12 Geometric quantization

12.1 Remarks on quantization and representation theory

Definition 12.1 Let M be a symplectic manifold. A prequantum line bundle with connection on M is a line bundle $\mathcal{L} \rightarrow M$ equipped with a connection ∇ for which the curvature F_{∇} is equal to the symplectic form ω.

Suppose a symplectic manifold M is equipped with a complex structure compatible with the symplectic structure (i.e. M is a Kähler manifold). Then if (\mathcal{L}, ∇) is a prequantum line bundle with connection, \mathcal{L} naturally acquires a structure of holomorphic line bundle (we define the $\bar{\partial}$ operator on sections of \mathcal{L} as the antiholomorphic part $\nabla^{\prime \prime}$ of the prequantum connection, in other words a section s is holomorphic if and only if $\nabla^{\prime \prime} s=0$).

Definition 12.2 Suppose M is a symplectic manifold equipped with a prequantum line bundle with connection (\mathcal{L}, ∇). The quantization of M is the virtual Hilbert space

$$
\mathcal{H}(M, \mathcal{L})=\bigoplus_{i \text { even }} H^{i}(M, \mathcal{L}) \ominus \bigoplus_{i \text { odd }} H^{i}(M, \mathcal{L})
$$

Remark 12.3 In many natural situations, only one of the vector spaces $H^{i}(M, \mathcal{L})$ is nonzero.

Remark 12.4 If M is compact, all the vector spaces $H^{i}(M, \mathcal{L})$ are finite-dimensional, and the dimension of the quantization is given by the Riemann-Roch theorem.

Suppose M is equipped with a prequantum line bundle with connection, and suppose a group G acts in a Hamiltonian fashion on M, and that the group action lifts to the total space of \mathcal{L} in a way that is compatible with the connection. (The choice of such a lift is in fact equivalent to the choice of a moment map for the group action: cf. Remark 8.44.) Then each of the vector spaces $H^{i}(M, \mathcal{L})$ is acted on by the group G, in other words the quantization of M is a (virtual) representation of G.

If M is acted on by a torus T, the multiplicities with which the weights for the action appear in the representation \mathcal{H} of T are related to the moment polytope: all weights that have nonzero multiplicity lie within the moment polytope, and the asymptotics of the multiplicities of weights are in a natural sense given by the Duistermat-Heckman polynomial f from Theorem 10.23. (For a precise statement, see Section 3.4 of [19].)

12.2 Integral closed 2-forms and line bundles

ω is integral iff for any cover $\left\{U_{i}\right\}$ of M there exists $\alpha_{i} \in \Omega^{1}\left(U_{i}\right)$ with $\left.\omega\right|_{U_{i}}=d \alpha_{i}$ and $f_{i j} \in C^{\infty}\left(U_{i} \cap U_{j}\right)$ with $\left.\left(\alpha_{j}-\alpha_{i}\right)\right|_{U_{i} \cap U_{j}}=d f_{i j}$. Then on $U_{i} \cap U_{j} \cap U_{k}$,

$$
f_{i j}+f_{j k}-f_{i k}=a_{i j k} \in \mathbb{R}
$$

is a constant. $[\omega]$ is integral iff $a_{i j k} \in \mathbb{Z}$. We define transition functions

$$
g_{j k}: U_{j} \cap U_{k} \rightarrow \mathbb{C}^{*}
$$

by

$$
g_{j k}=\exp i f_{j k}
$$

In order that these should satisfy

$$
g_{i j} g_{j k}=g_{i k}
$$

it is necessary that

$$
f_{i j}+f_{j k}-f_{i k} \in 2 \pi \mathbb{Z}
$$

On $M=S^{2}$, the usual symplectic form is $\omega=d \phi \wedge d z$. Take a different closed 2-form ω^{\prime} on S^{2} defined by $\omega^{\prime}=d \phi \wedge d f$ where $f: S^{2} \rightarrow \mathbb{R}$ is a smooth function such that
(a) $f(z, \phi)=z$ for $z>2 \epsilon$ (b) $f(z, \phi)=-1$ for $z<\epsilon$. Then $\int_{S^{2}} \omega^{\prime}=2 \pi \int_{-1}^{1} d f=$ 4π. In fact ω^{\prime} is in the same class as ω in de Rham cohomology. so one is integral iff the other is. Take $U_{0}=\{z<\epsilon\}, U_{1}=\{z>-\epsilon\}$. On $U_{0},\left.\omega^{\prime}\right|_{U_{0}}=0$ so $\omega^{\prime}=d \alpha_{0}$ where $\alpha_{0}=0$. On $U_{1}, \omega^{\prime}=-d(f d \phi)$ so $\omega^{\prime}=d \alpha_{1}$ where $\alpha_{1}=-f d \phi$. On $U_{0} \cap U_{1}$, $\left.\left(\alpha_{1}-\alpha_{0}\right)\right|_{U_{0} \cap U_{1}}=d f_{01}=-f d \phi=-d(f \phi)=d \phi$ since $f=-1$ on $U_{0} \cap U_{1}$. Hence

