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1. Introduction

In his paper [9], Ono shows that for a symplectic circle action on a compact
connected symplectic manifold (M,ω), the homology class of a corresponding orbit
is Poincaré dual (up to a nonzero constant factor) to the cohomology class repre-
sented by ξy ω

n

n! , where ξ is the vector field on M induced by the action. (Variants
of this fact are proven in [4] and [8].) If (M,ω) satisfies the Lefschetz condition
(defined below), then we have as a corollary that the action is hamiltonian if and
only if the orbits contract in M .

Ginzburg extends these results to symplectic toric actions in his paper [5], in
which he defines the notion of a cohomologically free action, which can be thought
of as the “opposite” of a hamiltonian action. He then proves the following. Let G
be any compact connected Lie group acting symplectically on a compact connected
symplectic manifold (M,ω). Then there is a finite covering group G̃ → G such
that G̃ ∼= Tk ×G0, where G0 is a compact connected Lie group, the induced action
of the torus Tk on (M,ω) is cohomologically free, and the induced action of G0 is
hamiltonian.

This report is organised as follows. In Section 2, we list and prove some of the
facts about circle actions mentioned above, as well as Ginzburg’s generalisation of
these facts to toric actions. In Section 3, we prove the above-mentioned “splitting”
theorem of Ginzburg. We note that for this proof we use the flux conjecture, which
was proven by Kaoru Ono in [10].

2. Properties of Cohomologically Free Actions

Theorem 2.1 (Ono [9]). Let (M,Ω) be a compact connected manifold with volume
form Ω. Let S1 = R/Z act on (M,Ω) via volume-preserving diffeomorphisms, and
let ξ be the induced vector field on M . Then, for any orbit Ox of the action through
a point x ∈ M , the (real) homology class of Ox is Poincaré dual to [ ξy Ω

V ], where
V :=

∫
M

Ω.

Proof. First, we note that all S1-orbits are homotopic, and hence in the same ho-
mology class. Let φ be any closed 1-form. Then there exists an S1-invariant closed
1-form φ̃ in the same cohomology class (we can obtain this via averaging over S1).
Note that since φ̃ is S1-invariant and closed,

0 = £ξφ̃ = d(ξy φ̃).
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Hence, the function φ̃(ξ) is constant. Let πx : S1 → Ox ↪→ M be the map θ 7→
θ · x ∈M . Then, φ̃(ξ) = π∗xφ̃

(
d
dθ

)
is constant, and∫

Ox

φ =
∫
Ox

φ̃

=
∫

S1
π∗xφ̃

=π∗xφ̃
(
d

dθ

)
=φ̃(ξ)

=
1
V

∫
M

φ̃(ξ)Ω

=
1
V

∫
M

φ̃ ∧ (ξyΩ)

=
∫
M

φ ∧
(
ξyΩ
V

)
.

Since Ω is S1-invariant, [ξy Ω]
V is closed. Hence, [ξy Ω]

V is Poincaré dual to [Ox] �

Corollary 2.2 (Ono [9]). If (M,ω) is a 2n-dimensional compact connected sym-
plectic manifold, and S1 acts on (M,ω) symplectically, then the Poincaré dual of
the homology class of an orbit of the action is equal to 1

V n! [ξyω
n] (using the same

notation as above).

Definition 2.3. Let (M,ω) be a 2n-dimensional compact symplectic manifold.
Then (M,ω) satisfies the Lefschetz condition if

^ [ω]k : Hn−k(M ; R)→ Hn+k(M ; R)

is an isomorphism for each k = 1, ..., n.

Remark 2.4. Any Kähler manifold satisfies the Lefschetz condition.

Corollary 2.5 (Ono [9], Frankel [4]). If (M,ω) satisfies the Lefschetz condition,
then the S1-action is hamiltonian if and only if ξ has at least one zero.

