12 Geometric quantization

12.1 Remarks on quantization and representation theory

Definition 12.1 Let M be a symplectic manifold. A prequantum line bundle with connection on M is a line bundle $\mathcal{L} \to M$ equipped with a connection ∇ for which the curvature F_{∇} is equal to the symplectic form ω .

Suppose a symplectic manifold M is equipped with a complex structure compatible with the symplectic structure (i.e. M is a Kähler manifold). Then if (\mathcal{L}, ∇) is a prequantum line bundle with connection, \mathcal{L} naturally acquires a structure of holomorphic line bundle (we define the $\bar{\partial}$ operator on sections of \mathcal{L} as the antiholomorphic part ∇'' of the prequantum connection, in other words a section s is holomorphic if and only if $\nabla'' s = 0$).

Definition 12.2 Suppose M is a symplectic manifold equipped with a prequantum line bundle with connection (\mathcal{L}, ∇) . The quantization of M is the virtual Hilbert space

$$\mathcal{H}(M,\mathcal{L}) = \bigoplus_{i \text{ even}} H^i(M,\mathcal{L}) \ominus \bigoplus_{i \text{ odd}} H^i(M,\mathcal{L}).$$

Remark 12.3 In many natural situations, only one of the vector spaces $H^i(M, \mathcal{L})$ is nonzero.

Remark 12.4 If M is compact, all the vector spaces $H^i(M, \mathcal{L})$ are finite-dimensional, and the dimension of the quantization is given by the Riemann-Roch theorem.

Suppose M is equipped with a prequantum line bundle with connection, and suppose a group G acts in a Hamiltonian fashion on M, and that the group action lifts to the total space of \mathcal{L} in a way that is compatible with the connection. (The choice of such a lift is in fact equivalent to the choice of a moment map for the group action: cf. Remark 8.44.) Then each of the vector spaces $H^i(M, \mathcal{L})$ is acted on by the group G, in other words the quantization of M is a (virtual) representation of G.

If M is acted on by a torus T, the multiplicities with which the weights for the action appear in the representation \mathcal{H} of T are related to the moment polytope: all weights that have nonzero multiplicity lie within the moment polytope, and the asymptotics of the multiplicities of weights are in a natural sense given by the Duistermaat-Heckman polynomial f from Theorem 10.23. (For a precise statement, see Section 3.4 of [19].)

12.2 Integral closed 2-forms and line bundles

 ω is integral iff for any cover $\{U_i\}$ of M there exists $\alpha_i \in \Omega^1(U_i)$ with $\omega|_{U_i} = d\alpha_i$ and $f_{ij} \in C^{\infty}(U_i \cap U_j)$ with $(\alpha_j - \alpha_i)|_{U_i \cap U_j} = df_{ij}$. Then on $U_i \cap U_j \cap U_k$,

$$f_{ij} + f_{jk} - f_{ik} = a_{ijk} \in \mathbb{R}$$

is a constant. $[\omega]$ is integral iff $a_{ijk} \in \mathbb{Z}$. We define transition functions

$$g_{jk}: U_j \cap U_k \to \mathbb{C}^*$$

by

$$g_{jk} = \exp i f_{jk}.$$

In order that these should satisfy

$$g_{ij}g_{jk} = g_{ik}$$

it is necessary that

$$f_{ij} + f_{jk} - f_{ik} \in 2\pi\mathbb{Z}.$$

On $M = S^2$, the usual symplectic form is $\omega = d\phi \wedge dz$. Take a different closed 2-form ω' on S^2 defined by $\omega' = d\phi \wedge df$ where $f : S^2 \to \mathbb{R}$ is a smooth function such that

