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1 Introduction to Cohomology

Let C be an abelian category We will explain how, for any left exact functor
F : C → D to another abelian category, to define its right derive functors
RiF : C → D, at least under sufficiently nice circumstances. To motivate
their definition, we list the two properties we would like to have:

1. R0F = F .

2. For any short exact sequence 0→ A→ B → C → 0 we get, functori-
ally, a long exact sequence

0 // F (A) // F (B) // F (C)

tt

R1F (A) // R1F (B) // R1F (C)

tt

R2F (A) · · ·

so that any morphism between two short exact sequences yields a
morphism between the associated long exact sequences in a functorial
way.

We shall define RiF to be universal with respect to the above properties.
It turns out that it is very helpful to identify the following class of objects:

Definition. An object I ∈ ob(C) is injective if the contravariant functor
X → Hom(X, I) is exact. In other words, if A ↪→ B is an injection, then
any map from A to I can be lifted to a map from B to I. We say that an
abelian category C has enough injectives if every object has a monomorphism
into an injective object.
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Thus, whenever we have a sequence 0 → I → B → C with I injective,
we have a map B → I extending the identity map I → I and so we have
a non-canonical splitting B ∼= I ⊕ C. From this it follows that the identity
map C → C factors through the surjection B → C, and thus the identity
map on F (C) factors through the map F (B) → F (C). It follows that this
latter map is surjective, and thus 0→ F (I)→ F (B)→ F (C)→ 0 is exact.
This suggests the property RiF (I) = 0 for all i > 0. We shall see that for
categories with enough injectives, this determines the functors RiF ! Thus,
let us suppose first that we have functors RiF satisfying 1.

Suppose A is any object. Embedding A into an injective object I and let-
ting B be the cokernel, we get a short exact sequence. 0→ A→ I → B → 0.
Taking the associated long exact sequence gives R1F (A) = coker:F (I) →
F (B) and for i > 1, RiF (A) ∼= Ri−1F (B). Thus, to get the higher cohomol-
ogy groups of A we should repeat the procedure for B by embedding it into
an injective object as well, and so on. This proves that the functors RiF
are determined by conditions 1 and their vanishing on injectives.

With this discussion in mind, we make the following definition:

Definition. An injective resolution of A is an exact complex 0 → A →
I0 → I1 → · · · such that all the In are injective. We often right A→ I · for
short.

Given an injective resolution of A, we can break it up into short exact
sequences 0 → Ki → Ii → Ki+1 → 0 where K0 = A. For any n we deduce
by forming the associated long exact sequence that

RnF (A) = RnF (K0) = R1F (Kn−1) = coker:F (In−1)→ F (Kn).

By left exactness, F (Kn) ∼= ker:F (In) → F (In+1) and it follows that
RnF (A) is the n’th cohomology group of the resolution F (I0) → F (I1) →
· · · written shorthand as F (I ·). We thus make this our definition of right
derived functors.

Definition. The right derived functors RiF (A) are defined to be the coho-
mology groups of F (I ·) for any injective resolution A→ I ·.

The following theorem proves that the above definition is well defined
and does indeed yield a functor; it is the main technical input in the theory
of injective resolutions:

Theorem 1.1. If A → I · and A → J · are two injective resolutions of A,
then there is a natural isomorphism H(F (I ·)) ∼= H(F (J ·)). As a conse-
quence, the functors RiF (A) are well defined.
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Proof. Suppose M ·, N · are 2 complexes. We call f : M · → N · a map of
complexes if f : M i → N i and dNf = fdM . It is easy to see that f induces
maps f : H i(M ·) → H i(N ·). Given maps hi : M i → N i−1 it is easy to see
that dNh + hdM is a map of complexes inducing the 0 maps on homology.
We call 2 maps f, g : M · → N · homotopically equivalent if there exists a
map h such that f − g = dNh+ hdM .

Lemma 1.2. For two objects A,B, and injective resolutions A → I · and
B → J ·, and a morphism f̄ : A→ B, there exists a morphism of complexes
f : I · → J · inducing f̄ on A ∼= H0(I ·) → H0(J ·) ∼= B. Moreover, any two
such lifts f1, f2 are homotopically equivalent.

Proof. First we construct such an f . Since we have a map f̄ : A →
B,composing with the inclusion of B into J0 we get a map A → J0 and
as J0 is injective, this lifts to a map f0 : I0 → J0. Now suppose by induc-
tion we have defined fn : In → Jn in a way such that dJfk = fk+1dI for
k < n. Then

dJ ◦ fn(ker : In → In+1) = dJ ◦ fn ◦ dI(In−1) = dJ ◦ dJ ◦ fn−1(In−1) = 0.

