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Abstract

We discuss conditions under which a symplectic manifold equipped with a Hamiltonian torus
action admits an invariant compatible complex structure, and we describe Tolman’s construction
[6] of a compact six-dimensional symplectic manifold with a Hamiltonian 2-torus action which
admits no invariant Kähler structure.

1 Introduction

Compact Kähler manifolds have many nice properties. For example, their cohomology groups
have a Hodge decomposition, and they satisfy the hard Lefschetz property. It is therefore of
interest to know what conditions may force a symplectic manifold to admit a Kähler structure.
In particular, we may wish to know under what conditions a symplectic manifold equipped with
a Hamiltonian torus action admits a compatible complex structure which is invariant under the
action.

It is not the case that every symplectic manifold admits a Kähler structure (or, indeed, any
complex structure [3]). In particular, Lerman [5] constructed a compact twelve-dimensional
simply connected symplectic manifold with a Hamiltonian circle action on it, with an isolated
fixed point, which does not admit any Kähler structure. This can be seen because one of its
odd-degree Betti numbers is odd, which is impossible for a Kähler manifold due to the Hodge
decomposition. In this case, the dimension of the torus is small relative to the dimension of the
manifold acted upon.

However, the existence of sufficiently large Hamiltonian symmetries may force the existence
of an invariant compatible complex structure. For example, Delzant [2] showed that every
symplectic toric manifold (that is, a compact 2n-dimensional symplectic manifold equipped
with an effective Hamiltonian action of an n-dimensional torus) admits a compatible complex
structure which is invariant under the action of the torus. Similarly, Karshon [4] showed that
any compact four-dimensional symplectic manifold equipped with an effective Hamiltonian circle
action admits an invariant compatible complex structure. Taking these two results together,
the lowest possible n for which there exists a non-Kähler effective Hamiltonian torus action on
an n-dimensional symplectic manifold is six.

Tolman [6] constructed a compact six-dimensional symplectic manifold M with an effective
Hamiltonian 2-torus action such that there exists no invariant compatible complex structure on
M . This example is sharp in the sense that, as indicated above, there is no lower-dimensional
M for which such a construction exists, and the construction is not possible for the action of a
higher-dimensional torus (i.e. a 3-torus) on a six-dimensional manifold by Delzant’s result. It
is also notable for being the first such example all of whose fixed points are isolated, and for
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being the first such that all of its reduced spaces are Kähler. Moreover, M is simply connected,
and the action is quasi-free (the stabilizer of each point is connected).

Given a compact symplectic manifold with a Hamiltonian torus action, Tolman uses a theo-
rem of Atiyah to formulate an “extension criterion” that the x-ray of the action must satisfy if
there exists an invariant compatible complex structure. She then constructs M by taking two
Kähler 6-manifolds with Hamiltonian 2-torus actions and gluing pieces of them together. The
x-ray of M is then easily seen to fail the extension criterion, and so there exists no invariant
compatible complex structure on M . Tolman then shows that this manifold does not admit any
invariant Kähler structure (even if the symplectic form is changed). However, M does satisfy
the hard Lefschetz property and its odd-degree Betti numbers are even; it is thought that M
does admit a Kähler structure.

2 The x-ray and the extension criterion

Let T be a torus acting on a compact symplectic manifold M , with moment map φ : M → t∗.
For a subgroup K ⊂ T , we denote by MK the set of points fixed by K, and by XK the set of
connected components of MK . The closed orbit type stratification of M is the set

X =
⋃
K⊂T

XK

which is partially ordered by inclusion. Each X ∈ X is itself a symplectic T -invariant manifold
with moment map φ|X , so by the convexity theorem φ(X) is a convex polytope in t∗.

The x-ray of (M,ω, φ) is the closed orbit type stratification X together with the convex
polytope φ(X) for each X ∈ X. This set of convex polytopes is partially ordered since it is
indexed by X.

Tolman gives two examples M̃ and M̂ of six-dimensional Kähler manifolds equipped with
Hamiltonian actions of T 2, whose respective x-rays look like the following in t∗ ∼= R2:

Figure 1: The x-rays of M̃ (left) and M̂

Each of the black dots is the image under the moment map of a connected component of the
set of fixed points, and each of the black edges is the image of a connected component of the
set of points with a given one-dimensional stabilizer.

If T is a torus acting smoothly on a compact Kähler manifold M in a way that preserves the
complex structure of M , then this action extends to a holomorphic action of the complexification
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TC on M . (The complexification of (S1)n is the complex torus (C×)n.) Furthermore, if the
action is Hamiltonian, each orbit of TC is contained in one of the orbit type strata.