(a) $f(z,\phi) = z$ for $z > 2\epsilon$ (b) $f(z,\phi) = -1$ for $z < \epsilon$. Then $\int_{S^2} \omega' = 2\pi \int_{-1}^1 df = 4\pi$. In fact ω' is in the same class as ω in de Rham cohomology. so one is integral iff the other is. Take $U_0 = \{z < \epsilon\}, U_1 = \{z > -\epsilon\}$. On $U_0, \omega'|_{U_0} = 0$ so $\omega' = d\alpha_0$ where $\alpha_0 = 0$. On $U_1, \omega' = -d(fd\phi)$ so $\omega' = d\alpha_1$ where $\alpha_1 = -fd\phi$. On $U_0 \cap U_1$, $(\alpha_1 - \alpha_0)|_{U_0 \cap U_1} = df_{01} = -fd\phi = -d(f\phi) = d\phi$ since f = -1 on $U_0 \cap U_1$. Hence

$$f_{01}(z,\phi) = \phi$$

The effect on this calculation of replacing ω by $\lambda \omega$ (where λ is a constant) is that α_0, α_1 and f_{01} are multiplied by λ . So

$$g_{01}(z,\phi) = \exp i f_{01} = \exp i \lambda \phi.$$

This is single valued and defines a transition function iff $\lambda \in \mathbb{Z}$.

Definition 12.5 A symplectic form ω on a manifold M is integral if $[\omega] \in H^2(M, \mathbb{Z})$, or equivalently if for any oriented 2-dimensional submanifold S of M, $\int_S \omega \in \mathbb{Z}$.

Example 12.6 $\omega = dz$ on S^2 (where z is the height function): $\int_{S^2} \omega = 4\pi$ so

$$\frac{n\omega}{4\pi}$$

is integral for $n \in \mathbb{Z}$.

Lemma 12.7 ω is integral iff $[\omega] = c_1(L)$ for a line bundle L over M.

Remark 12.8 Chern classes $c_i(E)$ always take values in $H^{2j}(M,\mathbb{Z})$.

12.3 Prequantum line bundles with connection

Definition 12.9 A prequantum line bundle with connection over M is a complex line bundle L equipped with a connection ∇ whose curvature $iF_{\nabla}/(2\pi) = \omega$.

Definition 12.10 A connection ∇ on a line bundle L is a linear operator $\nabla : \Gamma(L) \rightarrow \Omega^1(M,L) = \Gamma(T^*M \otimes L)$ with the property that for a smooth function f and a section s on L,

$$\nabla(fs) = (df)s + f\nabla s.$$

One may define $\nabla : \Omega^1(M, L) \to \Omega^2(M, L)$ where $\Omega^2(M, L) = \Gamma(\Lambda^2 T^*M \otimes L)$. Then

 $\nabla(\nabla s) = F_{\nabla}s$

where $F_{\nabla} \in \Omega^2(M, \mathbb{C})$ is a 2-form (the curvature form).

12.4 Quantization and polarizations

In quantum mechanics, the standard phase space is $\mathbb{R}^{2n} = \{(q, p)\}$, the space of positions q and momenta p. One wants to pass from the phase space to the space of wave functions

$$\mathcal{H} = \{\Psi(q)\} = L^2(\mathbb{R}^n).$$

These are "functions of half the variables" (the Heisenberg uncertainty principle says that the more precisely one knows q, the less precisely one knows p, so the wave function Ψ , where $|\Psi|^2(q)$ is the probability of the particle being at position q, is a function only of q. One could equivalently write the wave function as $\hat{\Psi}(p)$, a function only of p. $\hat{\Psi}$ is the Fourier transform of Ψ .

Another way of defining "half the variables": take $z_j = q_j + ip_j$ so $\mathbb{R}^{2n} = \mathbb{C}^n$ and define

$$\mathcal{H} = \{f : \mathbb{C}^n \to \mathbb{C} | f \text{ is holomorphic in the } z_j \text{ and } \int_{\mathbb{C}^n} e^{-|z|^2} f(z) dz_1 \dots dz_n < \infty.$$

In general, given a manifold M equipped with a prequantum line bundle with connection, in order to define a quantization one needs a polarization.

Definition 12.11 Real polarization (analogue of choice of $\{q\}$ or $\{p\}$ on \mathbb{R}^{2n}): choice of a foliation of M by Lagrangian submanifolds, in the case of \mathbb{R}^{2n} these are $\{p = \text{const}\}$ or $\{q = \text{const}\}$.

