Denote the standard inclusion and projection by i, : Z, < M and 7, : Z, — X,
respectively. If U is an open subset of X, then we get a stratification on U from
the stratification on X via Uy := U N X(g), so in particular, there is a principal
stratum Uyop,, which is open and dense in U.
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2. DIFFERENTIAL FORMS ON THE SYMPLECTIC QUOTIENT

We define a differential form on the symplectic quotient to be a differential form
a € Q(Xiop) such that there exists a form a € Q(M) satisfying i, = if, .
We say that & induces a, and denote the collection of such forms on X by Q(X).
Notice that if X = Xiop, then X and Z are manifolds, and the lift of any form
can be extended to M, so this definition agrees with the standard definition. By
the standard averaging argument of replacing & by fg ce 9" a dg, we may assume
without loss of generality that & is G-invariant.

If a € Q(X), there exists & such that 7, a = if,,&. Hence,

Tiop(der) = d(Tiop@) = d(ifop @) = ige, (dV),

so da € Q(X). Thus, Q(X) is a subcomplex of Q(X;op). With a similar computa-
tion, we see that it is closed under the wedge product. We refer to this complex as
the de Rham complex of X.

If U is an open subset of X, a differential form on U is a differential form on
Utop such that, for every z € U, there exists o’ € Q(X) and an open neighbourhood
U'of z in U s.t. ay;, = a. Denote the set of differential forms on U by Q(U). It
can be verified that Q : U — Q(U) is indeed a sheaf, and that its space of global
sections is Q(X).

We say that a differential form 8 € Q(M) is ¢-basic if it is G-invariant and
itopB € Q(Ziop) is G-horizontal. Denote the set of ¢-basic forms by Q4(M). If
B € Qu(M), then ifopB descends to a form S € Q(Xiop) because it is G-invariant.
It is easy to verify that i:‘op(dﬁ) is G-horizontal, and clearly df is G-invariant, so
dB € Q4(M), and thus Q4 (M) is a subcomplex of Q(M).

We get a natural surjection 2,(M) — Q(X) given by sending § to the form
induced on the quotient from i:‘opB. It is clear that the kernel of this map is the
ideal

Iy(M) = {5 € QM) :if,, 5 = 0}.
Thus, we conclude that this gives an isomorphism of complexes

(2.1) QX) = Qg (M) /15(M).

Lemma 2.2.

(1) Let B € Qp(M). Then i3 is a horizontal form on Z, for all a.

(2) Let B e Is(M). Then it =0 for all a.

(3) There is a well-defined restriction map Q(X) — Q(X,) for each stratum
X,.

Proof. Let 5 € Qy(M) and z € Z,. Since Zop, is dense, choose a sequence {z, } 72,
converging to z. Then by compactness of the Grassmanian, after passing to a sub-
sequence, {T%, Ziop }oo converges to a subspace T of T, M. Then from Whitney’s
Condition A, we have T,Z, C T. By definition, ¢({ar)5]z, = 0 on T, Ziop for all
¢ € g, so by continuity, ¢«({p7)f|. = 0 on T for all £&. In particular, ¢(&x)B8]. = 0
on T,Z,. This proves the first claim. Similarly, if 8 € I4(M), then §|,, = 0
on T, Ziop, so by continuity, 8|, = 0 on T. Thus, 8, = 0 on T,Z,. Finally, if
B € Qp(M), then i’/ descends to a form S, on X,. This map 8 — 3, defines a
homomorphism Q4 (M) — Q(X,) for each a. Thus, by the isomorphism (2.1), we
get the required restriction map Q(X) — Q(X,). O
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3. THE POINCARE LEMMA
Our goal in this section is to prove the following lemma:

Lemma 3.1. (Poincaré Lemma)

FEvery x € X has a basis of open neighbourhoods U such that the sequence
0-R5QU)S o U) S ...

is exact, where i : R — QO(U) is natural inclusion.

