1 Review of the topological fundamental group and covering spaces

1.1 Topological fundamental group

Suppose X is a path-connected topological space, and $x \in X$. Then we can define a group $\pi_1(X,x)$ as follows: An element consists of a continuous map $\gamma : \mathbb{R}/\mathbb{Z} \to X$ such that $\gamma(0) = x$, which one should think of as a ‘loop based at x’, up to homotopy, so that two paths γ_1, γ_2 are considered identical if there is a continuous map $F : (\mathbb{R}/\mathbb{Z}) \times [0,1] \times X$ sending all of $0 \times [0,1]$ to x such that $F_0 = \gamma_1, F_1 = \gamma_2$. The multiplication is given by concatenation, so that

$$\gamma_1 \cdot \gamma_2(t) = \begin{cases}
\gamma_1(2t) & 0 \leq t \leq \frac{1}{2} \\
\gamma_2(2t) & \frac{1}{2} < t < 1.
\end{cases}$$

In other words, we first follow γ_2, and then γ_1.

This is referred to as the fundamental group of X, though of course we made a choice of a point $x \in X$. However, if $y \in X$ is any other point, and $p : [0,1] \to X$ is such that $p(0) = x, p(1) = y$, then there is an isomorphism $p : \pi_1(X,x) \to \pi_1(X,y)$ given by — using informal notation — $\gamma \mapsto p \cdot \gamma \cdot p^{-1}$.

In other words, we follow p backwards to x, then follow γ, then follow p back to y. Thus, the group $\pi_1(X,x)$ is - up to isomorphism - independent of x.

If $\phi : Y \to X$ is a continuous map between path-connected spaces, and $\phi(y) = x$ then we get an induced homomorphism $\pi_1(Y,y) \to \pi_1(X,x)$.

1.2 Covering spaces and main theorem

We say that $\phi : Y \to X$ is a covering space, if each point $x \in X$ has an open neighborhood U such that $\phi^{-1}(U)$ is homeomorphism to $U \times I$ for a discrete set I. It is easy to see that if X is connected, then $|\phi^{-1}(x)|$ is
independent of \(x \), and we call it the degree of \(\phi \), written \(\deg \phi \). Given such a space, we get an action of \(\pi_1(X, x) \) on by defining \(\gamma \) as follows: Consider \(\gamma \) as a function \(\gamma : [0, 1] \to X \), and define \(\gamma_y : [0, 1] \to Y \) to be the lift of \(\gamma \) such that \(\gamma(0) = y \). Then we define \(\gamma \cdot y \) to be \(\gamma_y(1) \). This gives us a functor \(F \) from covering spaces over \(X \) to \(\pi_1(X, x) \)-sets.

Then we have the following theorem:

Theorem 1.1. Suppose \(X \) is a path-connected, locally simply connected space. Then

\[
F : \{ \text{Covering Spaces over } X \} \to \{ \pi_1(X, x) - \text{sets} \}
\]

is an equivalence of categories.

Note that it follows that there exists a ‘universal covering space’ \(\tilde{X} \) corresponding to the \(\pi_1(X, x) \) viewed as a \(\pi_1(X, x) \)-set via the natural left action, whose automorphism group is naturally isomorphic to \(\pi_1(X, x) \).

1.3 Recovering \(G \) from the category of \(G \)-sets

Finally, we describe how - for path connected, locally simply connected \(X \)-to recover \(\pi_1(X, x) \) purely in terms of covering spaces, without mentioning loops at all. In fact, this amounts to a purely algebraic fact about groups:

Let \(G \) be a group, and consider the forgetful functor

\[
F : \{ G - \text{sets} \} \to \text{sets}
\]

which takes a \(G \)-set \(M \), and forgets the \(G \)-action. Define the Automorphism group of \(F \), written \(\text{Aut}(F) \) to be the group of sets of elements \((\phi_M \in \text{Aut}(F(M)))_M \) — that is, for each \(G \)-set \(M \) we assign an automorphism \(\phi_M \) of the underlying set \(F(M) \) — in a way which is compatible with morphisms. That is, if \(t : M \to N \) is a morphism of \(G \)-sets, then \(\phi_N \circ F(t) = F(t) \circ \phi_M \).

