12 Geometric quantization

12.1 Remarks on quantization and representation theory

Definition 12.1 Let M be a symplectic manifold. A prequantum line bundle with
connection on M is a line bundle L — M equipped with a connection ¥V for which
the curvature Fy is equal to the symplectic form w.

Suppose a symplectic manifold M is equipped with a complex structure compat-
ible with the symplectic structure (i.e. M is a Kéhler manifold). Then if (£, V) is
a prequantum line bundle with connection, £ naturally acquires a structure of holo-
morphic line bundle (we define the d operator on sections of £ as the antiholomorphic
part V" of the prequantum connection, in other words a section s is holomorphic if
and only if V's = 0).

Definition 12.2 Suppose M 1is a symplectic manifold equipped with a prequantum
line bundle with connection (L,V). The quantization of M is the virtual Hilbert
space

H(M.L)= @ H'(M.L)e @ H (M. L).

i even i odd

Remark 12.3 In many natural situations, only one of the vector spaces H (M, L) is
nonzero.

Remark 12.4 [f M is compact, all the vector spaces H (M, L) are finite-dimensional,
and the dimension of the quantization is given by the Riemann-Roch theorem.

Suppose M is equipped with a prequantum line bundle with connection, and
suppose a group G acts in a Hamiltonian fashion on M, and that the group action
lifts to the total space of £ in a way that is compatible with the connection. (The
choice of such a lift is in fact equivalent to the choice of a moment map for the group
action: cf. Remark 8.44.) Then each of the vector spaces H'(M, L) is acted on by
the group G, in other words the quantization of M is a (virtual) representation of G.

If M is acted on by a torus T, the multiplicities with which the weights for
the action appear in the representation H of T are related to the moment poly-
tope: all weights that have nonzero multiplicity lie within the moment polytope, and
the asymptotics of the multiplicities of weights are in a natural sense given by the
Duistermaat-Heckman polynomial f from Theorem 10.23. (For a precise statement,
see Section 3.4 of [19].)

12.2 Integral closed 2-forms and line bundles

w is integral iff for any cover {U;} of M there exists a; € QY(U;) with w|y, = da; and
fij € COO(Ul N UJ) with (Oéj — ai)|UiﬂUj = dfz_] Then on Ul N Uj N Uk,

fij + fie — fie = ayju € R
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is a constant. [w] is integral iff a,j, € Z. We define transition functions
gijUjﬂUkﬁC*

by
gjk = expifjk.
In order that these should satisfy
9ij9ik = Gik
it is necessary that
Jij + [ir — far € 27Z.

On M = S2, the usual symplectic form is w = d¢ A dz. Take a different closed 2-form
W' on S? defined by ' = d¢ A df where f:S? — R is a smooth function such that

(a) f(z,¢) = z for z > 2¢ (b) f(z,¢) = —1 for z < €. Then [, w = 27rf_11 df =
47. In fact w’ is in the same class as w in de Rham cohomology. so one is integral
iff the other is. Take Uy = {z < €}, Uy = {# > —¢}. On Uy, |y, = 0 s0 ' = dayg
where ag = 0. On Uy, ' = —d(fd¢) so w' = doay where oy = —fdp. On Uy N Uy,
(o1 — ao)|venv, = dfor = —fdp = —d(f¢) = d¢ since f = —1 on Uy N U;. Hence

for(z,¢) = ¢

The effect on this calculation of replacing w by Aw (where A is a constant) is that
ap, o and fo; are multiplied by A. So

go1(z, @) = expifo1 = expilg.
This is single valued and defines a transition function iff A € Z.

Definition 12.5 A symplectic form w on a manifold M is integral if [w] € H*(M,Z),
or equivalently if for any oriented 2-dimensional submanifold S of M, fsw €.

Example 12.6 w = dz on S* (where z is the height function): [y, w = 4w so
nw
4m

15 integral forn € Z.

Lemma 12.7 w is integral iff [w] = ¢1(L) for a line bundle L over M.

Remark 12.8 Chern classes ¢;(E) always take values in H* (M, 7).
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12.3 Prequantum line bundles with connection

Definition 12.9 A prequantum line bundle with connection over M is a complex line
bundle L equipped with a connection V whose curvature iy /(2m) = w.

Definition 12.10 A connection V on a line bundle L is a linear operator V : I'(L) —
QY M, L) =T(T*M ® L) with the property that for a smooth function f and a section
s on L,

V(fs) = (df)s+ [Vs.
One may define V : QY(M, L) — Q*(M, L) where Q*(M, L) = T(A*T*M ® L). Then

V(VS) = Fvs

where Fy € Q*(M,C) is a 2-form (the curvature form,).

12.4 Quantization and polarizations

In quantum mechanics, the standard phase space is R*" = {(q,p)}, the space of
positions ¢ and momenta p. One wants to pass from the phase space to the space of
wave functions

H={¥(q)} = L*(R").

These are “functions of half the variables” (the Heisenberg uncertainty principle says
that the more precisely one knows ¢, the less precisely one knows p, so the wave
function W, where |¥|?(q) is the probability of the particle being at position g, is a
function only of ¢. One could equivalently write the wave function as \if(p), a function
only of p. ¥ is the Fourier transform of 0.