$$
f_{01}(z, \phi)=\phi
$$

The effect on this calculation of replacing ω by $\lambda \omega$ (where λ is a constant) is that α_{0}, α_{1} and f_{01} are multiplied by λ. So

$$
g_{01}(z, \phi)=\exp i f_{01}=\exp i \lambda \phi
$$

This is single valued and defines a transition function iff $\lambda \in \mathbb{Z}$.
Definition 12.5 A symplectic form ω on a manifold M is integral if $[\omega] \in H^{2}(M, \mathbb{Z})$, or equivalently if for any oriented 2-dimensional submanifold S of $M, \int_{S} \omega \in \mathbb{Z}$.

Example $12.6 \omega=d z$ on S^{2} (where z is the height function): $\int_{S^{2}} \omega=4 \pi$ so

$$
\frac{n \omega}{4 \pi}
$$

is integral for $n \in \mathbb{Z}$.
Lemma 12.7ω is integral iff $[\omega]=c_{1}(L)$ for a line bundle L over M.
Remark 12.8 Chern classes $c_{j}(E)$ always take values in $H^{2 j}(M, \mathbb{Z})$.

12.3 Prequantum line bundles with connection

Definition 12.9 A prequantum line bundle with connection over M is a complex line bundle L equipped with a connection ∇ whose curvature $i F_{\nabla} /(2 \pi)=\omega$.

Definition 12.10 A connection ∇ on a line bundle L is a linear operator $\nabla: \Gamma(L) \rightarrow$ $\Omega^{1}(M, L)=\Gamma\left(T^{*} M \otimes L\right)$ with the property that for a smooth function f and a section s on L,

$$
\nabla(f s)=(d f) s+f \nabla s
$$

One may define $\nabla: \Omega^{1}(M, L) \rightarrow \Omega^{2}(M, L)$ where $\Omega^{2}(M, L)=\Gamma\left(\Lambda^{2} T^{*} M \otimes L\right)$. Then

$$
\nabla(\nabla s)=F_{\nabla} s
$$

where $F_{\nabla} \in \Omega^{2}(M, \mathbb{C})$ is a 2-form (the curvature form).

12.4 Quantization and polarizations

In quantum mechanics, the standard phase space is $\mathbb{R}^{2 n}=\{(q, p)\}$, the space of positions q and momenta p. One wants to pass from the phase space to the space of wave functions

$$
\mathcal{H}=\{\Psi(q)\}=L^{2}\left(\mathbb{R}^{n}\right)
$$

These are "functions of half the variables" (the Heisenberg uncertainty principle says that the more precisely one knows q, the less precisely one knows p, so the wave function Ψ, where $|\Psi|^{2}(q)$ is the probability of the particle being at position q, is a function only of q. One could equivalently write the wave function as $\hat{\Psi}(p)$, a function only of $p . \hat{\Psi}$ is the Fourier transform of Ψ.

Another way of defining "half the variables": take $z_{j}=q_{j}+i p_{j}$ so $\mathbb{R}^{2 n}=\mathbb{C}^{n}$ and define

$$
\mathcal{H}=\left\{f: \mathbb{C}^{n} \rightarrow \mathbb{C} \mid f \text { is holomorphic in the } z_{j} \text { and } \int_{\mathbb{C}^{n}} e^{-|z|^{2}} f(z) d z_{1} \ldots d z_{n}<\infty\right.
$$

In general, given a manifold M equipped with a prequantum line bundle with connection, in order to define a quantization one needs a polarization.

Definition 12.11 Real polarization (analogue of choice of $\{q\}$ or $\{p\}$ on $\mathbb{R}^{2 n}$): choice of a foliation of M by Lagrangian submanifolds, in the case of $\mathbb{R}^{2 n}$ these are $\{p=$ const $\}$ or $\{q=$ const $\}$.

