MAT1312 Exercises 1

Due date: 5th week (week of Feb 6, 2012)

1. Let \(f : \mathbb{C} \to \mathbb{R} \) be the moment map for the standard action of \(U(1) \) on \(\mathbb{C} \) by rotation:

\[
f : z \mapsto -|z|^2/2
\]

Construct the Hamiltonian flow of \(f^2 \) and \(f^3 \). Show that the orbits are all periodic but of different period depending on the value of \(|z| \): find the period of the orbit as a function of the radius. (Thus the functions \(f^2 \) and \(f^3 \) are NOT moment maps for a circle action, although all orbits are periodic.)

2. (Coadjoint orbits in \(u(n) \))

Recall that any matrix in \(u(n) \) may be conjugated to a matrix of the form

\[
\text{diag}(i\lambda_1, \ldots, i\lambda_n),
\]

where the \(\lambda_j \in \mathbb{R} \) and \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \).

Let \(G = U(n) \) and let \(M \) be the orbit of \(\text{diag}(i\lambda_1, \ldots, i\lambda_n) \) in the Lie algebra \(\mathfrak{g} \) of \(U(n) \):

\[
M = \{ A \in GL(n, \mathbb{C}) : A + A^\dagger = 0, \ A \text{ has eigenvalues } i\lambda_1, \ldots, i\lambda_n \}.
\]

Let \(T \) be the maximal torus of \(U(n) \).

Show that the moment map for the action of \(T \) on \(M \) is the projection

\[
A \mapsto (A_{11}, \ldots, A_{nn})
\]

onto the diagonal elements of the matrix.

3. Let \(T \) be a torus acting on a symplectic manifold \(M \) in a Hamiltonian way, and let \(F \subset M^T \) be a component of the fixed point set. Show that \(\mu(F) \) is a point. (Hint: show that for any \(f \in F, d\mu_f = 0 \).)

4. Show that the Hamiltonian vector fields of the components of the map

\[
\mu : T^*\mathbb{R}^3 \to \mathbb{R}^3
\]

given by the cross product,

\[
\mu : (\vec{q}, \vec{p}) \mapsto \vec{q} \times \vec{p}
\]

are the vector fields \(\dot{X} \) on \(T^*\mathbb{R}^3 \) generated by the action of \(X \in \mathbb{R}^3 = \mathfrak{g} \) on \(T^*\mathbb{R}^3 \) (where \(G = SO(3) \) acts on \(\mathbb{R}^3 \) by rotations).

5. (a) Show that if a submanifold \(N \) of a symplectic manifold \(M \) is preserved by the action of an almost complex structure \(J \) on \(M \) (in other words \(N \) is an almost complex submanifold of \(M \) with respect to \(J \)) then the symplectic form restricts to a nondegenerate form on \(N \).
(b) Assume that \(f : \mathbb{C}^n \to \mathbb{C} \) is a holomorphic function. Show that if 0 is a regular value of \(f \) then \(f^{-1}(0) \) is a symplectic submanifold of \(\mathbb{C}^n \).

(c) Assume that \(f : \mathbb{C}^n \to \mathbb{C} \) is a \textit{homogeneous} polynomial function (in other words \(f(\lambda z) = \lambda^d f(z) \) \(\forall \lambda \in \mathbb{C}^* \)). Show that if 0 is a regular value of \(f \) then \(\{ [z_1 : \ldots : z_n] \in \mathbb{C}P^{n-1} : (z_1, \ldots, z_n) \in f^{-1}(0) \} \) is a symplectic submanifold of \(\mathbb{C}P^{n-1} \).

6. (Orbits of Hamiltonian group actions are isotropic) Let \(M \) be equipped with the Hamiltonian action of a compact Lie group \(G \). Show that the orbits of the action of \(G \) on \(\mu^{-1}(0) \) are isotropic with respect to the symplectic structure.

7. (Symplectic slices) Let \(Y \) be a symplectic manifold equipped with the Hamiltonian action of a torus \(T \) which is the maximal torus of a compact Lie group \(G \) with moment map \(\mu_T : Y \to t^* \).

Define
\[
M := Y \times_T G = \{ (y, g) \in Y \times G : (y, g) \simeq (ty, tg) \text{ for } t \in T \}.
\]

Define a symplectic structure on \(M \) on with respect to which the action of \(G \) is Hamiltonian. Exhibit a moment map \(\mu_G : M \to g^* \) for the action of \(G \) on \(M \). What is \(\mu_G^{-1}(t) \)?

2) \(\text{su}(2) \)

8. Show explicitly that the diagonal elements of matrices conjugate (under \(SU(2) \)) to \(\text{diag}(2\pi i, -2\pi i) \) in \(\text{su}(2) \) are of the form \(\theta \text{diag}(2\pi i, -2\pi i) \) where \(\theta \in [-1, 1] \).