It follows that the map In
dJ◦fn−−−−→ induces a map fn+1 : dI(I

n) → Jn+1,
and by injectivity of Jn+1, this extends to a map fn+1 : In+1 → Jn+1.
Moreover, dJfn = fn+1dI by construction. Continuing by induction, we get
a morphism f : I · → J · as desired.

Next, suppose that we have two such lifts f1, f2. Then f1 − f2 induces
the zero map A → B and so it suffices to prove that any lift of the 0 map
is of the form dNh + hdM . We do so by induction. First, as f0(A) = 0,
we see that f0 : I0 → J0 extends to a map d(I0) → J0, which then lifts
to a map h1 : I1 → J0 by injectivity of J0. Now suppose we have define
hn : In → Jn−1 by induction so that fk = dJhk + hk+1dI for k < n. Now,
as

(fn − dJhn)(ker : In xrightarrowdII
n+1) = (fn − dJhn) ◦ dI(In−1)

= (dJfn−1 − dJ ◦ (fn−1 − dJhn−1))(In−1)

= 0

we see that fn−dJhn descends to a map on dI(I
n), which can by injectivity

of Jn be extended to a map hn+1 : In+1 → Jn. Continuing by induction, we
construct our homotopy h.

To finish the proof of the theorem, construct a morphism f : I · → J ·

lifting the identity map on A. Applying the functor f gives the desired
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morphism RFf : H i(F (I ·)) → H i(F (J ·)). If f ′ were another lift, then
f ′ − f = dJh+ hdI by the lemma, and thus Ff ′ −Ff = dJFh+FhdI , and
so it easily follows that RFf = RFf ′. Finally, to see that the map RFf is
an isomorphism construct a lifting g : J · → I · of the identity and compose.

1.1 Acyclic Resolutions

It is often the case that obtaining injective resolutions is very inconvenient.
As such, we present a much more accessible way of computing right derived
functors.

Definition. An object A is said to be F -acyclic if RiFA = 0 for i ≥ 1.

Lemma 1.3. Suppose 0 → A → J . is an F -acyclic resolution of A. That
is, it is an exact complex and J i are F−acyclic for all i ≥ 0. Then RiFA
is naturally isomorphic to the i’th cohomology of 0→ FJ .. In other words,
cohomology can be computed using acyclic objects.

Proof. As always, let us split up the long exact sequence into short exact
sequences:

0→ A→ J0 → K0

and
∀i ≥ 1, 0→ Ki → J i → Ki+1 → 0.

By writing out the corresponding long exact sequences of right derived func-
tors, and using the F -acyclicity of the J i, we learn that

RnFA ∼= Rn−1K0 ∼= · · · ∼= R1Kn−2 ∼= coker(FJn−2 → FKn−1).

As F is left exact, FKn−1 is the kernel of FJn−1 → FJn, and the claim
follows.

2 The category of Abelian Groups

Let us now apply the preceding theory to the category Ab of Abelian groups.
In this case one may give a very concrete interpretation of injective objects:

Definition. We say that an abelian group I is divisible if for every positive
integer n, the multplication by n map ×n : I → I is surjective.
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Lemma 2.1. An abelian group I is injective iff it is divisible/

Proof. Suppose that I is injective, and let x ∈ I. Consider the map fx :
Z→ I which is defined by fx(1) = x. Since I is injective this lifts to a map
gx : Q → I. Now ngx( 1

n) = gx(1) = fx(1) = x. Since x was arbitrary, this
shows that I is divisible.

Now suppose I is divisible, A ↪→ B is an injection and f : A → I is a
morphism. We wish to extend f to B. It suffices by transfinite induction
to assume that B is generated over A by a single element x. Now either
B/A ∼= Z or B/A ∼= Z/nZ. In the former case, simply extend f by sending
x to 0. In the latter case,

B ∼= (A⊕ Z · x)/(a− nx)

for some a ∈ A. Now as I is divisible, we may pick y ∈ I so that ny = φ(a).
Then f can be extended by sending x to y. Thus I is injective.

Corollary 2.2. Ab has enough injectives.

Proof. Let A be an Abelian group. For each non-zero x ∈ A, let Cx be the
group generated in A by x (so it is either Z or cyclic).Cx imbeds into an
injective object Ix (either Q/Z or Q) and by injectivity, we can extend this
to a map φx : A → Ix. Now consider the product map φ : A →

∏
x∈A Ix.

