
12 Geometric quantization

12.1 Remarks on quantization and representation theory

Definition 12.1 Let M be a symplectic manifold. A prequantum line bundle with
connection on M is a line bundle L → M equipped with a connection ∇ for which
the curvature F∇ is equal to the symplectic form ω.

Suppose a symplectic manifold M is equipped with a complex structure compat-
ible with the symplectic structure (i.e. M is a Kähler manifold). Then if (L,∇) is
a prequantum line bundle with connection, L naturally acquires a structure of holo-
morphic line bundle (we define the ∂̄ operator on sections of L as the antiholomorphic
part ∇

′′

of the prequantum connection, in other words a section s is holomorphic if
and only if ∇

′′

s = 0).

Definition 12.2 Suppose M is a symplectic manifold equipped with a prequantum
line bundle with connection (L,∇). The quantization of M is the virtual Hilbert
space

H(M,L) =
⊕

i even

H i(M,L) ⊖
⊕

i odd

H i(M,L).

Remark 12.3 In many natural situations, only one of the vector spaces H i(M,L) is
nonzero.

Remark 12.4 If M is compact, all the vector spaces H i(M,L) are finite-dimensional,
and the dimension of the quantization is given by the Riemann-Roch theorem.

Suppose M is equipped with a prequantum line bundle with connection, and
suppose a group G acts in a Hamiltonian fashion on M , and that the group action
lifts to the total space of L in a way that is compatible with the connection. (The
choice of such a lift is in fact equivalent to the choice of a moment map for the group
action: cf. Remark 8.44.) Then each of the vector spaces H i(M,L) is acted on by
the group G, in other words the quantization of M is a (virtual) representation of G.

If M is acted on by a torus T , the multiplicities with which the weights for
the action appear in the representation H of T are related to the moment poly-
tope: all weights that have nonzero multiplicity lie within the moment polytope, and
the asymptotics of the multiplicities of weights are in a natural sense given by the
Duistermaat-Heckman polynomial f from Theorem 10.23. (For a precise statement,
see Section 3.4 of [19].)

12.2 Integral closed 2-forms and line bundles

ω is integral iff for any cover {Ui} of M there exists αi ∈ Ω1(Ui) with ω|Ui
= dαi and

fij ∈ C∞(Ui ∩ Uj) with (αj − αi)|Ui∩Uj
= dfij. Then on Ui ∩ Uj ∩ Uk,

fij + fjk − fik = aijk ∈ R
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is a constant. [ω] is integral iff aijk ∈ Z. We define transition functions

gjk : Uj ∩ Uk → C
∗

by
gjk = exp ifjk.

In order that these should satisfy

gijgjk = gik

it is necessary that
fij + fjk − fik ∈ 2πZ.

On M = S2, the usual symplectic form is ω = dφ∧ dz. Take a different closed 2-form
ω′ on S2 defined by ω′ = dφ ∧ df where f : S2 → R is a smooth function such that

(a) f(z, φ) = z for z > 2ǫ (b) f(z, φ) = −1 for z < ǫ. Then
∫

S2 ω′ = 2π
∫ 1

−1
df =

4π. In fact ω′ is in the same class as ω in de Rham cohomology. so one is integral
iff the other is. Take U0 = {z < ǫ}, U1 = {z > −ǫ}. On U0, ω′|U0

= 0 so ω′ = dα0

where α0 = 0. On U1, ω′ = −d(fdφ) so ω′ = dα1 where α1 = −fdφ. On U0 ∩ U1,
(α1 − α0)|U0∩U1

= df01 = −fdφ = −d(fφ) = dφ since f = −1 on U0 ∩ U1. Hence

f01(z, φ) = φ

The effect on this calculation of replacing ω by λω (where λ is a constant) is that
α0, α1 and f01 are multiplied by λ. So

g01(z, φ) = exp if01 = exp iλφ.

This is single valued and defines a transition function iff λ ∈ Z.

Definition 12.5 A symplectic form ω on a manifold M is integral if [ω] ∈ H2(M, Z),
or equivalently if for any oriented 2-dimensional submanifold S of M ,

∫

S
ω ∈ Z.

Example 12.6 ω = dz on S2 (where z is the height function):
∫

S2 ω = 4π so

nω

4π

is integral for n ∈ Z.

Lemma 12.7 ω is integral iff [ω] = c1(L) for a line bundle L over M .