Proof. We already know that if the action is hamiltonian, then ξ has at least one
zero. Conversely, if ξ has a zero z ∈ M , then Oz = {z}, in which case [Oz] = 0
in H1(M ; R). By Corollary 2.2, [ξyωn] = 0. Applying the Lefschetz condition, we
obtain that ξyω is exact, and hence the action is hamiltonian. �

Before we present Ginzburg’s generalisation of these results, we need some in-
gredients. Let G be a compact connected Lie group acting symplectically on a
compact symplectic manifold (M,ω), and let g be the Lie algebra of G. For ξ ∈ g,
we denote by ξM the induced vector field on M : for x ∈M ,

ξM |x :=
d

dt

∣∣∣
t=0

(exp(tξ) · x).

Proposition 2.6. Let ξ, η ∈ g. Then, [ξ, η]Myω is exact.

Proof. Let X and Y be arbitrary smooth vector fields on M , and α a differential
form. Recall the identities

(1) £X(Y yα) = [X,Y ]yα+ Y y£Xα.
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(2) £Xα = Xy dα+ d(Xyα).

Then,

[ξ, η]Myω =£ξM
(ηMyω) by identity 1 and since ξM is symplectic,

=d(ω(ηM , ξM )) by identity 2 and since ω is closed.

�

Remark 2.7. Note that since G is compact and connected, semisimplicity is equiv-
alent to [g, g] = g. This in turn is equivalent to the de Rham cohomology group
H1(G; R) being trivial. See [2], chapter V section 12.

With the above remark in mind, we obtain the following corollary immediately.

Corollary 2.8. If G is semisimple, then the G-action is hamiltonian.

Let the dimension of M be 2n. Let ψ be the linear map

ψ : g→ H1(M ; R) : ξ 7→ [ξMyω].

If we equip H1(M ; R) with the trivial Lie algebra structure, then by Proposition 2.6,
ψ is a Lie algebra homomorphism. The action is hamiltonian if and only if ψ is the
zero map.

Definition 2.9. We say that the G-action is cohomologically free if ψ is a monomor-
phism.

For the rest of this section, we will focus on torus actions Tk �M where k is any
integer greater than zero. Let x ∈M and let πx be the natural map Tk → Ox ↪→M .
This induces a well-defined map πx∗ : H1(Tk; R) → H1(M ; R) that is independent
of x.

Proposition 2.10 (Ginzburg, [5]).

(1) If πx∗ is a monomorphism, then the Tk-action is cohomologically free.
(2) If (M,ω) satisfies the Lefschetz condition and the action is cohomologically

free, then πx∗ is a monomorphism.
(3) In either case the action is locally free; that is, for any x ∈M , Tk → Ox is

a covering map.

Proof. By applying Corollary 2.2 to each element of a basis of tk, there is a linear
isomorphism im(πx∗)→ im(ψ) ^ [ω]n−1. Hence we have the following:

dim im(πx∗) = dim(im(ψ) ^ [ω]n−1) ≤ dim im(ψ) ≤ k.

If πx∗ is a monomorphism, then dim im(πx∗) = k, and the inequalities become
equalities. Thus dim im(ψ) = k and so ψ is a monomorphism; that is, the action is
cohomologically free. This proves (1).

If the action is cohomologically free, then the right inequality becomes an equal-
ity. If (M,ω) is Lefschetz, then the left inequality becomes an equality. Take both
conditions together and we have that dim im(πx∗) = k. This proves (2).

Finally, assume Tk → Ox is not a covering map. Then, Ox is isomorphic to some
torus Tr for some r < k, and so πx∗ : H1(Tk; R)→ H1(M ; R) is not injective. This
proves (3). �
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Remark 2.11. It is worth noting that McDuff provides in [8] a 6-dimensional
example of a compact connected symplectic manifold that does not satisfy the
Lefschetz condition, admits a symplectic circle action that is not hamiltonian, but
has fixed points. This shows that the Lefschetz condition is required in the above
proposition and in Corollary 2.5.