Definition 12.12 Complex polarization: a choice of an almost complex structure J on M which is compatible with ω. We assume J is integrable i.s. comes from a structure of Kähler manifold on M.

12.5 Holomorphic line bundles

Holomorphic line bundle over a complex manifold:
Definition 12.13 A complex line bundle is specified by an open cover $\left\{U_{\alpha}\right\}$ on M and transition functions $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{C}^{*}$ and $L=\cup_{\alpha} U_{\alpha} \times \mathbb{C} / \sim$ where $\left(x, z_{\alpha}\right) \cong\left(x, z_{\beta}\right)$ if $z_{\alpha}=g_{\alpha \beta}(x) z_{\beta}$.

Definition 12.14 The line bundle is holomorphic if the transition functions $g_{\alpha \beta}$ are holomorphic.

Definition 12.15 A section s of L is a collection of maps $s_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}$ satisfying $s_{\alpha}(z)=g_{\alpha \beta}(z) s_{\beta}(z)$ for $z \in U_{\alpha} \cap U_{\beta}$. (This makes sense since $\frac{\partial}{\partial \bar{z}_{j}} g_{\alpha \beta}=0$ so on $U_{\alpha} \cap U_{\beta} \frac{\partial}{\partial \bar{z}_{j}} s_{\alpha}=0$ iff $\frac{\partial}{\partial \bar{z}_{j}} s_{\beta}=0$.

Definition 12.16 Complex (co) tangent space:

$$
\begin{aligned}
T_{\mathbb{C}} M & =T M \otimes \mathbb{C} \\
T_{\mathbb{C}}^{*} M & =T^{*} M \otimes \mathbb{C}
\end{aligned}
$$

In local complex coordinates z_{j}, a basis for $T_{\mathbb{C}}^{*} M$ is $\left\{d z_{j}, d \bar{z}_{j}, j=1, \ldots, n\right.$.
Definition 12.17 Holomorphic and antiholomorphic cotangent spaces

$$
T_{\mathbb{C}}^{*} M=\left(T^{*}\right)^{(1,0)} M \oplus\left(T^{*}\right)^{\prime \prime} M
$$

where in local complex coordinates $\left(T^{*}\right)^{\prime \prime} M$ is spanned by $\left\{d \bar{z}_{j}\right\}$ and $\left(T^{*}\right)^{\prime} M$ is spanned by $\left\{d z_{j}\right\}$.

Definition $12.18 \bar{\partial}$-operator on functions on M
Choose local complex coordinates z_{1}, \ldots, z_{n} on the U_{α} and define

$$
\begin{gathered}
\bar{\partial}: C^{\infty}\left(U_{\alpha}\right) \rightarrow \Omega^{0,1}\left(U_{\alpha}\right) \\
\bar{\partial} f=\sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j}
\end{gathered}
$$

Definition 12.19 ($\bar{\partial}$ operator on sections of L on M) Given a section $s: M \rightarrow L$, $s=\left\{s_{\alpha}\right\}$, define $\left.\bar{\partial} s \in \Gamma\left(T^{*}\right)^{\prime \prime} M \otimes L\right) b y$

$$
\bar{\partial} s=\bar{\partial} s_{\alpha}
$$

on U_{α}.
This is well defined since $\bar{\partial} g_{\alpha \beta}=0$.

Proposition 12.20 Specifying a structure of holomorphic line bundle on a complex line bundle L is equivalent to specifying an operator $\bar{\partial}: \Gamma(L) \rightarrow \Omega^{0,1}(M, L)$ satisfying $\bar{\partial} \circ \bar{\partial}=0$.

Proof: We have seen that a holomorphic line bundle determines a $\bar{\partial}$ operator. Conversely, given a complex line bundle L with $\bar{\partial}$, we can choose an open cover $\left\{U_{\alpha}\right\}$ with locally defined solutions $s_{\alpha} \in \Gamma\left(\left.L\right|_{U_{\alpha}}\right)$ to $\bar{\partial} s_{\alpha}=0$, and $s_{\alpha}(x) \neq 0 \forall x \in U_{\alpha}$. Define transition functions $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{C}^{*}$ by

$$
g_{\alpha \beta}=s_{\alpha} s_{\beta}^{-1}
$$

It follows that $\bar{\partial} g_{\alpha \beta}=0$ so $g_{\alpha \beta}$ gives L the structure of a holomorphic bundle.
Proposition 12.21 Let (L, ∇) be a prequantum line bundle over M. Suppose M is equipped with a complex structure J compatible with ω. (in other words, on M there are locally defined complex coordinates $\left.\left\{z_{j}\right\}\right)$. Then $\nabla: \Gamma(L) \rightarrow \Gamma\left(\left(T^{*}\right) M \otimes L\right)$ decomposes as