Tolman’s notion of compatibility was motivated by the following result of Atiyah [1]:

Theorem 2.1. Let T act by holomorphic symplectomorphisms on a compact Kähler manifold
(M,ω, J) with moment map φ : M → t∗. Let y ∈ M , and let TC · y denote the orbit of y under
the action of the complex torus TC. Let Z1, . . . , Zp be the components of MT ∩ TC · y and let
cj = φ(Zj). Then φ(TC · y) is the convex polytope with vertices c1, . . . , cp, and for each of its
open faces σ, the inverse image φ−1(σ) consists of a single TC-orbit.

Hence, given an open face σ of φ(TC · y), the preimage is a TC-orbit and by a fact cited above,
this is contained in an orbit type stratum Xσ, so that σ ⊂ φ(Xσ). Moreover, dimφ(Xσ) = dimσ.

Definition 2.2. Given a convex polytope ∆ ⊂ t∗, we say that it is compatible with the x-ray
(X, φ) if

1. for each face σ of ∆, there exists Xσ ∈ X such that dim(φ(Xσ)) = dim(σ) and σ ⊂ φ(Xσ).

2. if σ and σ′ are faces of ∆ such that σ ⊂ σ′, then Xσ ⊂ Xσ′ .

Note that, in particular, this implies that each vertex of ∆ must be the image of a connected
component of the set of fixed points. With this definition, Atiyah’s result says that φ(TC · y) is
compatible with the x-ray of (M,ω, φ).

A convex cone in a real vector space is a subset which can be written as the intersection of
finitely many half-planes; equivalently, it is the set of positive linear combinations of a finite set.
More generally, we allow any translation of such a cone (so it need not contain 0). A convex
cone is strictly convex if it doesn’t contain a line.

Definition 2.3. A convex cone C ⊂ t∗ is compatible with (X, φ) if there is a neighbourhood
U of the vertex of C such that

1. for each face σ of C, there exists Xσ ∈ X such that dim(φ(Xσ)) = dim(σ) and σ ∩ U ⊂
φ(Xσ), and

2. if σ and σ′ are faces of C such that σ ⊂ σ′, then Xσ ⊂ X ′σ.

We say that a convex polytope ∆ is an extension of a convex cone C if there is a neigh-
bourhood U of the vertex of C such that C ∩ U = ∆ ∩ U . (But ∆ need not contain C as a
subset.)

Now we can state Tolman’s extension criterion.

Definition 2.4. An x-ray satisfies the extension criterion if every compatible strictly convex
cone has an extension to a compatible convex polytope.

As noted above, Atiyah’s theorem shows that for any y ∈M , φ(TC · y) is a convex polytope
compatible with the x-ray. Tolman proves the following lemma:

Lemma 2.5. Let a torus T act by holomorphic symplectomorphisms on a compact Kähler
manifold (M,ω, J) with a moment map φ. Let C be a strictly convex cone which is compatible
with the x-ray of (M,ω, φ). Then there exists y ∈M such that φ(TC · y) is an extension of C.

Putting this together with Atiyah’s result gives the following:

Theorem 2.6. Let a torus T act on a compact symplectic manifold (M,ω) with a moment map
φ : M → t∗. If the x-ray of (M,ω, φ) does not satisfy the extension criterion, then there exists
no compatible T -invariant complex structure on (M,ω).
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3 Sketch of the construction

Tolman proceeds to construct a Hamiltonian 2-torus action on a six-dimensional compact sym-
plectic manifold which does not satisfy the extension criterion, and therefore admits no com-
patible invariant complex structure. The idea is as follows. Tolman begins with the manifolds
M̃ and M̂ as above. The x-rays of the two manifolds look the same along the grey line in figure
1; if we take the bottom half of the x-ray of M̃ and the top half of that of M̂ , we obtain the
following x-ray:

Figure 2: The x-ray of M

It is shown that this gluing can be done on the level of manifolds, in such a way that the
resulting manifold M inherits a symplectic structure and Hamiltonian action of T 2, and the
x-ray is indeed the one depicted above. This x-ray does not satisfy the extension criterion, for
the convex cone

{(s, t) ∈ R2 : t ≥ 1, s+ t ≤ 3}
is compatible with the x-ray, but is easily seen to admit no extension to a compatible convex
polytope:

Figure 3: A compatible convex cone which does not extend to a compatible convex polytope

Hence M admits no T 2-invariant compatible complex structure. Tolman continues by enu-
merating the possible shapes of x-ray that could conceivably result by varying the symplectic
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form on M , and noting that each is either not convex or does not satisfy the extension property,
and so there exists no T 2-invariant Kähler structure on M .
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