Clearly φ is an embedding, and fro the universal property of products a
product of injectives is injective. Thus φ is an embedding of A into an
injective object. Since A was arbitrary, the claim follows.

As such we can talk about cohomology freely in Ab. Moreover, since
every quotient of a divisible group is divisible, every object A has an injective
resolution of length 2. That is, if we imbed A into an injective I, then

0→ A→ I → I/A→ 0.

is an injective resolution of A. We thus have the following corollary:

Corollary 2.3. For every left exact functor F : Ab → C,the functors RiF
vanish for i > 1.
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3 (Pre)sheaves have enough injectives

We warn the reader that this section gets a little more category-theoretically
and set-theoretically hairy, and for the purpose of these lecture notes (and,
indeed, much of ones existence) one may comfortable accept that the cate-
gories of sheaves and presheaves on any site have enough injectives without
worrying about the proofs.

The following exercise is extremely useful in proving that various cate-
gories have enough injectives, by ‘bootstrapping’ of other categories:

Excercise 3.1. Suppose F : C → D is a functor with a left adjoint G : D →
C, so that Hom(A,FB) ∼= Hom(GA,B), and G is exact. Then F preserves
injectives.

We being by showing that on any category C, the corresponding category
of presheaves (of abelian groups) has enough injectives.

Lemma 3.2. For any category C, the category of presheaves P (C) has
enough injectives.

Proof. Denote C to be a category, Ob(C) to be the category with the same
objects as C but NO maps except for the identity maps. The proof proceeds
in stages:

1. P (ob(C) has enough injectives. In fact, P (ob(C)) is just
∏
x∈Ob(C)Ab

as a category. Since by theorem 2.2 we know Ab has enough injectives,
the same follows for the product category (as one may easily verify that
a product of injectives is injective).

2. Consider the forgetful functor f : P (C) → P (ob(C)) and the functor
u : P (ob(C) → P (C) which to a presheaf A ∈ P (ob(C)) assigns the
presheaf

uA(X) :=
∏

φ:Y→X
A(Y ),

where the product is over ALL maps φ : Y → X and the transition
map associated to ψ : X ′ → X is given by

(aφ)φ → (aψ◦φ′)φ′ .

We claim that u is the right adjoint to f . To prove this, we must
show that Hom(fP1, P2) ∼= Hom(P1, uP2). Given an element φ ∈
Hom(fP1, P2) we get an element F (φ) : P1 → uP2 as follows: for
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t ∈ P (X), F (φ)X(t) = (φY (tY ))φ:Y→X . Conversely, given an element
ψ ∈ Hom(P1, uP2) we define an element G(ψ) : fP1 → P2 as follows:
For t ∈ P (X), G(ψ)(t) = G(t)IdX . We leave it to the reader to show
that F,G define inverse maps.

3. A naturally imbeds into ufA via the canonical map

m ∈ A(X)→ (mY )φ:Y→X ,

which can be gotten via the adjointness above.

4. Since u has an exact left adjoint, it follows by excercise 3.1 that u
preserves injectives. Now, take A ∈ P (C). Then since we saw that
P (ob(C)) has enough injectives, we can write fA ↪→ I where I is
injective. Then A ↪→ ufA ↪→ uI, which completes the proof.

Our next goal is to see that S(C ′) has enough injectives where C ′ is an
arbitrary cite with underlying category C, and S(C ′) is the site of sheaves
on it. For a presheaf P , let P → J(P ) be an imbedding of P into an injective
presheaf J(P ). Moreover, recall the forgetful functor i : S(C ′)→ P (C) and
the sheafification functor a : P (C) → S(C ′). a is exact and left adjoint to
i. Now, given a sheaf F, we define J1(F) = aJ(iF). Clearly F → J1(F) and
this map is injective a a is exact. Now define Ji+1(F) = J1(Ji(F)) and for a
limit ordinal α define Jα(F) to be the direct limit lim−→β<α

Jβ(F). As direct

limit are exact, we have an injective map Jα(F)→ Jα′(F) whenever α < α′.
Now, given an injective map of sheaves F1 ↪→ F2 and a map F1 → Jα(F),
we get maps

iF1 → iJα(F)→ J(iJα).

Thus, by injectivity we can extend this to a map iF2 → J(iJα(F)) and by
adjointness we get a map

F2 → Jα+1(F).

Thus, this somehow says that the direct system Jα(F) gives an injective
embedding of F. Of course we cannot take the limit over all ordinals, as
they do not form a set1. We will now show that in fact we can stop at some
point and take a fixed Jβ(F).