$$
\nabla=\nabla^{\prime \prime} \oplus \nabla^{\prime}
$$

where

$$
\nabla^{\prime \prime}: \Gamma(L) \rightarrow \Gamma\left(\left(T^{*}\right)^{\prime \prime} M \otimes L\right)
$$

and

$$
\nabla^{\prime}: \Gamma(L) \rightarrow \Gamma\left(\left(T^{*}\right)^{\prime} M \otimes L\right)
$$

Note that $\nabla^{\prime \prime}, \nabla^{\prime}$ depend on the almost complex structure J on M.
Proposition 12.22 We may define a structure of holomorphic line bundle on L by defining $\nabla^{\prime \prime}$ as a $\bar{\partial}$ operator: a section s of L is defined to be holomorphic if

$$
\nabla^{\prime \prime} s=0
$$

Definition 12.23 The quantization of the symplectic manifold (M, ω) equipped with the prequantum line bundle L with connection ∇ and the complex structure J is

$$
\mathcal{H}=H^{0}(M, L)
$$

in other words the global holomorphic sections of L.
Remark 12.24 If M is compact, \mathcal{H} is a finite-dimensional complex vector space.

12.6 Quantization of $\mathbb{C} P^{1} \cong S^{2}$

$$
\begin{gathered}
\mathbb{C} P^{1}=\left\{\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2} \backslash\{(0,0)\} / \sim\right. \\
=\left\{\left[z_{0}: z_{1}\right]\right\}
\end{gathered}
$$

The hyperplane line bundle over $\mathbb{C} P^{1}$ is $L_{\left[z_{0}: z_{1}\right]}=\left\{f:\left\{\lambda\left(z_{0}, z_{1}\right) \rightarrow \mathbb{C}\right\}\right.$

$$
f(z)=f_{0} z_{0}+f_{1} z_{1}
$$

Its dual is the tautological line bundle

$$
L_{\left[z_{0}: z_{1}\right]}^{*}=\left\{\left(\lambda z_{0}, \lambda z_{1}\right): \lambda \in \mathbb{C}\right\}
$$

This is the line through the point $\left(z_{0}, z_{1}\right)$. The k-th power of the tautological bundle is

$$
L_{\left[z_{0}, z_{1}\right]}^{k}=\left\{f:\left\{\left(\lambda z_{0}, \lambda z_{1}\right) \rightarrow \mathbb{C}: f\left(\lambda z_{0}, \lambda z_{1}\right)=\lambda^{k} f\left(z_{0}, z_{1}\right)\right\}\right.
$$

in other words f is a polynomial of degree k on the line through $\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2} \backslash\{0\}$. Its zero-th power is the trivial bundle $L^{0}=\mathbb{C} P^{1} \times \mathbb{C}$.

Global holomorphic sections:
$H^{0}(L)$ is spanned by the restrictions to $\mathbb{C}^{2} \backslash\{0\}$ of the linear functions on \mathbb{C}^{2}. This is a space of dimension 2. $H^{0}\left(L^{k}\right)$ is spanned by the restrictions to $\mathbb{C}^{2} \backslash\{0\}$ of the polynomials of degree k on \mathbb{C}^{2} :

$$
f\left(z_{0}, z_{1}\right)=\sum_{j=0}^{k} a_{j} z_{0}^{j} z_{1}^{k-j} .
$$

This is a space of dimension $k+1$.

12.7 Link to representation theory

Suppose a (compact) group G acts on M (from the left), preserving the complex structure J as well as the symplectic structure (in other words, for each $g \in G$, $L_{g}: M \rightarrow M$ is a holomorphic diffeomorphism).

Suppose the G action lifts to an action on the total space L of a prequantum line bundle which preserves the connection ∇, and that this action is linear in the fibres: in other words

$$
L_{g}: \pi^{-1}(m) \rightarrow \pi^{-1}(g m)
$$

is a linear map.
Proposition 12.25 In this situation, the G action defines an action of G on \mathcal{H} (from the right).

Define $(s \cdot g)(m)=s(g(M))$, in other words $s \cdot g=s \circ L_{g}$. Thus since L_{g} is a holomorphic diffeomorphism, the composition $s \circ L_{g}$ is a holomorphic section.