Theorem 1.2. For any group \(G \), \(G \cong \text{Aut}(F) \).

Proof. First, there is a natural homomorphism \(\psi : G \to \text{Aut}(F) \) given by \(\psi(g)_M(m) = g \cdot m \). Likewise, if we consider \(G \) as a \(G \)-set in the natural way, then for any \(g \in G \) there is a morphism of \(G \)-sets given by \(r_g(g') = g'g \). Thus, it follows that if \(\phi \in \text{Aut}(F) \), then \(\phi_g = r_g \) for a \(g = \phi_G(1_G) \). It is easy to check that \(\xi(\phi) = \phi_G(1_G) \) gives a homorphism \(\xi : \text{Aut}(F) \to G \) and that \(\xi \) is a left-inverse to \(\psi \).

It remains to prove the \(\xi \) has no kernel. So Suppose \(\phi_G(1_G) = 1_G \). Then for any \(M \), there is a natural morphism of \(G \)-sets \(t_m : G \to M \) defined by
Thus, it follows that $\phi_M \circ F(t_m) = F(t_m)$. Thus, $\phi_M(m) = m$, and so ϕ_M is the identity for all M, as desired.

\[t_m(g) = g \cdot m. \]

2 Finite Etale Morphisms

In the algebraic setting, there is no apparent analogues of loops that one can use, but we do have a reasonably good analogue of covering spaces in finite etale morphisms!

2.1 Geometric points

Let X be a connected scheme, and $\pi : \text{Spec } \mathbb{K} \to X$ be a geometric point of X. The following lemma justifies why geometric points in algebraic geometry are a good analogue of points in topological spaces.

Definition. Let $\phi : Y \to X$ be any morphism of schemes. Given a geometric point $\overline{y} : \text{Spec } \mathbb{K} \to Y$, we define $\phi(\overline{y})$ to be the geometric point $\phi \circ \overline{y}$. We say that \overline{y} is a geometric point above π, and write $\phi^{-1}(\pi)$ for the set of all such geometric points.

Lemma 2.1. Let $\phi : Y \to X$ be finite etale. Then there is a natural number n such that for all geometric points x in X, $|\phi^{-1}(x)| = n$.

Proof. Since ϕ is finite flat, we know from last lecture that locally we can pick neighborhoods $\text{Spec } A$ in X, containing the image of \overline{x}, such that $\phi^{-1}(\text{Spec } A) \cong \text{Spec } B$ where B is free of rank n as an A-module. \overline{x} gives a morphism $A \to \mathbb{k}$, thus $B \otimes_A \mathbb{k}$ is free of rank n over \mathbb{k}. Moreover, since separability is preserved under base change, $B \otimes_A \mathbb{k}$ is a direct sum of fields separable over \mathbb{k}. It follows that $B \otimes_A \mathbb{k} \cong \mathbb{k}^n$, from which the lemma easily follows.

We denote the number n in the above lemma by $[Y : X]$ and refer to it as the degree of Y over X.

2.2 Galois Covers

Let FET/X denote the category of finite etale X-schemes. Let $Y, Z \in FET/X$, with π_Y, π_Z the morphisms to X, such that Y is connected. Any X-morphism $\phi : Y \to Z$ must map $\phi_{\overline{y}} : \pi_Y^{-1}(\overline{y})$ to $\pi_Z^{-1}(\overline{y})$. Moreover, since $Z \to X$ is separated and unramified and Y is connected, we know from lecture 4, cor. 2.4 that ϕ is determined by where $\phi_{\overline{y}}$ takes a single geometric
point. As a special case, it follows that for a connected $Y \in \text{FET}/X$, we have that $|\text{Aut}_X Y| \leq [Y : X]$.

Definition. We say that $Y \in \text{FET}/X$ is Galois over X if Y is connected and $|\text{Aut}_X Y| = [Y : X]$. Equivalently, if Y is connected and the action of $\text{Aut}_X Y$ on $\pi_Y^{-1}(\overline{x})$ is transitive.