1This may seem like we’re being stubborn at this point, to those who dislike set-
theoretic issues. But in fact using ordinals in the first place was sort of a cheat to try and
make things work. Now that we’ve chosen to dip our toe in the water, we should make
sure that there aren’t any sharks!
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Lemma 3.3. For each X ∈ ob(C) define ZX to be the presheaf given by
ZX(U) := ⊕φ:U→XZ. Let I be a sheaf such that for every X and every
subsheaf S of aZX and morphism from S to I, there is an extension to a
morphism from aZX to I. Then I is injective.

Proof. Suppose F1 ↪→ F2 and let φ : F1 → I be a morphism. Now consider
an X ∈ ob(C) and a section s ∈ F2(X) that does not occur in F1(X). Now,
we have by adjointness that

hom(aZX ,F2) ∼= hom(ZX , iF2) ∼= F2(X).

Thus, we have a morphism ψ : aZX → F2 sending 1 ∈ ZX(X) to s. Now, let
S = ψ−1(F1). By assumption, the induces morphism φ ◦ ψ : S → I extends
to a morphism φ′ : aZX → I.Since φ′ kills the kernel of ψ, we get a map
from =(φ′) to I which agrees on F1 ∩ =(φ′) by construction. Thus we can
glue and get an extension of φ to the strictly bigger subsheaf F′ = F + =φ′.
Continuing by transfinite induction completes the proof.

Theorem 3.4. S(C ′) has enough injectives.

Proof. Let α be the cardinality of ob(C) multiplied by the cardinality of⋃
X,U |aZX(U)|. Now choose an ordinal β with cofinality larger than α. We

claim that for any sheaf F, Jβ(F) is injective. Since we have already seen
that F embeds into Jβ(F), this completes the proof.

To prove this, we apply lemma test. So let S be a subsheaf of aZX for
some X ∈ ob(C). Consider a map from φ : S → Jβ(F). Since the cofinality
of β was chosen to be larger than the cardinality of the set of all sections
of S, it follows that φ factors through Jα(F). Thus aZX maps into Jα+1(F)
which then maps into Jβ(F), as desired. This completes the proof.

3.1 Neat fact

Because its cute and much easier, we give an independent proof that the
category of etale sheaves has enough injectives:

Corollary 3.5. The category S(Xet) has enough injectives.

Proof. First, if X is the spectrum of a separably closed field then S(Xet) ∼=
Ab, and the corollary follows from lemma ?? .Next, for any X, consider
the scheme X0 :=

⋃
x̄ x̄ and the natural map f : X0 → X. Now f∗ is
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exact since taking stalks is exact by lemma ??. Moreover, f∗ is left ad-
joint to f∗ and thus it follows from exercise 3.1 that f∗ preserves injec-
tives. Hence, for any sheaf F on Xet, imbed f∗F ↪→ I where I is injective.
Then f∗f

∗F ↪→ f∗I is a monomorphism since f∗ is exact. Finally, since
Hom(F, f∗f

∗F ) ∼= Hom(f∗F, f∗F ) by adjointness we have a natural map
F → f∗f

∗F corresponding to the identity morphism. By lemma ?? this is
an imbedding, so we get an imbedding F ↪→ f∗I as desired.

3.2 Cohomology of sheaves

We can now define right derived functors of any left exact functor on the
category of Sheaves, S(Xet). We list some examples of functors that we shall
use:

1. Most importantly, the global sections functor F → Γ(X,F ) is left
exact, and we write RiΓ(X,F ) or more frequently just H i(X,F ) to
denote it’s right derived functors. This group is called the i’th coho-
mology group of X with values in F .

2. For any etale cover U ⊂ X we write H i(U,F ) for the right derived
functors of F → Γ(U,F ). Note that these are not a-priori the same
as the groups H i(U,F | U). In fact, they are isomorphic, as we shall
later show.

3. The inclusion functor i : S(Xet)→ P (Xet) is left exact. We denote its
right derived functors by H i(F ).

4. For any fixed F0, the functor F → Hom(F0, F ) is left exact. We denote
its right derived functors by Exti(F0, F ).

5. Likewise, the functor S(X)→ S(X) given by U → Hom(F0 | U,F | U)
is left exact. We denote its right derived functors by Exti(F0, F ).

6. Fially, for any continuous morphism π : Xet → X ′et we denote the right
derived functors of F → π∗F by RiπF . These are called the higher
direct image sheaves of F .
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