Proposition 12.26 The action of G on the space of holomorphic sections is linear. Thus \mathcal{H} is a linear representation of G

Proof: $\left(s_{1}+s_{2}\right) \cdot g=s_{1} \cdot g+s_{2} \cdot g$.
Proposition 12.27 Let M be a symplectic manifold acted on by T, and suppose ω is an integral symplectic form. Then the weights $\beta \in \mathbf{g}^{*}$ of the representation of T on \mathcal{H} lie in the moment polytope $\Phi_{T}(M) \subset \mathbf{t}^{*}$. These will in general appear with some multiplicities m_{β}, in other words $\mathcal{H}=\oplus_{\beta \in \Lambda^{W}} m_{\beta} \mathbb{C}_{\beta}, m_{\beta} \in \mathbb{Z}^{+}$. (This is given by the Kostant multiplicity formula, and its generalizations due to Guillemin.)

Remark 12.28

1. For toric manifolds, a weight appears with multiplicity 1 iff it is in $\Phi(M)$ (and 0 otherwise).
2. The multiplicity function $m: \Lambda^{W} \rightarrow \mathbb{Z}^{\geq 0}$ is related to the pushforward $\frac{\Phi_{*} \omega^{n}}{n!}$. The pushforward is obtained from the asymptotics of the multiplicity function under replacing ω by $k \omega, k \in \mathbb{Z}^{+}$(this operation dilates the moment polytope by $k)$.

12.8 Holomorphic bundles over G / T : the Borel-Weil theorem

Theorem 12.29 (Kostant) Suppose $\lambda \in \subset \mathbf{t}^{*}$. The symplectic form ω on the coadjoint orbit \mathcal{O}_{λ} is integral iff $\lambda \in \Lambda^{W} \subset \mathbf{t}^{*}$.

Let $\lambda \in \Lambda^{W}, \operatorname{Stab}(\lambda)=T$. We may define a complex line bundle L_{λ} over $G / T \cong \mathcal{O}_{\lambda}$ as follows.

$$
\rho_{\lambda}=\exp \lambda \in \operatorname{Hom}(T, U(1))
$$

so define

$$
L_{\lambda}=G \times_{T, \rho_{\lambda}} \mathbb{C}
$$

$=(G \times \mathbb{C}) / \sim$ where

$$
(g, z) \sim\left(g t^{-1}, \rho_{\lambda}(t) z\right)
$$

Sections of L_{λ} are given by equivariant maps $G \rightarrow \mathbb{C}$

$$
=\left\{f: G \rightarrow \mathbb{C} \mid f\left(g t^{-1}\right)=\rho_{\lambda}(t) f(g)\right\}
$$

The action of G on the space of sections is

$$
g \cdot f(h T)=f(g h T)
$$

Proposition $12.30 G / T=G^{\mathbb{C}} / B$ where $G^{\mathbb{C}}$ is the complexification of G and B (Borel subgroup) is a complex Lie group defined by

$$
\operatorname{Lie}(B)=(\operatorname{Lie}(T) \otimes \mathbb{C}) \oplus \bigoplus_{\gamma>0} \mathbb{C} \gamma
$$

Recall that $\operatorname{Lie}(G) \otimes \mathbb{C}$ decomposes under the adjoint action of T as

$$
(\operatorname{Lie}(T) \otimes \mathbb{C}) \oplus \bigoplus_{\gamma>0} \mathbb{C}_{\gamma} \oplus \bigoplus_{\gamma>0} \mathbb{C}_{-\gamma}
$$

Examples of complexifications of Lie groups:

$$
\begin{gathered}
S U(n)^{\mathbb{C}}=S L(n, \mathbb{C}) \\
U(1)^{\mathbb{C}}=\mathbb{C}^{*} \\
U(n)^{\mathbb{C}}=G L(n, \mathbb{C})
\end{gathered}
$$

Examples of Borel subgroups:

$$
\begin{gathered}
G=U(n) \\
G^{\mathbb{C}}=G L(n, \mathbb{C})
\end{gathered}
$$

B is the set of upper triangular matrices in $G L(n, \mathbb{C})$ (in other words $z_{i j}=0$ if $i>j$).
The groups $G^{\mathbb{C}}$ and B have obvious complex structures: so, therefore, does $G^{\mathbb{C}} / B$. This holomorphic structure is compatible with ω_{λ} (it comes from the complex structure J on $\operatorname{Lie}(G) \otimes \mathbb{C})$.

$$
\omega_{\lambda}([\lambda, X],[\lambda, Y])=<\lambda,[X, Y]>
$$

gives $\omega_{\lambda}\left(J Z_{1}, J Z_{2}\right)=\omega_{\lambda}\left(Z_{1}, Z_{2}\right)$. Here, the almost complex structure J is defined on $T_{\lambda}(G / T)$ and is defined at $T_{g \cdot \lambda}(G / T)$ by identifying this with $T_{\lambda}(G / T) \cong \oplus_{\gamma>0} \mathbb{C}_{\gamma}$. It is integrable.