Lemma 2.2. For any connected $Y \in \text{FET}/X$ there exists a Galois Z over X which surjects onto Y.

Proof. Let $n = [Y : X]$, and consider

$$Y^{(n)} := \underbrace{Y \times_X Y \times_X \cdots \times_X Y}_n,$$

where there are n terms in the fiber product. Let $\overline{y_1}, \ldots, \overline{y_n}$ be the geometric points in $\pi_Y^{-1}(\overline{x})$. Now consider the geometric point $\overline{z} := (\overline{y_1}, \ldots, \overline{y_n})$ of $Y^{(n)}$, and let Z be the connected component of $Y^{(n)}$ containing \overline{z}. We claim that Z is galois over X.

First, consider the morphism $\pi_{1,2} : Z \to Y \times_X Y$ given by projecting onto the first two co-ordinates. Since all our schemes are Noetherian, and $\pi_{1,2}$ is finite flat, the map $\pi_{1,2}$ is surjective onto a connected component. Since the diagonal $\Delta : Y \to Y \times_X Y$ is an open immersion (as Y is etale) and its also finite (being a quotient) it follows that the diagonal is a connected component of $Y \times_X Y$. Thus, since $\pi_{1,2}(\overline{z})$ has image not contained in the diagonal, it follows that $\pi_{1,2}$ has image disjoint from the diagonal, and therefore Z has no geometric points above the diagonal.

Reasoning similarly for all $\pi_{i,j}$, it follows that all geometric point in Z are of the form

$$\overline{z}_\sigma = (\overline{y_{\sigma(1)}}, \ldots, \overline{y_{\sigma(n)}})$$

for some automorphism σ of $\{1, 2, \ldots, n\}$. But there is an automorphism σ of $Y^{(n)}$ permuting the coefficients of Y, which send \overline{z} to \overline{z}_σ. It must also send Z to Z, since Z is the connected component containing those two points, and thereby the automorphism group of Z act transitively on the geometric points of $\pi_Z^{-1}(X)$. Hence Z is Galois.

Finally, consider the projection $\pi_1 : Z \to Y$. π_1 is finite, and also etale by Lecture 5, lemma 1.1. Thus π_1 is surjective.

Lemma 2.3. If Y and Z are Galois over X, then there exist a Galois W over X which surjects onto Y and Z.

4
Proof. Take W to be any connected component of $Y \times_X Z$. It is easy to see that the automorphisms of $Y \times_X Z$ act transitively on the geometric points above \mathfrak{p}, and thus it follows as in the proof above that W is Galois. Likewise, one can show the projections from W to Y and Z are finite and flat by Lecture 5, lemma 1.1, and thus surjective.

2.3 Universal cover of X

Since we are only working with finite maps, we cannot expect an object in FET/X to play the role of the universal covering space in topology. However, we can approximate it by finite objects as follows:

Definition. A universal cover \tilde{X} over X consists of the following data\(^1\):

- A partially ordered set I, which is filtered in the sense that for any two objects, there is some object less than or equal to both of them.
- For each $i \in I$ a Galois cover X_i of X.
- For any two objects $i, j \in I$ with $i < j$ a transition morphism $\phi_{ij} : X_i \to X_j$ such that $\phi_{jk} \circ \phi_{ij} = \phi_{ik}$.

Such that any connected $Y \in FET/X$ is covered by X_i for some $i \in I$. Moreover, we say that \tilde{X} is based, and we write $\tilde{\mathfrak{p}}$ for its base point if each X_i is assigned a geometric point \mathfrak{p}_i in a compatible way with the transition maps.

Lemma 2.4. There exists a based universal cover.

Proof. Let $(X_i, \mathfrak{p}_i)_{i \in I}$ be a set of Galois schemes over X together with a geometric point over \mathfrak{p}, indexed by some set I. Now we define an order in I by declaring that $i \leq j$ iff there is a morphism from X_i to X_j, in which case we set ϕ_{ij} to be the morphism carrying \mathfrak{p}_i to \mathfrak{p}_j — note we can always ensure this as X_j is Galois by composing with an automorphism of X_j over X. It is clear that this defines a partially ordered set, and its filtered by lemma 2.3. Moreover, by lemma 2.2 every finite etale connected Y is covered by some X_i. Thus, we have constructed a based universal cover $(\tilde{X}, \tilde{\mathfrak{p}})$.