Definition 12.12 Complex polarization: a choice of an almost complex structure J on M which is compatible with ω . We assume J is integrable i.s. comes from a structure of Kähler manifold on M.

12.5 Holomorphic line bundles

Holomorphic line bundle over a complex manifold:

Definition 12.13 A complex line bundle is specified by an open cover $\{U_{\alpha}\}$ on M and transition functions $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathbb{C}^*$ and $L = \bigcup_{\alpha} U_{\alpha} \times \mathbb{C} / \sim$ where $(x, z_{\alpha}) \cong (x, z_{\beta})$ if $z_{\alpha} = g_{\alpha\beta}(x)z_{\beta}$.

Definition 12.14 The line bundle is holomorphic if the transition functions $g_{\alpha\beta}$ are holomorphic.

Definition 12.15 A section s of L is a collection of maps $s_{\alpha} : U_{\alpha} \to \mathbb{C}$ satisfying $s_{\alpha}(z) = g_{\alpha\beta}(z)s_{\beta}(z)$ for $z \in U_{\alpha} \cap U_{\beta}$. (This makes sense since $\frac{\partial}{\partial \bar{z}_{j}}g_{\alpha\beta} = 0$ so on $U_{\alpha} \cap U_{\beta} \ \frac{\partial}{\partial \bar{z}_{j}}s_{\alpha} = 0$ iff $\frac{\partial}{\partial \bar{z}_{j}}s_{\beta} = 0$.

Definition 12.16 Complex (co) tangent space:

$$T_{\mathbb{C}}M = TM \otimes \mathbb{C}$$
$$T_{\mathbb{C}}^*M = T^*M \otimes \mathbb{C}$$

In local complex coordinates z_j , a basis for $T^*_{\mathbb{C}}M$ is $\{dz_j, d\bar{z}_j, j = 1, \ldots, n\}$.

Definition 12.17 Holomorphic and antiholomorphic cotangent spaces

$$T^*_{\mathbb{C}}M = (T^*)^{(1,0)}M \oplus (T^*)^{''}M$$

where in local complex coordinates $(T^*)''M$ is spanned by $\{d\bar{z}_j\}$ and $(T^*)'M$ is spanned by $\{dz_j\}$.

Definition 12.18 $\bar{\partial}$ -operator on functions on M

Choose local complex coordinates z_1, \ldots, z_n on the U_{α} and define

$$\bar{\partial} : C^{\infty}(U_{\alpha}) \to \Omega^{0,1}(U_{\alpha})$$
$$\bar{\partial}f = \sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d\bar{z}_{j}$$

Definition 12.19 ($\bar{\partial}$ operator on sections of L on M) Given a section $s : M \to L$, $s = \{s_{\alpha}\}, define \ \bar{\partial}s \in \Gamma(T^*)'' M \otimes L$) by

$$\bar{\partial}s = \bar{\partial}s_{\alpha}$$

on U_{α} .

This is well defined since $\partial g_{\alpha\beta} = 0$.

Proposition 12.20 Specifying a structure of holomorphic line bundle on a complex line bundle L is equivalent to specifying an operator $\bar{\partial} : \Gamma(L) \to \Omega^{0,1}(M,L)$ satisfying $\bar{\partial} \circ \bar{\partial} = 0$.

Proof: We have seen that a holomorphic line bundle determines a $\bar{\partial}$ operator. Conversely, given a complex line bundle L with $\bar{\partial}$, we can choose an open cover $\{U_{\alpha}\}$ with locally defined solutions $s_{\alpha} \in \Gamma(L|_{U_{\alpha}})$ to $\bar{\partial}s_{\alpha} = 0$, and $s_{\alpha}(x) \neq 0 \ \forall x \in U_{\alpha}$. Define transition functions $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathbb{C}^*$ by

$$g_{\alpha\beta} = s_\alpha s_\beta^{-1}.$$

It follows that $\bar{\partial}g_{\alpha\beta} = 0$ so $g_{\alpha\beta}$ gives L the structure of a holomorphic bundle. \Box

