Math 246S: Homework 6

Due at the beginning of tutorial Tuesday, March 6, 2012 at 8:10 PM sharp.

NOTE: In case of a TA strike, homework will only be graded after the strike.
(1) (a) Compute $(2+2 i)^{4}$.
(b) Solve the quadratic equation $z^{2}+(1+i) z+i=0$.
(c) Find all the roots of $z^{3}+i=0$
(2) Let z_{0} be a root of $z^{n}-3=0$. Let $\xi_{0}, \cdots, \xi_{n-1}$ be the n-th roots of unity. Show that $z_{0} \xi_{0}, \cdots, z_{0} \xi_{n-1}$ give all the roots of $z^{n}-3=0$.
(3) Let $p(z):=c_{n} z^{n}+\cdots+c_{1} z+c_{0}$ be a polynomial. Show that if $|p(z)| \geq 1$ for all $z \in \mathbb{C}$ then $p(z)$ is a constant polynomial. Hint: the fundamental theorem of algebra might be useful.
(4) Prove the triangle inequality for complex numbers: $\left|z_{1}+z_{2}\right| \leq$ $\left|z_{1}\right|+\left|z_{2}\right|$ for all complex numbers z_{1}, z_{2}.
(5) Let $p(z)$ be a polynomial as above. Show that if $|p(z)| \leq 1$ for all $z \in \mathbb{C}$ then $p(z)$ is a constant polynomial.
(6) Let $p(z):=c_{n} z^{n}+\cdots+c_{1} z+c_{0}$ be a polynomial with real coefficients, i.e. $c_{i} \in \mathbb{R}$.
(a) Show that if z_{0} is a root of $p(z)$, then the complex conjugate $\overline{z_{0}}$ is also a root of $p(z)$.
(b) Find all the roots of the polynomial $p(z)=z^{4}-4 z^{3}+4 z^{2}-4 z+3$.