Another way of defining “half the variables”: take z; = ¢; + ip; so R*" = C" and

define

= : — is holomorphic in the z; an e z)dzy .. .dz, < 00.
H ={f:C" — C|fis hol h he z; and = £(2)d d

In general, given a manifold M equipped with a prequantum line bundle with con-
nection, in order to define a quantization one needs a polarization.

Definition 12.11 Real polarization (analogue of choice of {q} or {p} on R*"): choice
of a foliation of M by Lagrangian submanifolds, in the case of R®*" these are {p =
const} or {q = const}.

Definition 12.12 Complex polarization: a choice of an almost complex structure J
on M which s compatible with w. We assume J is integrable i.s. comes from a
structure of Kdhler manifold on M.
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12.5 Holomorphic line bundles

Holomorphic line bundle over a complex manifold:

Definition 12.13 A complez line bundle is specified by an open cover {U,} on M and
transition functions gas : UoNUg — C* and L = U, U, x C/ ~ where (x, z,) = (x, 23)
if Zoo = Gap(x)25.

Definition 12.14 The line bundle is holomorphic if the transition functions g,z are
holomorphic.

Definition 12.15 A section s of L is a collection of maps s, : U, — C satisfying
Sa(2) = gap(2)sp(z) for z € U, N Ug. (This makes sense since %gag =0 so on

U,NUg %sa:O iﬁ(%_sﬁ:().
Definition 12.16 Complez (co) tangent space:
TeM =TM ®C
TeM =T"M @ C
In local complex coordinates z;, a basis for TEM is {dz;,dz;,j =1,...,n.
Definition 12.17 Holomorphic and antiholomorphic cotangent spaces
M = (T9)"OM & (T*)' M

where in local complex coordinates (T*)" M is spanned by {dz;} and (T*)' M is spanned
by {dz;}.

Definition 12.18 0 -operator on functions on M
Choose local complex coordinates z1, ..., z, on the U, and define

d:C™(U,) — Q" (U,)

Definition 12.19 (0 operator on sections of L on M) Given a section s : M — L,
s = {84}, define 0s € T(T*)"M ® L) by

0s = 05,4
on U,.

This is well defined since dg,s3 = 0.
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Proposition 12.20 Specifying a structure of holomorphic line bundle on a complex
line bundle L is equivalent to specifying an operator 0 : T'(L) — Q%' (M, L) satisfying
000 =0.

Proof: We have seen that a holomorphic line bundle determines a d operator. Con-
versely, given a complex line bundle L with 0, we can choose an open cover {U,} with
locally defined solutions s, € I'(L|y,) to 0sq = 0, and s.(x) # 0 Vo € U,. Define
transition functions g, : Uy, N Ug — C* by

Jag = sasgl.
It follows that 5gag = 0 50 gap gives L the structure of a holomorphic bundle. a

Proposition 12.21 Let (L, V) be a prequantum line bundle over M. Suppose M
is equipped with a complex structure J compatible with w. (in other words, on M
there are locally defined complex coordinates {z;}). Then V : T'(L) — I'((T*)M ® L)
decomposes as

V=V'aV

where

"

V' T(L)—-T(T)'M®L)

and
V :T(L) - T(T"YM® L).

Note that V"',V depend on the almost complex structure J on M.

Proposition 12.22 We may define a structure of holomorphic line bundle on L by
defining V' as a O operator: a section s of L is defined to be holomorphic if

V's=0.

Definition 12.23 The quantization of the symplectic manifold (M,w) equipped with
the prequantum line bundle L with connection V and the complex structure J is

H=HM,L),
in other words the global holomorphic sections of L.

Remark 12.24 If M is compact, H is a finite-dimensional complex vector space.
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12.6 Quantization of CP! = 52
CP! = {(20,21) € C*\ {(0,0)}/ ~

= {20 - 2]}
The hyperplane line bundle over CP' is L.} = {f : {\(20,21) — C}

f(2) = foro + fiza
Its dual is the tautological line bundle
foiz) = {(A20, Az1) 1 A € C}

This is the line through the point (z, z1). The k-th power of the tautological bundle
is

szo,zﬂ = {f : {(Mz0,Az1) — C: f(A20, Az1) = N f (20, 21)}

in other words f is a polynomial of degree k on the line through (2, 2;) € C?\ {0}.
Its zero-th power is the trivial bundle L° = CP! x C.

Global holomorphic sections:

H°(L) is spanned by the restrictions to C? \ {0} of the linear functions on C2.
This is a space of dimension 2. H°(L*) is spanned by the restrictions to C?\ {0} of
the polynomials of degree k& on C2:

k

-

fz0,20) = ) az .
j=0

This is a space of dimension k + 1.

12.7 Link to representation theory

Suppose a (compact) group G acts on M (from the left), preserving the complex
structure J as well as the symplectic structure (in other words, for each g € G,
L, : M — M is a holomorphic diffeomorphism).

Suppose the G action lifts to an action on the total space L of a prequantum line
bundle which preserves the connection V, and that this action is linear in the fibres:
in other words

Ly: 7 (m) — 7 (gm)

is a linear map.

