
MAT137 - Term 2, Week 8

Problem Set 8 is due today, by 11:59pm. Don’t leave the submission
process to the last minute.

Today’s lecture will assume you have watched the first nine videos on
playlist 13.

Today we will:

Talk about series.
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Remember improper integrals?

Almost everything we will learn about series this week and next week will
be analogous to things we learned about improper integrals before reading
break.

So we’ll start by quickly reminding ourselves about some of these things.

First, recall that at the beginning of this term, we defined
definite integrals, which look like this:∫ b

a
f (x) dx .

These things computed the area underneath the graph of a function on an
interval of the form [a, b].
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Remember improper integrals?

We then took the definition of ∫ b

a
f (x) dx

and asked what happens when b gets bigger and bigger.

More formally, we took a limit as b goes to ∞.

This defined a new concept, which didn’t make sense before we defined it:∫ ∞
a

f (x) dx := lim
b→∞

[∫ b

a
f (x) dx

]
.

(We defined several other sorts of improper integrals as well, but we don’t
need those to understand series.)
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Remember improper integrals?

Recall that the following two limits are very different things:

lim
x→∞

f (x) and lim
b→∞

[∫ b

a
f (x) dx

]
.

They shouldn’t seem very similar, but in the context of series people
confuse them all the time.

For example, it feels like in order for the improper integral on the right to
converge, we need f (x) to “get smaller and smaller” as x increases.

This isn’t quite true, but it’s good intuition.
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Remember improper integrals?

But note that the opposite thing is not true.

We studied improper integrals of the form∫ ∞
1

1

xp
dx ,

and saw that some of them converged and some of them diverged, despite
the fact that

lim
x→∞

1

xp
= 0 for all p > 0.
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Remember improper integrals?

Some other results about improper integrals to remember:

Proposition

Let f be a positive function defined on [a,∞) and integrable everywhere
necessary.

Then

∫ ∞
a

f (x) dx either converges, or diverges to infinity.

Recall that this is true because if f is always positive, then∫ b

a
f (x) dx

must increase as b increases.
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Remember improper integrals?

This is the first of two very important comparison tests we had for
improper integrals:

Theorem (Basic Comparison Test (BCT))

Let a ∈ R, and let f , g be positive functions that are integrable on [a, b]
for every b > a.

Suppose also that f (x) ≤ g(x) for all x ∈ [a,∞). Then

1 If

∫ ∞
a

g(x) dx converges, then

∫ ∞
a

f (x) dx converges as well.

2 If

∫ ∞
a

f (x) dx diverges, then

∫ ∞
a

g(x) dx diverges as well.
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Remember improper integrals?

This is the second (and much more important) comparison test we had:

Theorem (Limit Comparison Test (LCT))

Let a ∈ R, and let f , g be positive functions that are integrable on [a, b]
for every b > a.

Suppose also that lim
x→∞

f (x)

g(x)
exists and equals a positive constant.

Then: ∫ ∞
a

f (x) dx converges ⇐⇒
∫ ∞
a

g(x) dx converges .
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Series

Now that we’ve reminded ourselves about improper integrals, we can move
on to series.

Series are defined exactly analogously to improper integrals of the sort we
were thinking about earlier. We know how to add up finitely many
numbers, so given a sequence {an}∞n=1, we give a name to the sequence of
partial sums:

Sk :=
k∑

n=1

ak = a1 + a2 + · · ·+ ak

and define the infinite sum to be the limit of these:

∞∑
n=1

an := lim
k→∞

Sk (if it exists).

We say the series converges if this limit exists, and diverges otherwise.
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Series

Determine whether the following series converge or diverge directly from
the definion of series. If they converge, compute their values.

1

∞∑
n=1

log

(
n

n + 1

)
.

2

∞∑
n=5

−3

n2 − 5n + 4
.

3

∞∑
n=1

n.

Recall the following formula:

n∑
i=1

i =
n(n + 1)

2
.
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Series

I didn’t show this slide in lecture, but we saw this idea later anyway.

An important piece of intuition is that a sequence {an}∞n=1 and its
corresponding sequence of partial sums:

Sk :=
k∑

n=1

ak = a1 + a2 + · · ·+ ak

“contain the same information”.
Obviously we know how to take a sequence and construct the sequence of
partial sums, because that’s the definition above.

Exercise: Go the other way! Suppose {an}∞n=1 is a sequence such that its
sequence of partial sums is:

Sk =
1

k + 1
.

Reconstruct the original sequence {an} from this information.
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Facts: It doesn’t matter where you start.

Something we know about sequences is that if you care about the limit of
a sequence, it doesn’t matter where you start.

In other words, {an}∞n=1 and {an}∞n=17 have the same limit (if it exists),
and the fact that the first 16 terms of the latter sequence are “missing”
doesn’t matter.

The same is true of series, in the following sense. Suppose {an}∞n=1 is a
sequence, and M > 1 is an integer. Then:

∞∑
n=1

an converges ⇐⇒
∞∑

n=M

an converges.