Let (M’,w',¢') be another Hamiltonian G-manifold, with Z’ := (¢')~%(0) and
X" =Z7'/G. As before, we have a stratification of Z’ and X'.
We now give an appropriate definition of homotopy in this setting of stratified
symplectic quotients. Call a smooth homotopy F : M x [0,1] = M’ allowable if:
(1) F is G-equivariant with respect to the given G-actions on M and M’ and
the trivial action on [0, 1];
(2) Fi(Z) Cc Z' for all t € [0, 1];
(3) dFiey)(TeZsop) C Tr(z1)Ziy. 4y and dF (. (2) € Tp(z) 2}y for almost
all t € [0,1] and all 2 € Zyop, where Z,, ,y C Z' is the stratum of F(z,t).

Given an allowable homotopy F', define an operator kp : Q(M') — Q(M) via
kp(y) = fol 1(0/0t)F*~ dt. Then kp is a chain homotopy, i.e. it lowers degree by
1 and

kpd+ dkp :Fl* 7F6<.
Furthermore, for any g € G, £ € g, v € Q(M'):

(3.2) kpog (v) =g"okr(y)
o)) = [ (o) e
-/ p (5) F(cxn a

(3.3) B /olb (;) “Can) 7y
_ /01 (Enr)e <§t> Foy dt
— (e /01 . <§t> Fy dt

= —u(ém) o kr(7)

Ezample 3.4. Let (V,w) be a symplectic vector space on which G acts linearly
and symplectically. Then a moment map is given by qbf = %w(fv,v). Define
F:Vx][0,1] = V via F(v,t) = tv. Clearly, this map is smooth, G-equivariant, and
preserves Z. Also, for t # 0, Fi(v) has the same stabilizer as v, s0 Fy(Ziop) C Ziop,
so this is an allowable homotopy. If B is any G-invariant open ball centred at the

origin, F' defines an allowable homotopy B x [0,1] — B.
Lemma 3.5. Let F : M x [0,1] — M’ be an allowable homotopy. Then the

homotopy operator kg : Q(M') — Q(M) sends Qy (M") to Qu(M) and Ly (M') to
I4(M), so it induces a homotopy kp : QX') — Q(X).
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Proof. Let v € Qk,(M’), and let 2 € Zyop, v € A*"1(T, Ziop). Then by (3.3),

1
WEnr) ()= () = / () dt,

where 9(t) = —vp () (€7, Fudy, (Fr)wv). Let Z}(,.1) be the stratum of Z” contain-
ing F(z,t). Since F' is allowable,

F2 e TrunZ! and  (Fy).v € A (Tr(e Zh, )

(2,t)
for almost all ¢. But by Lemma 2.2, the restriction of v to Z(’L(z ) is horizontal,

so (t) = 0 for almost all t. Thus, t(&x)(kry).(v) = 0, i.e. Kpy € Q’;fl(M). A
similar argument shows that kply (M) C I4(M). O

As a consequence, we conclude by Example 3.4 that H(Q(B)) = H(€(x)) for any
G-invariant ball in a symplectic vector space (with a linear, symplectic G-action).

Proof of Lemma 3.1. Let € X and z € Z such that m(z) = z. Let H = Stab(z),
and V = (T.G - 2)¥/(T.G - z) be the symplectic slice at z. Let B be an H-
invariant ball in V' and let O := (T*G x B)//H, where H acts on T*G by left
multiplication. By the symplectic slice theorem, for a sufficiently small B, z has
a G-invariant open neighbourhood that is isomorphic to O as a Hamiltonian G-
manifold. Let Y = B//H and U = O//G. Then Y = U via a stratification-
preserving isomorphism which restricts to a symplectomorphism on each stratum.
By Proposition 4.2 in Sjamaar [1], Q(U) = Q(Y). But Y is an invariant ball in
a symplectic vector space, so H((Y)) is trivial, and hence H(Q(U)) is trivial as
well. Letting B shrink to a point yields a basis for the topology at x. O

4. A DE RHAM THEOREM

Let R be the sheaf of locally constant real-valued functions on X. By Lemma 3.1,
the sequence
0-R5Q 4t 4.
where i : R — QU is the natural inclusion, is an exact sequence. Furthermore, it
can be shown that 2 is an acyclic sheaf (i.e. it has trivial sheaf cohomology), so
that it is an acyclic resolution of the constant sheaf. Then arguments from sheaf
theory (see Warner [3], Section 5) yield a de Rham theorem:

Theorem 4.1. The de Rham cohomology ring H (X)) is naturally isomorphic
to H(X;R), the singular (or Cech) cohomology ring of X.
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