\(^1\)In the language of category theory, we can consider \tilde{X} a pro-object in the category FET/X, though we will not expand on this
For any scheme Z over X, we define $\text{hom}_X(\tilde{X}, Z)$ to be the direct limit of $\underset{\leftarrow}{\text{lim}} \text{hom}_X(X_i, Z)$.

Lemma 2.5. For any $Y \in \text{FET}/X$, there is a natural isomorphism $F_Y : \text{hom}_X(\tilde{X}, Y) \to \pi_Y^{-1}(\overline{\pi})$ given by $\phi \mapsto \phi(\overline{\pi})$.

Proof. WLOG we take Y to be connected. We first prove that F_Y is surjective. Let $\overline{y} \in \pi_Y^{-1}(\overline{\pi})$. Now pick $i \in I$ such that there is a map $\phi : X_i \to Y$. Now ϕ is etale, hence surjective, hence surjective on geometric points. Thus there exist a geometric point in X_i, which we may write as $g \cdot \overline{x}_i$ for $g \in \text{Aut}_X X_i$ such that $\phi(g \cdot \overline{x}_i) = \overline{y}$. Then the map $\phi \circ g$ gives an element of $\text{hom}_X(\tilde{X}, Y)$, and $F_Y(\phi \circ g) = \overline{y}$.

Now to show that F_Y is injective. So let $i, j \in I$ and consider two maps $\psi_i : X_i \to Y$ and $\psi_j : X_j \to Y$ such that $\psi_i(\overline{x}_i) = \psi_j(\overline{x}_j)$. We must show that the images of ψ_i and ψ_j are the same in $\text{hom}_X(\tilde{X}, Y)$. Let $k \in I$ be such that X_k has surjective maps ϕ_{ik} and ϕ_{jk} to X_i and X_j, mapping \overline{x}_k to \overline{x}_i and \overline{x}_j respectively. Then the images of ψ_i and ψ_j in $\text{hom}_X(X_k, Y)$ both map \overline{x}_k to \overline{y}. Thus, the two maps must be the same, and the claim follows.

Thus we see that \tilde{X} plays the analogous role in FET/X to a universal cover.

2.4 Quotients of finite etale morphisms

To understand all of FET/X from just the Galois objects, we shall need to take quotients of schemes. We begin by looking at a more general context:

Definition. Suppose X is a scheme and G is a group acting on X. We say that a morphism $\phi : X \to Y$ is the categorical quotient of X by G if for any morphism $\psi : X \to Z$ for which $\psi = \psi \circ g$ for all $g \in G$, ψ factors uniquely through ϕ. In this case, we write $Y = G \backslash X$.

Note that if group schemes exist, they are unique up to isomorphism by the universal property. It turns out that such quotients do not always exist, so one must be a little careful. However, we have the following fairly general lemma:

Lemma 2.6. Suppose $f : Y \to X$ is an affine morphism of schemes, and G is a finite group acting on Y which preserves f. Then $G \backslash Y$ exists.
Proof. First, note that if \((U_\alpha)\) is an open covering of \(X\) such that the quotient of \(f^{-1}(U_\alpha)\) by \(G\) exists for each \(\alpha\), then we can glue all these quotients by the uniqueness given in the universal property to create a quotient of \(Y\) by \(G\). Thus, the statement is local on \(X\), and so we may suppose \(X = \text{Spec} A\) is affine. Since \(f\) is an affine morphism, it follows by definition that \(Y = \text{Spec} B\) is affine.