Exercise: Prove this.
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Facts: Linearity

Like every other kind of limit we’ve defined, there are some “limit law”
type results about series:

Proposition

Suppose
∞∑
n=0

an and
∞∑
n=0

bn converge to L and M, respectively. Then:

1

∞∑
n=0

(an + bn) converges to L + M.

2

∞∑
n=0

(c an) converges to cL for all c ∈ R.

These results both follow easily from what we know about finite sums of
numbers, and the limits laws for sequences. The first one was proved in
one of the videos.

Exercise: Prove the second one.
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The “Necessary Condition Test”

This is an extremely fundamental result to the study of series.

Your intuition should be that if a series is going to converge, its terms
should “get smaller”, so that the partial sums get closer and closer
together. This theorem formalizes this intuition.

Theorem (Necessary Condition Test (NCT))

Suppose {an}∞n=0 is a sequence. If
∞∑
n=0

an converges, then lim
n→∞

an = 0.

This theorem is most useful in its contrapositive form:

If lim
n→∞

an 6= 0, then
∞∑
n=0

an diverges.
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Examples

The NCT allows us to easily determine that many series diverge. For
example, all of the following series diverge because the limit of their terms
is not zero:

∞∑
n=0

7.

∞∑
n=0

n.

∞∑
n=0

n
n+1 .

∞∑
n=0

(−1)n.

∞∑
n=1

log(n).

∞∑
n=0

sin(n).

In the last case, it takes a bit of work to show that lim
n→∞

sin(n) 6= 0, but it

shouldn’t be surprising.
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A warning

WARNING

The converse of the NCT is not true.

That is:

If lim
n→∞

an = 0, it does not follow that
∞∑
n=0

an converges.

Repeat this to yourself five times every day, until you begin saying it in
your sleep.
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The Harmonic Series

This is probably the single most important series we will see, and it
demonstrates why the warning is necessary.

The series
∞∑
n=1

1

n
is called the harmonic series. It diverges.

I’ve actually shown you this series before, in disguise.

One of the first examples of recursively defined sequences I gave you was
the sequence of Harmonic numbers:

H1 = 1, Hk+1 = Hk +
1

k + 1
.

(You can find this in my Lecture 6 slides.)
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The Harmonic Series

After thinking about this a bit, we realized that:

Hk = 1 +
1

2
+

1

3
+ · · ·+ 1

k − 1
+

1

k
=

k∑
n=1

1

n
.

In other words, the Harmonic numbers are precisely the partial sums of the
harmonic series.

When we first saw the Harmonic numbers, we proved that the sequence
{Hk}∞k=1 is unbounded by realizing they were equal to upper sums of the
integral of 1

x , and therefore lim
k→∞

Hk does not exist.

That means that
∞∑
n=1

1

n
= lim

k→∞
Hk diverges.
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Another result that caries over from integrals

Proposition

If {an}∞n=0 is a sequence of positive numbers, then

∞∑
n=0

an

either converges, or diverges to infinity.

Exercise: Write a proof of this.

Hint: What can you conclude about the sequence of partial sums?
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Okay, how can we evaluate series?

Having defined series convergence and having seen some series that
diverge, how can we actually evaluate some convergent series?

In general, this is very difficult. Given some sequence {an}∞n=0 it’s usually
hard to say anything meaningful about

sn =
n∑

k=0

ak .

Computing this is like the “series version” of computing indefinite
integrals.

At this stage, there are essentially only two types of series whose values we
can compute. We already saw some telescoping series earlier.
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Geometric series

Given a real number r (r stands for “ratio”), the series

∞∑
n=0

rn

is called a geometric series. These are series we can evaluate explicitly.

Recall the following result from one of the videos.

Theorem

The geometric series
∞∑
n=0

rn converges if and only if |r | < 1.

In this case,
∞∑
n=0

rn =
1

1− r
.
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Caution with geometric series

Just a quick warning about the previous result.

Earlier we said that where you start a series doesn’t matter from the point
of view of convergence.

It does matter for computing the actual value of a series though.

For example, the previous result says that
∞∑
n=0

(
1
2

)n
=

1

1−
(
1
2

) = 2.

However, if we start the series from n = 1, we have:

∞∑
n=1

(
1

2

)n

=

[ ∞∑
n=0

(
1

2

)n
]
− 1 = 2− 1 = 1.
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Series computation exercises

Exercise Determine whether the following series converge, and if so
compute their values:

1

∞∑
n=4

1

7n
.

2

∞∑
n=1

3n+1 7−n+2.

3

∞∑
n=1

31/n.

4

∞∑
n=1

4n2 − n3

7 + 12n3
.

5

∞∑
n=1

(−2)3n

7n
.
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Series computation exercises

You may not realize it, but you’re already familiar with geometric-like
series in at least one context.

Exercise: Let {an}∞n=0 be the sequence that lists the digits of π. In other
words:

a0 = 3, a1 = 1, a2 = 4, a3 = 1, a4 = 5, a5 = 9, . . .

Write down a series (in terms of the sequence {an}) that should converge
to π.

What we know about geometric series doesn’t strictly speaking show that
this series converges. Can you think of a convincing argument that it
should converge? Using something like the comparison tests you learned
for improper integrals maybe?
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