Proposition 12.21 Let (L, ∇) be a prequantum line bundle over M. Suppose M is equipped with a complex structure J compatible with ω . (in other words, on M there are locally defined complex coordinates $\{z_j\}$). Then $\nabla : \Gamma(L) \to \Gamma((T^*)M \otimes L)$ decomposes as

$$\nabla = \nabla'' \oplus \nabla'$$

where

$$\nabla'': \Gamma(L) \to \Gamma((T^*)''M \otimes L)$$

and

 $\nabla': \Gamma(L) \to \Gamma((T^*)'M \otimes L).$

Note that ∇'', ∇' depend on the almost complex structure J on M.

Proposition 12.22 We may define a structure of holomorphic line bundle on L by defining ∇'' as a $\bar{\partial}$ operator: a section s of L is defined to be holomorphic if

$$\nabla'' s = 0.$$

Definition 12.23 The quantization of the symplectic manifold (M, ω) equipped with the prequantum line bundle L with connection ∇ and the complex structure J is

$$\mathcal{H} = H^0(M, L),$$

in other words the global holomorphic sections of L.

Remark 12.24 If M is compact, \mathcal{H} is a finite-dimensional complex vector space.

12.6 Quantization of $\mathbb{C}P^1 \cong S^2$

$$\mathbb{C}P^1 = \{(z_0, z_1) \in \mathbb{C}^2 \setminus \{(0, 0)\} / \sim$$

= $\{[z_0 : z_1]\}$

The hyperplane line bundle over $\mathbb{C}P^1$ is $L_{[z_0:z_1]} = \{f : \{\lambda(z_0, z_1) \to \mathbb{C}\}$

$$f(z) = f_0 z_0 + f_1 z_1$$

Its dual is the tautological line bundle

$$L^*_{[z_0:z_1]} = \{ (\lambda z_0, \lambda z_1) : \lambda \in \mathbb{C} \}$$

This is the line through the point (z_0, z_1) . The k-th power of the tautological bundle is

$$L_{[z_0,z_1]}^k = \{ f : \{ (\lambda z_0, \lambda z_1) \to \mathbb{C} : f(\lambda z_0, \lambda z_1) = \lambda^k f(z_0, z_1) \}$$

in other words f is a polynomial of degree k on the line through $(z_0, z_1) \in \mathbb{C}^2 \setminus \{0\}$. Its zero-th power is the trivial bundle $L^0 = \mathbb{C}P^1 \times \mathbb{C}$.

Global holomorphic sections:

 $H^0(L)$ is spanned by the restrictions to $\mathbb{C}^2 \setminus \{0\}$ of the linear functions on \mathbb{C}^2 . This is a space of dimension 2. $H^0(L^k)$ is spanned by the restrictions to $\mathbb{C}^2 \setminus \{0\}$ of the polynomials of degree k on \mathbb{C}^2 :

$$f(z_0, z_1) = \sum_{j=0}^{k} a_j z_0^j z_1^{k-j}.$$

This is a space of dimension k + 1.

12.7 Link to representation theory

Suppose a (compact) group G acts on M (from the left), preserving the complex structure J as well as the symplectic structure (in other words, for each $g \in G$, $L_q: M \to M$ is a holomorphic diffeomorphism).

Suppose the G action lifts to an action on the total space L of a prequantum line bundle which preserves the connection ∇ , and that this action is linear in the fibres: in other words

$$L_g: \pi^{-1}(m) \to \pi^{-1}(gm)$$

is a linear map.

Proposition 12.25 In this situation, the G action defines an action of G on \mathcal{H} (from the right).

Define $(s \cdot g)(m) = s(g(M))$, in other words $s \cdot g = s \circ L_g$. Thus since L_g is a holomorphic diffeomorphism, the composition $s \circ L_g$ is a holomorphic section.

