
MAT137 - Term 2, Week 11

Test 4 is tomorrow. Hopefully you already knew that! See the course
website for details.

Today we will:

Talk about Taylor polynomials and Taylor series.

For next week (last lecture!):

Watch all remaining videos on playlist 14.

You have a homework assignment from this lecture. See the last slide.
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Towards Taylor series

Now we’ve convinced ourselves that power series are great, because the
functions they define act just like polynomials so long as we’re careful to
work inside their radii of convergence.

So what? How does this help us do anything?

The next idea is to develop a framework for expressing functions we
already know about as power series. That’s what the machinery of Taylor
series is about.

We come up with Taylor series by trying to approximate known functions
more and more accurately with [normal, finite-degree] polynomials, and
then “taking a limit”. These polynomials are called Taylor polynomials.
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Taylor polynomials

First we have to formalize what it means to approximate a function
“better and better”. This is a two part process.

Definition

Let f and g be two functions such that lim
x→a

f (x) = lim
x→a

g(x) = 0 for some

real number a.

We say g approaches zero faster than f as x → a if

lim
x→a

g(x)

f (x)
= 0.

This definition gives us a way to compare two functions, and see which
one is going to zero faster than the other.

Ivan Khatchatourian MAT137 March 22, 2018 3 / 32



Taylor polynomials

Now we define something like “f is a good approximation for g”, but more
quantitatively. Essentially, we want to “grade” or “measure” how good the
approximation is.

Definition

Let f and g be two functions such that lim
x→a

f (x) = lim
x→a

g(x) = 0 for some

real number a.

Let n be a non-negative integer. We say
g is a good approximation of order n for f near a if

lim
x→a

f (x)− g(x)

(x − a)n
= 0.

Idea: The bigger n is, the more closely g approximates f (near a).
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Taylor polynomials

Finally, we can define a Taylor polynomial as the “least complex”
polynomial that does this sort of approximation:

Definition

Let f be a continuous function defined at and near a real number a, and n
be a non-negative integer.

The nth Taylor polynomial of f at a is a polynomial Pn of smallest degree
such that Pn is a good approximation of order n for f near a

Note that this definition doesn’t require that f is differentiable any
number of times. Just continuous!
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Taylor polynomials

Some simple manipulations and applications of L’Hôpital’s rule brought us
to this result, which is a more concrete characterization of Taylor
polynomials:

Definition

Let f be a Cn function at a real number a, and let n be a positive integer.

The nth Taylor polynomial of f at a is a polynomial Pn of smallest degree
such that

Pn(a) = f (a),P ′n(a) = f ′(a), . . . ,P
(n−1)
n (a) = f (n−1)(a),P

(n)
n (a) = f (n)(a).

Note that the definition does not require that Pn is a degree n polynomial.
Its degree can be less.

Exercise: What is the 3rd Taylor polynomial of f (x) = sin(x) at a = 0?
What about the 7th? The 8th?
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Exercises

Exericse: Let f (x) = ex . Which of the following two functions is a better
approximation of f near a = 0?

g1(x) = 1 + x + x2.

g2(x) = sin(x) + cos(x) + x2 + 1
3x3.

g3(x) = e−x + 2x .

Exericse: Let f be a function that has all of its derivatives.

Find an explicit formula for the 3rd Taylor polynomial of f at 0.

Let n be a non-negative integer. Find an explicit formula for the nth

Taylor polynomial of f at 0.

Ivan Khatchatourian MAT137 March 22, 2018 7 / 32



An explicit formula for Taylor polynomails

It’s a routine exercise to prove that this formula is true (by induction).
That gives us our third characterization of Taylor polynomials:

Theorem

Let n be a non-negative integer, let a be a real number, and let f be a Cn

function defined near a.

The nth Taylor polynomial of f at a has the following explicit form:

Pn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k
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Taylor series

Now we are ready to define Taylor series, which are essentially “infinite
degree” Taylor polynomials.

Definition

Suppose f is a function that has all of its derivatives, and a is a real
number.

The Taylor series of f and a is the power series S , centred at a, such that

S (k)(a) = f (k)(a) for all k = 0, 1, 2, . . .

