Math 246S: Homework 6 Due at the beginning of tutorial Tuesday, March 6, 2012 at 8:10 PM sharp.

NOTE: In case of a TA strike, homework will only be graded after the strike.

- (1) (a) Compute $(2+2i)^4$.
 - (b) Solve the quadratic equation $z^2 + (1+i)z + i = 0$.
 - (c) Find all the roots of $z^3 + i = 0$
- (2) Let z_0 be a root of $z^n 3 = 0$. Let ξ_0, \dots, ξ_{n-1} be the *n*-th roots of unity. Show that $z_0\xi_0, \dots, z_0\xi_{n-1}$ give all the roots of $z^n 3 = 0$.
- (3) Let $p(z) := c_n z^n + \cdots + c_1 z + c_0$ be a polynomial. Show that if $|p(z)| \ge 1$ for all $z \in \mathbb{C}$ then p(z) is a constant polynomial. Hint: the fundamental theorem of algebra might be useful.
- (4) Prove the triangle inequality for complex numbers: $|z_1 + z_2| \leq |z_1| + |z_2|$ for all complex numbers z_1, z_2 .
- (5) Let p(z) be a polynomial as above. Show that if $|p(z)| \le 1$ for all $z \in \mathbb{C}$ then p(z) is a constant polynomial.
- (6) Let $p(z) := c_n z^n + \cdots + c_1 z + c_0$ be a polynomial with real coefficients, i.e. $c_i \in \mathbb{R}$.
 - (a) Show that if z_0 is a root of p(z), then the complex conjugate $\overline{z_0}$ is also a root of p(z).
 - (b) Find all the roots of the polynomial $p(z) = z^4 4z^3 + 4z^2 4z + 3$.