We claim that \(\text{Spec } B^{G}\) is the quotient of \(\text{Spec } B\) by \(G\). To prove this, suppose \(\phi : \text{Spec } B \to Z\) is a \(G\)-invariant morphism. To prove this, suppose \(\phi : \text{Spec } B \to Z\) is a \(G\)-invariant morphism. Then for each point \(P \in \text{Spec } B\), pick an affine neighborhood \(U = \text{Spec } C\) of \(Z\) containing \(f(P)\), and look at \(f^{-1}(U)\). Pick an element \(b_0\) which vanishes along the complement of \(f^{-1}(U)\), but does not vanish at any of the primes \(g \cdot P\) — algebraically, this corresponds to the fact that if \(I \subset B\) is an ideal which is not contained in any of the prime ideals \(Q_1, \ldots, Q_n\), and none of these ideals contain each other, then there is an element \(i \in I\) which is not in any of the \(Q_i\). Now set \(b = \prod_{g \in G} g \cdot b_0\). Then \(\text{Spec } B_b\) is an open subset containing \(P\) which maps to \(\text{Spec } C\) under \(f\). Thus \(f | \text{Spec } B_b\) corresponds to a map \(f^\# : C \to B_b\) which is \(G\)-invariant, and thus lands in \((B_b)^G = (B^G)_b\) by the next lemma. Thus, the map \(f | \text{Spec } B_b\) factors uniquely through \(\text{Spec } B^{G}\). Gluing, we see that \(f\) factors uniquely through \(\text{Spec } B^{G}\) and the claim follows.

\[\square\]

Lemma 2.7. For any ring \(B\) acted on by a finite group \(G\), and element \(b \in B^G\), we have that \(\phi : (B^G)_b \cong (B_b)^G\).

Proof. Since localization is flat, \((B^G)_b\) injects into \(B_b\), which means that \(\phi\) is injective.

To show surjectivity, suppose \(s/b^m \in (B_b)^G\). That means that as an element of \((B_b)\), \(s/b^m\) is invariant by \(G\), which means that for all \(g \in G, g \cdot s = s_g\) where \(s_g \cdot b^m = 0\) inside \(B\) for some \(n\). Taking \(n\) large enough for all \(g \in G\), we see that \(b^n \cdot s \in B^G\), and thus \(b^n \cdot s \in \text{im}\phi\), and thus so is \(s/b^m\).

We now focus on quotients of finite etale morphisms.

Theorem 2.8. Let \(f : Y \to X\) be Galois, and \(H\) be a subgroup of the automorphism group \(G = \text{Aut}_X Y\). Then \(H \setminus Y \to X\) is finite etale, and
\[G \setminus \pi_Y^{-1}(\overline{\tau}) \cong \pi_{G \setminus Y}^{-1}(\overline{\tau}).\]

Proof. Since finite maps are affine, we know from the lemma 2.6 that the quotient exists. Moreover, the statement is local on \(X\), so we may set \(X = \text{Spec} A\).
Spec $A,Y = \text{Spec } B, G \setminus Y = \text{Spec } B^G$. Now, pick any point $P \in \text{Spec } A$. Then $B \otimes_A k(P)$ is an etale extension of $k(P)$, hence is a direct sum of fields $\otimes_i L_i$ separable over $k(P)$. Moreover, the group G acts simply transitively on the geometric points above $k(P) \to \overline{k(P)}$, and thus all the L_i must be isomorphic, so that $B \otimes_A k(P) \cong L^r$ for some field Galois field L, the group G acts simply transitively on the direct summands and, the stabilizer of each summand L is isomorphic to its Galois group over $k(P)$.

Now, let t be an element in the first component of L such that its conjugates over $k(P)$ form a basis for L over $k(P)$—that such an element exists is the normal basis theorem. Then it follows that $g \cdot t, g \in G$ form a basis for $B \otimes_A k(P)$ over $k(P)$. Now let t be any lift of t to B_P. Since we know B_P is finite flat over A_P it must be free, and so it follows that $g \cdot t, g \in G$, being the lift of a basis over $k(P)$ is a basis over A_P. Moreover, by spreading out as usual we can find $a \in A \setminus P$ such that t lifts to A_a an $g \cdot t, g \in G$ is a basis for B_a over A_a. Since we are trying to prove a local statement, we may replace A by A_a and thus reduce to the case where B is isomorphic as an $A[G]$ module to $A[G]$. It thus follows that $B^H \cong A[H \setminus G]$ and thus its finite flat over A.

