Math 246S: Homework 7 Due at the beginning of tutorial Tuesday, March 20, 2012 at 8:10 PM sharp.

(1) (a) Let $\mathbb{N} \times \mathbb{N}:=\{(n, m) \mid n, m \in \mathbb{N}\}$ be the set of pairs of natural numbers. Show that $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$ by finding a bijective map $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$.
(b) Let $\mathbb{N}^{k}:=\left\{\left(n_{1}, n_{2}, \cdots, n_{k}\right) \mid n_{i} \in \mathbb{N}, 1 \leq i \leq k\right\}$ be the set of k-tuples of natural numbers. Show by induction that $\left|\mathbb{N}^{k}\right|=|\mathbb{N}|$ for all natural numbers k.
(2) Let $S:=\left\{1,2,3, \cdots 10^{6}\right\}$. Let T be the set of all subsets of S. Prove that there is no one-to-one map $f: T \rightarrow S$.
(3) Suppose S and T are two countable sets. Prove that $S \cup T$ is countable.
(4) Let $P(S)$ denote the set of all subsets of S. Suppose S is a finite set. Show that $|P(S)|=2^{|S|}$. Hint: Let $S=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$. Represent a subset A of $P(S)$ by a sequence of 0 s and 1 s of length n such that the i-th element in the sequence is 1 if $s_{i} \in A$ and is 0 if $s_{i} \notin A$.
(5) Show directly (without stating any theorems) that $|P(\mathbb{N})| \leq|\mathbb{R}|$. Hint: Represent a subset A of \mathbb{N} by an infinite sequence of 0 s and 1 s such that the n-th element in the sequence is 1 if $n \in A$ and is 0 if $n \notin A$.
(6) This question is designed to help you digest the proof of the BernsteinCantor Theorem.
(a) Let $S=T=\mathbb{N}$, and $f(n)=g(n)=n+1$. Find the sets $S_{\infty}, S_{S}, S_{T}, T_{\infty}, T_{S}, T_{T}$. Give an explicit formula for the function h (recall h was defined in terms of f and g). Show that h is a bijection.
(b) Let $S=T=\mathbb{Z}$, and $f(n)=g(n)=n+1$. Find the sets $S_{\infty}, S_{S}, S_{T}, T_{\infty}, T_{S}, T_{T}$. Give an explicit formula for the function h (recall h was defined in terms of f and g). Show that h is a bijection.
(7) Let A be a finite subset of \mathbb{R}. Prove that $|\mathbb{R}|=|\mathbb{R} \backslash A|$.
(8) Prove that the set of finite subsets of \mathbb{N} is countable.
(9) A 'book' is a finite sequence of standard characters. The standard characters include all the characters on your computer keyboard. Show that the set of all possible books is countable.
(10) Let A be a countable subset of \mathbb{R}.
(a) Prove that $|\mathbb{R} \backslash A|$ is infinite.
(b) Prove that $|\mathbb{R} \backslash A|=|\mathbb{R}|$.
(c) Find the cardinality of the set of transcendental numbers.