Remark 12.8 Chern classes cj(E) always take values in H2j(M, Z).
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12.3 Prequantum line bundles with connection

Definition 12.9 A prequantum line bundle with connection over M is a complex line
bundle L equipped with a connection ∇ whose curvature iF∇/(2π) = ω.

Definition 12.10 A connection ∇ on a line bundle L is a linear operator ∇ : Γ(L) →
Ω1(M,L) = Γ(T ∗M ⊗L) with the property that for a smooth function f and a section
s on L,

∇(fs) = (df)s + f∇s.

One may define ∇ : Ω1(M,L) → Ω2(M,L) where Ω2(M,L) = Γ(Λ2T ∗M ⊗ L). Then

∇(∇s) = F∇s

where F∇ ∈ Ω2(M, C) is a 2-form (the curvature form).

12.4 Quantization and polarizations

In quantum mechanics, the standard phase space is R
2n = {(q, p)}, the space of

positions q and momenta p. One wants to pass from the phase space to the space of
wave functions

H = {Ψ(q)} = L2(Rn).

These are “functions of half the variables” (the Heisenberg uncertainty principle says
that the more precisely one knows q, the less precisely one knows p, so the wave
function Ψ, where |Ψ|2(q) is the probability of the particle being at position q, is a
function only of q. One could equivalently write the wave function as Ψ̂(p), a function
only of p. Ψ̂ is the Fourier transform of Ψ.

Another way of defining “half the variables”: take zj = qj + ipj so R
2n = C

n and
define

H = {f : C
n → C|f is holomorphic in the zj and

∫

Cn

e−|z|2f(z)dz1 . . . dzn < ∞.

In general, given a manifold M equipped with a prequantum line bundle with con-
nection, in order to define a quantization one needs a polarization.

Definition 12.11 Real polarization (analogue of choice of {q} or {p} on R
2n): choice

of a foliation of M by Lagrangian submanifolds, in the case of R
2n these are {p =

const} or {q = const}.

Definition 12.12 Complex polarization: a choice of an almost complex structure J
on M which is compatible with ω. We assume J is integrable i.s. comes from a
structure of Kähler manifold on M .
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12.5 Holomorphic line bundles

Holomorphic line bundle over a complex manifold:

Definition 12.13 A complex line bundle is specified by an open cover {Uα} on M and
transition functions gαβ : Uα∩Uβ → C

∗ and L = ∪αUα×C/ ∼ where (x, zα) ∼= (x, zβ)
if zα = gαβ(x)zβ.

Definition 12.14 The line bundle is holomorphic if the transition functions gαβ are
holomorphic.

Definition 12.15 A section s of L is a collection of maps sα : Uα → C satisfying
sα(z) = gαβ(z)sβ(z) for z ∈ Uα ∩ Uβ. (This makes sense since ∂

∂z̄j
gαβ = 0 so on

Uα ∩ Uβ
∂

∂z̄j
sα = 0 iff ∂

∂z̄j
sβ = 0.

Definition 12.16 Complex (co) tangent space:

TCM = TM ⊗ C

T ∗
C
M = T ∗M ⊗ C

In local complex coordinates zj, a basis for T ∗
C
M is {dzj, dz̄j, j = 1, . . . , n.

Definition 12.17 Holomorphic and antiholomorphic cotangent spaces

T ∗
C
M = (T ∗)(1,0)M ⊕ (T ∗)

′′

M

where in local complex coordinates (T ∗)
′′

M is spanned by {dz̄j} and (T ∗)
′

M is spanned
by {dzj}.

Definition 12.18 ∂̄ -operator on functions on M
Choose local complex coordinates z1, . . . , zn on the Uα and define

∂̄ : C∞(Uα) → Ω0,1(Uα)

∂̄f =
n

∑

j=1

∂f

∂z̄j

dz̄j

Definition 12.19 (∂̄ operator on sections of L on M) Given a section s : M → L,
s = {sα}, define ∂̄s ∈ Γ(T ∗)

′′

M ⊗ L) by

∂̄s = ∂̄sα

on Uα.

This is well defined since ∂̄gαβ = 0.
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Proposition 12.20 Specifying a structure of holomorphic line bundle on a complex
line bundle L is equivalent to specifying an operator ∂̄ : Γ(L) → Ω0,1(M,L) satisfying
∂̄ ◦ ∂̄ = 0.