Proposition 12.26 The action of G on the space of holomorphic sections is linear. Thus \mathcal{H} is a linear representation of G

Proof: $(s_1 + s_2) \cdot g = s_1 \cdot g + s_2 \cdot g.$

Proposition 12.27 Let M be a symplectic manifold acted on by T, and suppose ω is an integral symplectic form. Then the weights $\beta \in \mathbf{g}^*$ of the representation of T on \mathcal{H} lie in the moment polytope $\Phi_T(M) \subset \mathbf{t}^*$. These will in general appear with some multiplicities m_β , in other words $\mathcal{H} = \bigoplus_{\beta \in \Lambda^W} m_\beta \mathbb{C}_\beta$, $m_\beta \in \mathbb{Z}^+$. (This is given by the Kostant multiplicity formula, and its generalizations due to Guillemin.)

Remark 12.28

- 1. For toric manifolds, a weight appears with multiplicity 1 iff it is in $\Phi(M)$ (and 0 otherwise).
- 2. The multiplicity function $m : \Lambda^W \to \mathbb{Z}^{\geq 0}$ is related to the pushforward $\frac{\Phi_* \omega^n}{n!}$. The pushforward is obtained from the asymptotics of the multiplicity function under replacing ω by $k\omega, k \in \mathbb{Z}^+$ (this operation dilates the moment polytope by k).

12.8 Holomorphic bundles over G/T: the Borel-Weil theorem

Theorem 12.29 (Kostant) Suppose $\lambda \in \subset \mathbf{t}^*$. The symplectic form ω on the coadjoint orbit \mathcal{O}_{λ} is integral iff $\lambda \in \Lambda^W \subset \mathbf{t}^*$.

Let $\lambda \in \Lambda^W$, $\operatorname{Stab}(\lambda) = T$. We may define a complex line bundle L_{λ} over $G/T \cong \mathcal{O}_{\lambda}$ as follows.

$$\rho_{\lambda} = \exp \lambda \in \operatorname{Hom}(T, U(1))$$

so define

$$L_{\lambda} = G \times_{T,\rho_{\lambda}} \mathbb{C}$$

 $= (G \times \mathbb{C}) / \sim$ where

$$(g,z) \sim (gt^{-1}, \rho_{\lambda}(t)z).$$

Sections of L_{λ} are given by equivariant maps $G \to \mathbb{C}$

$$= \{ f: G \to \mathbb{C} | f(gt^{-1}) = \rho_{\lambda}(t)f(g) \}$$

The action of G on the space of sections is

$$g \cdot f(hT) = f(ghT).$$

Proposition 12.30 $G/T = G^{\mathbb{C}}/B$ where $G^{\mathbb{C}}$ is the complexification of G and B (Borel subgroup) is a complex Lie group defined by

$$\operatorname{Lie}(B) = (\operatorname{Lie}(T) \otimes \mathbb{C}) \oplus \bigoplus_{\gamma > 0} \mathbb{C}\gamma.$$

Recall that $\operatorname{Lie}(G) \otimes \mathbb{C}$ decomposes under the adjoint action of T as

$$(\operatorname{Lie}(T)\otimes\mathbb{C})\oplus\bigoplus_{\gamma>0}\mathbb{C}_{\gamma}\oplus\bigoplus_{\gamma>0}\mathbb{C}_{-\gamma}.$$

Examples of complexifications of Lie groups:

$$SU(n)^{\mathbb{C}} = SL(n, \mathbb{C})$$
$$U(1)^{\mathbb{C}} = \mathbb{C}^*$$
$$U(n)^{\mathbb{C}} = GL(n, \mathbb{C})$$

Examples of Borel subgroups:

$$G = U(n)$$
$$G^{\mathbb{C}} = GL(n, \mathbb{C})$$

B is the set of upper triangular matrices in $GL(n, \mathbb{C})$ (in other words $z_{ij} = 0$ if i > j).

