1. Let G be a finite group and let H be a proper subgroup.
 (a) Prove that $\bigcup_{g \in G} gHg^{-1} \neq G$.
 In other words, not every element of G is conjugate to an element of H.
 (b) Prove that the restriction map $R(G) \to R(H)$ is not surjective. (Here $R(G)$ denotes the space of class functions on G.)
 (c) Prove that there exists non-isomorphic representations V, W of G such that $\text{Res}_H^G(V) \cong \text{Res}_H^G(W)$.
 (d) Suppose that we drop the condition that G finite. Find a counterexample to (a).

2. Let G be a finite group and let V be a representation. Consider $\mathbb{C}[G]$ as the left-regular representation.
 (a) Prove that if $v \in V$, then there exists a unique morphism $\phi : \mathbb{C}[G] \to V$ such that $\phi(1) = v$. (This is the universal property of regular representation.)
 (b) Use (a) to prove that if V is irreducible, then the multiplicity of V in $\mathbb{C}[G]$ is $\dim V$. (We proved this in class with characters.)

3. Consider the vector space $V = (\mathbb{C}^m)^\otimes n$. V is an S_n-module where the elements in S_n act by permuting the tensor factors. Express V as a direct sum of the modules M^μ.

4. (Exercise 2.12 from Sagan.)
 In this problem, we consider square matrices with rows and columns indexed by partitions of n. For writing these matrices, we put a total order on the set of partitions which refines the dual dominance order (so the first row and column in the matrix corresponds to the largest partition (n)). For a partitions λ, μ, let S_λ denote the corresponding Young subgroup of S_n, let K_μ the conjugacy class of permutations of cycle type μ and let $K_{\lambda\mu}$ denote the Kostka number.
Define two matrices A, B by $A_{\lambda \mu} = |S_{\lambda} \cap K_{\mu}|$ and $B_{\lambda \mu} = |S_{\mu}|K_{\lambda \mu}$. Show that A, B are upper triangular and that $B(A^t)^{-1}$ is the character table of S_n. (Hint: use Frobenius reciprocity.) Use this method to find the character table of S_4.

Let A_n denote the set of all standard Young tableaux of shape (n, n) and let $C_n = |A_n|$. C_n is called the nth Catalan number.

(a) Find bijections between A_n and the following sets.
 i. Sequences (a_1, \ldots, a_{2n}) of 0s and 1s such that in each prefix (a_1, \ldots, a_k) there are at least as many 0s as 1s.
 ii. Lattice paths from $(0,0)$ to (n,n) which take steps either right or up and never go above the line $y = x$.
 iii. Triangulations of a convex $(n+2)$-gon using diagonals.

(b) Prove that $C_{n+1} = C_nC_0 + C_{n-1}C_1 + \cdots + C_0C_n$, where by convention $C_0 = 1$.

(c) Prove that $C_n = \frac{1}{n+1} \left(\begin{array}{c} 2n \\ n \end{array} \right)$ using the hook length formula (Theorem 3.10.2).

(d) (Optional) Prove the same expression for C_n starting with (b) and using generating functions.

(e) (Optional) Give a more combinatorial/bijective proof of this expression.