Proof: We have seen that a holomorphic line bundle determines a ∂̄ operator. Con-
versely, given a complex line bundle L with ∂̄, we can choose an open cover {Uα} with
locally defined solutions sα ∈ Γ(L|Uα

) to ∂̄sα = 0, and sα(x) 6= 0 ∀x ∈ Uα. Define
transition functions gαβ : Uα ∩ Uβ → C

∗ by

gαβ = sαs−1
β .

It follows that ∂̄gαβ = 0 so gαβ gives L the structure of a holomorphic bundle.

Proposition 12.21 Let (L,∇) be a prequantum line bundle over M . Suppose M
is equipped with a complex structure J compatible with ω. (in other words, on M
there are locally defined complex coordinates {zj}). Then ∇ : Γ(L) → Γ((T ∗)M ⊗ L)
decomposes as

∇ = ∇
′′

⊕∇
′

where
∇

′′

: Γ(L) → Γ((T ∗)
′′

M ⊗ L)

and
∇

′

: Γ(L) → Γ((T ∗)
′

M ⊗ L).

Note that ∇
′′

,∇
′

depend on the almost complex structure J on M .

Proposition 12.22 We may define a structure of holomorphic line bundle on L by
defining ∇

′′

as a ∂̄ operator: a section s of L is defined to be holomorphic if

∇
′′

s = 0.

Definition 12.23 The quantization of the symplectic manifold (M,ω) equipped with
the prequantum line bundle L with connection ∇ and the complex structure J is

H = H0(M,L),

in other words the global holomorphic sections of L.

Remark 12.24 If M is compact, H is a finite-dimensional complex vector space.
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12.6 Quantization of CP 1 ∼= S2

CP 1 = {(z0, z1) ∈ C
2 \ {(0, 0)}/ ∼

= {[z0 : z1]}

The hyperplane line bundle over CP 1 is L[z0:z1] = {f : {λ(z0, z1) → C}

f(z) = f0z0 + f1z1

Its dual is the tautological line bundle

L∗
[z0:z1] = {(λz0, λz1) : λ ∈ C}

This is the line through the point (z0, z1). The k-th power of the tautological bundle
is

Lk
[z0,z1] = {f : {(λz0, λz1) → C : f(λz0, λz1) = λkf(z0, z1)}

in other words f is a polynomial of degree k on the line through (z0, z1) ∈ C
2 \ {0}.

Its zero-th power is the trivial bundle L0 = CP 1 × C.
Global holomorphic sections:
H0(L) is spanned by the restrictions to C

2 \ {0} of the linear functions on C
2.

This is a space of dimension 2. H0(Lk) is spanned by the restrictions to C
2 \ {0} of

the polynomials of degree k on C
2:

f(z0, z1) =
k

∑

j=0

ajz
j
0z

k−j
1 .

This is a space of dimension k + 1.

12.7 Link to representation theory

Suppose a (compact) group G acts on M (from the left), preserving the complex
structure J as well as the symplectic structure (in other words, for each g ∈ G,
Lg : M → M is a holomorphic diffeomorphism).

Suppose the G action lifts to an action on the total space L of a prequantum line
bundle which preserves the connection ∇, and that this action is linear in the fibres:
in other words

Lg : π−1(m) → π−1(gm)

is a linear map.

Proposition 12.25 In this situation, the G action defines an action of G on H (from
the right).

Define (s · g)(m) = s(g(M)), in other words s · g = s ◦ Lg. Thus since Lg is a
holomorphic diffeomorphism, the composition s ◦ Lg is a holomorphic section.
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Proposition 12.26 The action of G on the space of holomorphic sections is linear.
Thus H is a linear representation of G

Proof: (s1 + s2) · g = s1 · g + s2 · g.

Proposition 12.27 Let M be a symplectic manifold acted on by T , and suppose ω
is an integral symplectic form. Then the weights β ∈ g∗ of the representation of T on
H lie in the moment polytope ΦT (M) ⊂ t∗. These will in general appear with some
multiplicities mβ, in other words H = ⊕β∈ΛW mβCβ, mβ ∈ Z

+. (This is given by the
Kostant multiplicity formula, and its generalizations due to Guillemin.)

Remark 12.28

1. For toric manifolds, a weight appears with multiplicity 1 iff it is in Φ(M) (and
0 otherwise).

2. The multiplicity function m : ΛW → Z
≥0 is related to the pushforward Φ∗ωn

n!
.

The pushforward is obtained from the asymptotics of the multiplicity function
under replacing ω by kω, k ∈ Z

+ (this operation dilates the moment polytope by
k).