3. The “Splitting” Theorem of Ginzburg

The goal of this section is to prove the following theorem.

Theorem 3.1. Let G be a compact connected Lie group that acts symplectically on
a compact symplectic manifold (M,ω). Then there exists a finite covering Tr×G0 →
G where G0 is a compact connected Lie group, the induced action of Tr on (M,ω)
is cohomologically free, and the induced action of G0 on (M,ω) is hamiltonian.

In order to prove this, we require some further ingredients.

Proposition 3.2. There exists a finite covering group Tk ×K → G such that K
is a compact, connected and simply connected Lie group.

For the proof, we refer the reader to [3].

Lemma 3.3. Let Ts ↪→ Tr be a closed connected subgroup ( i.e. a subtorus). Then,
there exists a complementary subtorus Tr−s ↪→ Tr such that

Tr ∼= Tr−s × Ts.

Proof. Let tr and ts be the Lie algebras of Tr and Ts, respectively. Let Lr and
Ls be the kernels of the corresponding exponential maps, respectively, which are
lattices in tr. We identify these with π1(Tr) and π1(Ts).

Now, since Ts is a closed connected normal subgroup of Tr, the quotient Q :=
Tr/Ts is a compact connected abelian Lie group. Hence Q is a torus of dimension
d = r − s, and so π1(Q) ∼= Zd.

Ts → Tr → Q is a fibration. Applying the long exact sequence of homotopy
groups, we get

...→ π2(Q)→ π1(Ts)→ π1(Tr)→ π1(Q)→ 0.

Since Q is a torus, π2(Q) = 0, and we obtain the short exact sequence

0→ Ls → Lr → π1(Q)→ 0.

Hence, Lr/Ls is isomorphic to Zd. Choosing representatives in Lr of its generators,
we get a sublattice Ld ⊆ Lr such that Lr = Ls × Ld, and the Lie subalgebra
td := Ld ⊗ R exponentiates to a subtorus Td ↪→ Tr such that Tr ∼= Ts × Td. �

We now prove the “splitting” theorem for tori.

Proposition 3.4. If G is the torus Tk, then there is some r ≤ k such that Tk ∼=
Tr × Tk−r where the induced action of Tr is cohomologically free and that of Tk−r
is hamiltonian.

Proof. Let ρ : Tk → Symp(M,ω) be the representation ρ(g)(x) = g · x. By the flux
conjecture, proved by Ono in [10], we know that since M is closed, Ham(M,ω) is
a closed subgroup of Symp(M,ω). Hence, ρ−1(Ham(M,ω)) is a closed subgroup
of Tk; that is, a (k − r)-dimensional subtorus which we will denote Tk−r. Its
corresponding Lie subalgebra h is the kernel of ψ : tk → H1(M ; R), where ψ is
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as defined in the previous section. Indeed, since every element of h induces a
hamiltonian flow, these elements are in ker(ψ). Also, since the vector field on M
induced by any element in tk r h is not hamiltonian, we conclude h = ker(ψ).

Now, we apply Lemma 3.3, and obtain a complementary subtorus Tr such that
Tk ∼= Tr×Tk−r. The induced action of Tk−r is hamiltonian, and since the Lie alge-
bra tr of Tr has zero intersection with h, the induced action of Tr is cohomologically
free. �

Proof of Theorem 3.1. By Proposition 3.2, G has a finite covering Tk × K where
K is a compact, connected and simply connected Lie group. By Remark 2.7 and
Corollary 2.8, the induced action of K on M is hamiltonian.

Next, we apply Proposition 3.4 to Tk and obtain a splitting Tk ∼= Tr × Tk−r
where the induced action of Tr is cohomologically free, and the induced action of
Tk−r is hamiltonian. Hence, define G0 := Tk−r × K. The induced G0-action is
hamiltonian, and we are done. �
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