Proposition 12.25 [In this situation, the G action defines an action of G onH (from
the right).

Define (s - g)(m) = s(g(M)), in other words s-g = s o L,. Thus since Ly is a
holomorphic diffeomorphism, the composition s o Ly is a holomorphic section.
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Proposition 12.26 The action of G on the space of holomorphic sections is linear.
Thus 'H is a linear representation of G

Proof: (s14+$2)-g=81-9+S2-¢. O

Proposition 12.27 Let M be a symplectic manifold acted on by T, and suppose w
is an integral symplectic form. Then the weights 0 € g* of the representation of T' on
H lie in the moment polytope ®7(M) C t*. These will in general appear with some
multiplicities mg, in other words H = @geawmpCg, mg € ZT. (This is given by the
Kostant multiplicity formula, and its generalizations due to Guillemin.)

Remark 12.28

1. For toric manifolds, a weight appears with multiplicity 1 iff it is in ®(M) (and
0 otherwise).

2. The multiplicity function m : AW — Z2° is related to the pushforward %
The pushforward is obtained from the asymptotics of the multiplicity function
under replacing w by kw, k € Z* (this operation dilates the moment polytope by

k).

12.8 Holomorphic bundles over G/T: the Borel-Weil theo-
rem

Theorem 12.29 (Kostant) Suppose A €C t*. The symplectic form w on the coad-

joint orbit Oy is integral iff \ € AW C t*.

Let A € AW, Stab(\) = T. We may define a complex line bundle Ly over G/T = O,
as follows.
par =exp A € Hom(7,U(1))

so define
L)\ =G XTJ,)\ C

= (G x C)/ ~ where
(g,2) ~ (gt~ palt)2).

Sections of Ly are given by equivariant maps G — C

={f:G—=Clf(gt™") =pr(t) f(9)}

The action of GG on the space of sections is

g- J(hT) = f(ghT).
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Proposition 12.30 G/T = G®/B where G® is the complerification of G and B
(Borel subgroup) is a complex Lie group defined by

Lie(B) = (Lie(T) @ C) & @ Cr.

>0
Recall that Lie(G) ® C decomposes under the adjoint action of T as
(Lie(T) @ C) e P C, e PC,.
v>0 v>0
Examples of complexifications of Lie groups:
SU(n)* = SL(n,C)
Ut =c
U(n)® = GL(n,C)
Examples of Borel subgroups:
G=U(n)

GC = GL(n,C)

B is the set of upper triangular matrices in GL(n, C) (in other words z;; = 0if ¢ > j).
The groups G® and B have obvious complex structures: so, therefore, does G¢/B.
This holomorphic structure is compatible with wy (it comes from the complex struc-

ture J on Lie(G) ® C).
([N XA Y] =< A [X,Y] >

gives wy(JZ1, JZ3) = wi(Z1, Z2). Here, the almost complex structure J is defined on
T,(G/T) and is defined at T,.»(G/T') by identifying this with T\(G/T) = @©,0C,. It
is integrable.

Thus L, acquires the structure of a holomorphic line bundle.

Lemma 12.31 There is a homomorphism p : B — T¢.
Proof: B has a normal subgroup N¢ for which Tz = B/Nc. a

Example 12.32 GL(n,C)
T s the invertible diagonal matrices
B is the upper triangular matrices
p 18 projection on the diagonal
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Hence py = exp(\) : T — U(1) extends to py : Tz — C* and to p) : B — C* via
px = px o p. Thus we can define

L)\ = G(C XB,p C
={(g,2)}/ ~

where (g,2) ~ (gb™!, px(b)z) for all b € B.
The space of holomorphic sections of L, is

H°(Oy, Ly) ={f : G° = C: [ holo., f(gb™") = pa(b) f(9)}
for all g € G* and b € B.

Theorem 12.33 (Borel-Weil-Bott) : If A € AW is in the positive Weyl chamber,
then H°(Oy, Ly) is the irreducible representation of G with highest weight \.

Representations of SU(2):
The representations of SU(2) arise by quantizing S2.

HO(M L) = {apzo + alzl}
O(M, LF) = {Z a; 22y

7 = diag(t,t~ ) € SU(2)

()

- -1

Z1 t 1
=3 ,J k—2j k=i J

S0 209 v th2 N

There are k + 1 weights in total, each appearing with multiplicity 1.
Roots:

acts on C? by sending

1. Decompose Lie(G) ® C under the adjoint action of the maximal torus 7. The
roots are the weights of this action of T. They appear in pairs (if 3 is a root,

so is —f9).

2. Choose a polarization to enable us to designate some roots ( positive, while —f3
is designated as negative.

3. Simple roots are a collection of roots which form a basis of Lie(T').

Example 12.34
SU(n)

Lie(T) = {diag(X1,..., X |ZX =0}

The roots are ;;(X) = X; — X;, and the positive roots are v;; with i < j. The simple
TOOLS are Y12, ..., Y(n—1)n- Lhe posztwe Weyl chamber consists of the subset of t for
which the inner product wzth all simple roots is > 0.

71