12.8 Holomorphic bundles over G/T : the Borel-Weil theo-
rem

Theorem 12.29 (Kostant) Suppose λ ∈⊂ t∗. The symplectic form ω on the coad-
joint orbit Oλ is integral iff λ ∈ ΛW ⊂ t∗.

Let λ ∈ ΛW , Stab(λ) = T . We may define a complex line bundle Lλ over G/T ∼= Oλ

as follows.
ρλ = exp λ ∈ Hom(T, U(1))

so define
Lλ = G ×T,ρλ

C

= (G × C)/ ∼ where
(g, z) ∼ (gt−1, ρλ(t)z).

Sections of Lλ are given by equivariant maps G → C

= {f : G → C|f(gt−1) = ρλ(t)f(g)}

The action of G on the space of sections is

g · f(hT ) = f(ghT ).
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Proposition 12.30 G/T = GC/B where GC is the complexification of G and B
(Borel subgroup) is a complex Lie group defined by

Lie(B) =
(

Lie(T ) ⊗ C
)

⊕
⊕

γ>0

Cγ.

Recall that Lie(G) ⊗ C decomposes under the adjoint action of T as

(Lie(T ) ⊗ C) ⊕
⊕

γ>0

Cγ ⊕
⊕

γ>0

C−γ.

Examples of complexifications of Lie groups:

SU(n)C = SL(n, C)

U(1)C = C
∗

U(n)C = GL(n, C)

Examples of Borel subgroups:

G = U(n)

GC = GL(n, C)

B is the set of upper triangular matrices in GL(n, C) (in other words zij = 0 if i > j).
The groups GC and B have obvious complex structures: so, therefore, does GC/B.

This holomorphic structure is compatible with ωλ (it comes from the complex struc-
ture J on Lie(G) ⊗ C).

ωλ([λ,X], [λ, Y ]) =< λ, [X,Y ] > .

gives ωλ(JZ1, JZ2) = ωλ(Z1, Z2). Here, the almost complex structure J is defined on
Tλ(G/T ) and is defined at Tg·λ(G/T ) by identifying this with Tλ(G/T ) ∼= ⊕γ>0Cγ. It
is integrable.

Thus Lλ acquires the structure of a holomorphic line bundle.

Lemma 12.31 There is a homomorphism p : B → TC.

Proof: B has a normal subgroup NC for which TC = B/NC.

Example 12.32 GL(n, C)
TC is the invertible diagonal matrices
B is the upper triangular matrices
p is projection on the diagonal
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Hence ρλ = exp(λ) : T → U(1) extends to ρλ : TC → C
∗ and to ρ̄λ : B → C

∗ via
ρ̄λ = ρλ ◦ p. Thus we can define

Lλ = GC ×B,ρ C

= {(g, z)}/ ∼

where (g, z) ∼ (gb−1, ρλ(b)z) for all b ∈ B.
The space of holomorphic sections of Lλ is

H0(Oλ, Lλ) = {f : GC → C : f holo., f(gb−1) = ρλ(b)f(g)}

for all g ∈ GC and b ∈ B.

Theorem 12.33 (Borel-Weil-Bott) : If λ ∈ ΛW is in the positive Weyl chamber,
then H0(Oλ, Lλ) is the irreducible representation of G with highest weight λ.

Representations of SU(2):
The representations of SU(2) arise by quantizing S2.

H0(M,L) = {a0z0 + a1z1}

H0(M,Lk) = {
∑

j

ajz
j
0z

k−j
1 }

τ := diag(t, t−1) ∈ SU(2)

acts on C
2 by sending

τ :

(

z0

z1

)

7→

(

tz0

t−1z1

)

So zk−j
0 zj

1 7→ tk−2jzk−j
0 zj

1

There are k + 1 weights in total, each appearing with multiplicity 1.
Roots:

1. Decompose Lie(G) ⊗ C under the adjoint action of the maximal torus T . The
roots are the weights of this action of T . They appear in pairs (if β is a root,
so is −β).

2. Choose a polarization to enable us to designate some roots β positive, while −β
is designated as negative.

3. Simple roots are a collection of roots which form a basis of Lie(T ).

Example 12.34
SU(n)

Lie(T ) = {diag(X1, . . . , Xn)|
∑

j

Xj = 0}

The roots are γij(X) = Xi −Xj, and the positive roots are γij with i < j. The simple
roots are γ12, . . . , γ(n−1)n. The positive Weyl chamber consists of the subset of t for
which the inner product with all simple roots is > 0.
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