In other words, the Taylor series of f at a is the power series S such that
all the derivatives of S and f agree at a.
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Taylor series

It is a simple exercise in induction to prove that the terms in the Taylor
series of f at a look just like the terms in the Taylor polynomials of f at a:

Proposition

Suppose f is a function that has all of its derivatives, and a is a real
number.

Then the Taylor series of f at a is the following power series:

S(x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n.
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Taylor series we know so far

You saw four important Taylor series in the videos:

ex :
∞∑
n=0

1

n!
xn = 1 + x +

1

2!
x2 +

1

3!
x3 + · · · (R =∞)

cos(x) :
∞∑
n=0

(−1)n

(2n)!
x2n = 1 +

1

2!
x2 +

1

4!
x4 + · · · (R =∞)

sin(x) :
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1 = x +

1

3!
x3 +

1

5!
x5 + · · · (R =∞)

1

1− x
:

∞∑
n=0

xn = 1 + x + x2 + x3 + · · · (R = 1)
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There’s more going on here than you think.

CAUTION: We’ve never claimed that a function f equals its Taylor series!

For example, we have the Taylor series of cos(x) at a = 0:

S(x) =
∞∑
n=0

(−1)n

(2n)!
x2n

but we’ve never claimed that S(x) = cos(x).

This is a very subtle and important point. First we’ll give an example of
how this can go wrong, then recall from the videos how we ensure it
doesn’t go wrong.
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A very pathalogical example

Example: Consider the following function:

f (x) =

{
e−1/x

2
x 6= 0

0 x = 0

Here’s the relevant part of its graph:
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A very pathological example

f (x) =

{
e−1/x

2
x 6= 0

0 x = 0

It is a a tedious (but purely computational) exercise to check that:

f (k)(0) = 0 for all k = 0, 1, 2, . . .

You may assume this without proof.
Exercise:

What is the Taylor series of this function at 0?

Where does this series converge absolutely?

For which points x does the function equal its Taylor series?
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Now what?

The whole idea here was to use the Taylor series of a function to
understand the function better, or manipulate it more easily.

So the next goal is to find out when and how we can guarantee a function
f equals its Taylor series.

Such a function will be called an analytic function, roughly speaking.

For now just note that we just saw a function that has all of its derivatives
everywhere, and whose Taylor series converges absolutely everywhere, but
which is not analytic.
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Minimizing error

Think back to our discussion of “good approximations of order n”, error
functions, etc.

Provided f has all of its derivatives at a, we can define

Pn, its nth Taylor polynomial at a, for all n, and

S , its Taylor series at a.

We know that Pn is a good approximation of order n for f at a, and that
this approximation likely has some error for values of x other than a. Call
this error Rn(x). In other words, we’ll have that for all x ,
f (x) = Pn(x) + Rn(x).

In one of the videos you saw that to prove f is analytic near a, it suffices
to prove that

lim
n→∞

Rn(x) = 0

for all x near a.
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Here’s what this looks like

The exponential function f (x) = ex , and its first Taylor polynomial P1
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Here’s what this looks like

The exponential function f (x) = ex , and its second Taylor polynomial P2
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Here’s what this looks like

The exponential function f (x) = ex , and its third Taylor polynomial P3
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Here’s what this looks like

The exponential function f (x) = ex , and its fourth Taylor polynomial P4
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Some more pictures

Here is a graph of sin(x), and some of its Taylor polynomials.
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Some pictures

Here is a graph of log(1 + x), and some of its Taylor polynomials.
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Some pictures

Here is a graph of arctan(x), and some of its Taylor polynomials.
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Some pictures

Here is a graph of 1
1−x , and some of its Taylor polynomials.
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Some definitions

Now, to be more precise about what we mean by analytic:

Definition

Let f be a function defined at least on an open interval I .

f is C 1 on I of f ′ exists and is continuous on I .

More generally, f is Cn on I if f ′, f ′′, f ′′′, . . . , f (n) all exist and are all
continuous on I .

f is C∞ on I (or sometimes smooth on I ) if f has all of its
derivatives at every point of I .

f is analytic on I if for every a ∈ I , the Taylor series of f centred at a
converges to f (x) for all x near a.