Thus L_{λ} acquires the structure of a holomorphic line bundle.
Lemma 12.31 There is a homomorphism $p: B \rightarrow T_{\mathbb{C}}$.
Proof: B has a normal subgroup $N_{\mathbb{C}}$ for which $T_{\mathbb{C}}=B / N_{\mathbb{C}}$.
Example $12.32 G L(n, \mathbb{C})$
$T_{\mathbb{C}}$ is the invertible diagonal matrices
B is the upper triangular matrices
p is projection on the diagonal

Hence $\rho_{\lambda}=\exp (\lambda): T \rightarrow U(1)$ extends to $\rho_{\lambda}: T_{\mathbb{C}} \rightarrow \mathbb{C}^{*}$ and to $\overline{\rho_{\lambda}}: B \rightarrow \mathbb{C}^{*}$ via $\overline{\rho_{\lambda}}=\rho_{\lambda} \circ p$. Thus we can define

$$
\begin{gathered}
L_{\lambda}=G_{\mathbb{C}} \times_{B, \rho} \mathbb{C} \\
=\{(g, z)\} / \sim
\end{gathered}
$$

where $(g, z) \sim\left(g b^{-1}, \rho_{\lambda}(b) z\right)$ for all $b \in B$.
The space of holomorphic sections of L_{λ} is

$$
H^{0}\left(\mathcal{O}_{\lambda}, L_{\lambda}\right)=\left\{f: G^{\mathbb{C}} \rightarrow \mathbb{C}: f \text { holo., } f\left(g b^{-1}\right)=\rho_{\lambda}(b) f(g)\right\}
$$

for all $g \in G^{\mathbb{C}}$ and $b \in B$.
Theorem 12.33 (Borel-Weil-Bott) : If $\lambda \in \Lambda^{W}$ is in the positive Weyl chamber, then $H^{0}\left(\mathcal{O}_{\lambda}, L_{\lambda}\right)$ is the irreducible representation of G with highest weight λ.
Representations of $S U(2)$:
The representations of $S U(2)$ arise by quantizing S^{2}.

$$
\begin{gathered}
H^{0}(M, L)=\left\{a_{0} z_{0}+a_{1} z_{1}\right\} \\
H^{0}\left(M, L^{k}\right)=\left\{\sum_{j} a_{j} z_{0}^{j} z_{1}^{k-j}\right\} \\
\tau:=\operatorname{diag}\left(t, t^{-1}\right) \in S U(2)
\end{gathered}
$$

acts on \mathbb{C}^{2} by sending

$$
\tau:\binom{z_{0}}{z_{1}} \mapsto\binom{t z_{0}}{t^{-1} z_{1}}
$$

So $z_{0}^{k-j} z_{1}^{j} \mapsto t^{k-2 j} z_{0}^{k-j} z_{1}^{j}$
There are $k+1$ weights in total, each appearing with multiplicity 1.

Roots:

1. Decompose $\operatorname{Lie}(G) \otimes \mathbb{C}$ under the adjoint action of the maximal torus T. The roots are the weights of this action of T. They appear in pairs (if β is a root, so is $-\beta$).
2. Choose a polarization to enable us to designate some roots β positive, while $-\beta$ is designated as negative.
3. Simple roots are a collection of roots which form a basis of $\operatorname{Lie}(T)$.

Example 12.34

$$
\operatorname{Lie}(T)=\left\{\operatorname{diag}\left(X_{1}, \ldots, X_{n}\right) \mid \sum_{j} X_{j}=0\right\}
$$

The roots are $\gamma_{i j}(X)=X_{i}-X_{j}$, and the positive roots are $\gamma_{i j}$ with $i<j$. The simple roots are $\gamma_{12}, \ldots, \gamma_{(n-1) n}$. The positive Weyl chamber consists of the subset of \mathbf{t} for which the inner product with all simple roots is >0.