The groups $G^{\mathbb{C}}$ and B have obvious complex structures: so, therefore, does $G^{\mathbb{C}}/B$. This holomorphic structure is compatible with ω_{λ} (it comes from the complex structure J on $\text{Lie}(G) \otimes \mathbb{C}$).

$$\omega_{\lambda}([\lambda, X], [\lambda, Y]) = <\lambda, [X, Y] >$$

gives $\omega_{\lambda}(JZ_1, JZ_2) = \omega_{\lambda}(Z_1, Z_2)$. Here, the almost complex structure J is defined on $T_{\lambda}(G/T)$ and is defined at $T_{g \cdot \lambda}(G/T)$ by identifying this with $T_{\lambda}(G/T) \cong \bigoplus_{\gamma > 0} \mathbb{C}_{\gamma}$. It is integrable.

Thus L_{λ} acquires the structure of a holomorphic line bundle.

Lemma 12.31 There is a homomorphism $p: B \to T_{\mathbb{C}}$.

Proof: B has a normal subgroup $N_{\mathbb{C}}$ for which $T_{\mathbb{C}} = B/N_{\mathbb{C}}$.

Example 12.32 $GL(n, \mathbb{C})$

 $T_{\mathbb{C}}$ is the invertible diagonal matrices B is the upper triangular matrices p is projection on the diagonal Hence $\rho_{\lambda} = \exp(\lambda) : T \to U(1)$ extends to $\rho_{\lambda} : T_{\mathbb{C}} \to \mathbb{C}^*$ and to $\bar{\rho_{\lambda}} : B \to \mathbb{C}^*$ via $\bar{\rho_{\lambda}} = \rho_{\lambda} \circ p$. Thus we can define

$$L_{\lambda} = G_{\mathbb{C}} \times_{B,\rho} \mathbb{C}$$
$$= \{(g, z)\} / \sim$$

where $(g, z) \sim (gb^{-1}, \rho_{\lambda}(b)z)$ for all $b \in B$.

The space of holomorphic sections of L_{λ} is

$$H^{0}(\mathcal{O}_{\lambda}, L_{\lambda}) = \{ f : G^{\mathbb{C}} \to \mathbb{C} : f \text{ holo.}, f(gb^{-1}) = \rho_{\lambda}(b)f(g) \}$$

for all $g \in G^{\mathbb{C}}$ and $b \in B$.

Theorem 12.33 (Borel-Weil-Bott) : If $\lambda \in \Lambda^W$ is in the positive Weyl chamber, then $H^0(\mathcal{O}_{\lambda}, L_{\lambda})$ is the irreducible representation of G with highest weight λ .

Representations of SU(2):

The representations of SU(2) arise by quantizing S^2 .

$$H^{0}(M, L) = \{a_{0}z_{0} + a_{1}z_{1}\}$$
$$H^{0}(M, L^{k}) = \{\sum_{j} a_{j}z_{0}^{j}z_{1}^{k-j}\}$$
$$\tau := \operatorname{diag}(t, t^{-1}) \in SU(2)$$

acts on \mathbb{C}^2 by sending

$$\tau: \left(\begin{array}{c} z_0\\ z_1 \end{array}\right) \mapsto \left(\begin{array}{c} tz_0\\ t^{-1}z_1 \end{array}\right)$$

So $z_0^{k-j} z_1^j \mapsto t^{k-2j} z_0^{k-j} z_1^j$

There are k + 1 weights in total, each appearing with multiplicity 1.

Roots:

- 1. Decompose $\text{Lie}(G) \otimes \mathbb{C}$ under the adjoint action of the maximal torus T. The roots are the weights of this action of T. They appear in pairs (if β is a root, so is $-\beta$).
- 2. Choose a polarization to enable us to designate some roots β positive, while $-\beta$ is designated as negative.
- 3. Simple roots are a collection of roots which form a basis of Lie(T).

Example 12.34

$$SU(n)$$

Lie(T) = {diag(X₁,...,X_n)| $\sum_{j} X_j = 0$ }

The roots are $\gamma_{ij}(X) = X_i - X_j$, and the positive roots are γ_{ij} with i < j. The simple roots are $\gamma_{12}, \ldots, \gamma_{(n-1)n}$. The positive Weyl chamber consists of the subset of **t** for which the inner product with all simple roots is > 0.