To check that B^H is etale over A as well as the last assertion, it suffices to notice that for any A-algebra C, $(B \otimes_A C)^H = B^H \otimes_A C$. Thus, as we may check unramifiedness over geometric points, we may base change to $\text{Spec } \overline{k}$ via $\overline{\pi}$ and reduce to the case $A = \overline{k}$. But in this case, $B = \overline{k}^{[G]}$, so that $B^H = \overline{k}^{H \setminus G}$. The last assertion and the fact that B^H is etale over A are immediate consequences.

\[\square\]

**Corollary 2.9. For any connected finite etale Z over X, and Galois Y over X with a surjection $\phi : Y \to Z$, there is a subgroup $H = \text{Aut}_Z Y < \text{Aut}_X Y$ such that ϕ induces an isomorphism from $H \setminus Y$ to Z. Z is Galois over X iff H is normal in $\text{Aut}_X Y$, in which case $\text{Aut}_X Z = \text{Aut}_X Y / \text{Aut}_Z Y$.

Proof. Consider a geometric point \overline{y} of Y above \overline{x} in X, and set $\overline{z} = \phi(\overline{y})$. Then as ϕ is of degree $[Y : Z] = \frac{[Y : X]}{[Z : X]}$, there must be $[Y : Z]$ geometric points in Y above \overline{x}. Let us write these points as $(h_i \cdot \overline{y})_{i=1,...,n}$ where $h_i \in \text{Aut}_X Y$. Now, since maps from Y to Z are determined by the image of \overline{y}, it follows that h_i are precisely the elements g of G such that $\phi = \phi \circ g$. Thus, $H = \{h_1, \ldots, h_n\}$ is the subgroup $\text{Aut}_Z Y$ of $\text{Aut}_X Y$, and so we get an induced map $H \setminus Y \to Z$. By the previous theorem, $H \setminus Y$ is etale over X, and
and thus it must also be etale over Z. But now

$$[H \setminus Y : Z] = \frac{[Y : H \setminus Y]}{[Y : Z]} = \frac{|H|}{|H|} = 1.$$

Since a finite flat map of degree 1 must be an isomorphism, the first part of the claim follows.

Now, since maps from Y to Z are determined by where \overline{y} goes, and $\text{Aut}_X Y$ acts transitively on $\pi_Y^{-1}(\overline{y})$, it follows that $\text{Aut}_X Y \to \text{hom}_X(Y, Z)$ is surjective. Thus,

$$\text{Aut}_X Z = \text{hom}_X(Y, Z)^H = (H \setminus \text{Aut}_X Y)^H = \text{hom}_{\text{Aut}_X Y}(H \setminus \text{Aut}_X Y, H \setminus \text{Aut}_X Y).$$

Now, in general for finite groups $H < G$, $\text{hom}_G(H \setminus G, H \setminus G)$ is of size at most $|H|$ with equality iff H is normal in G, in which case $\text{hom}_G(H \setminus G, H \setminus G) \cong G/H$. The claim follows. \qed

3 The Etale Fundamental Group

Suppose $Y \to Z$ is a morphism of Galois schemes over X. By corollary 2.9 there is a natural surjection $\text{Aut}_X Y \to \text{Aut}_X Z$. Now given a universal cover (\tilde{X}, \tilde{x}) we make the following definition:

Definition. We define $\pi_1(X, \overline{x})$ to be the profinite group $\varprojlim \text{Aut}_X(X_i)$, where the inverse limit is over all $i \in I$. One may consider $\pi_1(X, \overline{x})$ to be the automorphism group of \tilde{X}, in that it records all the compatible automorphisms of the X_i. In other words, $\pi_1(X, \overline{x})$ is that closed subgroup of $\prod_{i \in I} \text{Aut}_i X_i$ compatible with the transition maps.