These properties are listed in increasing order of strength.
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These properties really are all different

You know (or will soon know) that ex , sin(x), and cos(x) are all analytic
on R.

We showed that

f (x) =

{
e−1/x

2
x 6= 0

0 x = 0

is C∞ on R, but not analytic on any interval containing 0.

For each k, the function f (x) = |x |k+1 is C k but not C k+1.

The function

f (x) =

{
x2 sin

(
1
x

)
x 6= 0

0 x = 0

is differentiable everywhere, but its derivative is not continuous, so it is not
C 1.
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Taylor’s Theorem

In order to show a function is analytic, we need a way of “getting a handle
on” the remainder term Rn(x). There are (at least) three famous results
for doing this.

The most famous of them is below, and it gives an explicit expression for
the remainder:

Theorem

Suppose f is Cn+1 on an interval I that contains a point a. Let Pn be its
nth Taylor polynomial at a.

Then for all x ∈ I , we have f (x) = Pn(x) + Rn(x), where

Rn(x) =
1

n!

∫ x

a
f (n+1)(t)(x − t)n dt.

This integral is a mess though, so instead of working with it we use
theorems that estimate its value
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Lagrange’s Remainder Theorem

A much more useful one, which you saw used to prove that ex is analytic
in one of the videos, is the following theorem due to Lagrange:

Theorem

Let f be Cn+1 on an interval I containing a point a.

Then for any x ∈ I , we have:

Rn(x) =
f (n+1)(c)

(n + 1)!
(x − a)n+1,

for some number c in between a and x.

This is a consequence of the MVT.
Note that the value of c depends on both n and x .

The easiest way to use this theorem is to put an upper bound M on∣∣f (n+1)(c)
∣∣, so you don’t have to care about the particular c.
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sin(x) is analytic

In this exercise you’ll prove that sin(x) is analytic on R.

1. (A warm up, just to set a goal.) Fix a real number a, and write down
the Taylor series for sin(x) centred at a.

2. Fix an x ∈ R and a non-negative integer n, and use Lagrange’s theorem
to write down an expression for the remainder Rn(x).

3. Find a positive number M such that |f (n+1)(c)| < M, no matter what c
is.

4. Prove that lim
n→∞

|Rn(x)| = 0.

5. Prove that lim
n→∞

Rn(x) = 0.

We conclude that sin(x) is analytic on all of R!
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Other analytic functions

So far you know (or may now assume that) these four functions are
analytic:

ex sin(x) cos(x)
1

1− x
.

(The first three being analytic on R, and the last being analytic on
(−1, 1).) All polynomials are also analytic, of course.
You also know that sums, products, compositions, derivatives, and
antiderivatives of analytic functions are analytic.

Exercise: Prove that e−x
2

is analytic on R. Derive its Taylor series.

Exercise: Prove that log(1 + x) is analytic on (−1, 1). Write down its
Taylor series (this was in one of the videos, but you should now be able to
derive it easily).

Exercise: Prove that arctan(x) is analytic on (−1, 1). Derive its Taylor
series.
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Some insights

Once you know about Taylor series, the “dominant behaviours” of
functions near the points at which the series are centred becomes very
clear.

Example: In your tutorial on improper integrals, you were asked to think
about this integral: ∫ 1

0

arctan(x)

x1.1
dx .

Now we know that

arctan(x) =
∞∑
n=0

(−1)n

2n + 1
x2n+1 = x−1

3
x3+

1

5
x5−· · · for x ∈ (−1, 1).

Knowing this, what is the “dominant behaviour” of this function near 0?
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New Taylor series from old ones

Please complete these two exercises for the next lecture.

Exercise: Compute the Taylor series of the following functions, at the
specified centre points.

1 x5 log(1 + x3), about 0.

2 ex(1− x2) about 0.

3 cos2 x , about 0. (Hint: use a trig identity.)

4 sin(πx), about 1
2 . (Don’t overthink this one.)

5 1
x , about a fixed, nonzero real number a.

Exercise: For each part of the previous question:

Call the function in question f , and let a be the point at which the series
is centred. Find the value of f (100)(a).
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