As it stands, the group $\pi_1(X, \overline{x})$ depends on our choice of universal cover, but as we will see that’s not the case. However, before we give a more conceptual proof, the reader might want to try and prove it directly via the following exercise:

- Given two based universal covers $\varprojlim_{i \in I} (X_i, \overline{x}_i), \varprojlim_{j \in J} (X_j, \overline{x}_j)$ of X, prove that there is a natural isomorphism between $\varprojlim \text{Aut}_X X_i$ and $\varprojlim \text{Aut}_X X_j$ as topological groups. **Hint:** Construct a map by picking morphisms from the X_i to the X_j, and use the base points to make the choice of morphism canonical.
3.1 Main Theorem: From covering spaces to $\pi_1(X, \overline{x})$-sets

Given a $Y \in \text{FET}/X$ we would like to construct a $\pi_1(X, \overline{x})$-set. By lemma 2.5 we have an isomorphism between $\pi^{-1}_Y(\overline{y})$ and $\text{hom}_X(\tilde{X}, Y)$. Moreover, we have a left action of $\pi_1(\tilde{X}, x)$ on $\text{hom}_X(\tilde{X}, Y)$ as follows: given $g \in \text{Aut}_X X_i$ and $\phi \in \text{hom}_X(X_i, Y)$ we define $g \cdot \phi := \phi \circ g^{-1}$. It is easy to check that this defines a \textit{continuous} action of $\pi_1(X, \overline{x})$ on $\text{hom}_X(\tilde{X}, Y)$, and thus on $\pi^{-1}_Y(\overline{y})$ via the above identification.

We write F_Y for the finite-discrete $\pi_1(X, \overline{x})$ - module produced in this way

Theorem 3.1. The functor $Y \rightarrow F_Y$ defines an equivalence of categories:

$$F : \text{FET}/X \cong \{ \text{finite discrete } \pi_1(X, \overline{x}) - \text{sets} \}.$$

Proof. We first prove that F is essentially surjective. Let M be a finite discrete $\pi_1(X, \overline{x})$-set. Since M is finite and discrete, the action on M factors through $G := \text{Aut}_X X_i$ for some $i \in I$. Now write $M \cong \bigcup_{i=1}^n G_i/H_i$. Define Y to be $\bigcup_{i=1}^n H_i \setminus X_i$. We claim that F_Y is isomorphic to M.

Note that there are maps from X_i to $H_i \setminus X_i$ sending \overline{x}_i to any geometric point over \overline{x}, and thus it follows that $\text{hom}_X(\tilde{X}, H_i \setminus X_i) \cong \text{hom}_X(X_i, H_i \setminus X_i)$. Moreover, $\text{Aut}_X X_i/H_i \rightarrow \text{hom}_X(X_i, H_i \setminus X_i)$ is an injective map of sets with equal cardinality by lemma 2.8, and thus is a bijection. It follows that

$$\text{hom}_X(\tilde{X}, H_i \setminus X_i) = \text{Aut}_X X_i/H_i \cong G_i/H_i,$$

and one easily checks that the action of G_i is via left multiplication, as desired.

It remains to prove that F is fully faithful. So suppose that Y, Z are finite etale over X. Pick $i \in I$ so that X_i dominates both Y and Z. By corollary 2.9 there are subgroups H_Y, H_Z so that $Y \cong H_Y \setminus X_i$ and $Z \cong H_Z \setminus X_i$. We thus compute

$$\text{hom}_X(Y, Z) = \text{hom}_X(H_Y \setminus X_i, H_Z \setminus X_i)$$

$$= \text{hom}_X(X_i, H_Z \setminus X_i)^{H_Y}$$

$$= (H_Z \text{Aut}_X X_i)^{H_Y}$$

$$\cong \text{hom}_{G_i}(H_Y \setminus G_i, H_Z \setminus G_i)$$

$$\cong \text{hom}_{\pi_1(X, \overline{x})}(F_Y, F_Z)$$

As desired.

\[\square\]
We leave it to the reader to prove the analogue of theorem 1.2 for profinite groups. This gives a definition of $\pi_1(X, x)$ independent of the choice of a universal cover.