
MAT137 - Term 2, Week 6

Your third term test is tomorrow. Please make sure you go to the
correct room. Space is tight!

Today we will talk about:

Sequences.

For next week’s lecture, please watch all the videos on playlist 12.
Several of them are just examples which you don’t technically need to
watch... but watch all of them.

Ivan Khatchatourian MAT137 February 8, 2017 1 / 29



Sequences

To remind you of some definitions from the videos:

A sequence of real numbers is an infinite list of real numbers written in a
specific order, like this:

a1, a2, a3, a4, . . .

We call a1 the “first term” of the sequence, a7 the “seventh term” of the
sequence, and so on.

We will sometimes start listing sequences at higher indices, like this:

a7, a8, a9, a10, . . .

All that really matters is the order of the list, so we can start our indices
from any number that’s most convenient for us.
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Sequences

Formally, a sequence should be thought of as a function.

Definition

Let k be a non-negative integer. A sequence of real numbers is a function
a : Ak → R, where

Ak = { n ∈ Z : n ≥ k } .

Rather than writing a(n) for the nth term of the sequence, we will almost
always write an, as we did on the previous slide.

For example, consider the function a : N→ R given by a(n) = 1
n . Some of

its values are:

a(1) = a1 = 1, a(2) = a2 =
1

2
, . . . , a(7) = a7 =

1

7
, . . .

and so on.
Ivan Khatchatourian MAT137 February 8, 2017 3 / 29



Sequence notation

There are a lot of different notations people commonly use to write down
sequences in compact forms. All of these are common ways of denoting
the sequence

a1, a2, a3, a4, . . . , an, . . .

{an}∞n=1,

{an} for short,

{an}n∈N
(an)∞n=1,

(an) for short.

I will stick to using the first two.
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Some examples of sequences

Some sequences look a lot like the functions we’ve been studying thusfar:

{
1

2n

}∞
n=1

.{
n2 + 7n + 1

}∞
n=1

.{
en

sin(n)

}∞
n=1

.

{nn}∞n=1.

These all look like the sorts of functions we’re familiar with, but with n’s
in place of x ’s. We’ll return to this idea a bit later.

Some sequences don’t look like that, such as {n!}∞n=1.
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Recursively defined sequences

Something entirely new that can happen with sequences is that they can
be recursively defined. This is a sequence defined by

Specifying the value(s) of the first term(s).

Describing a rule that defines any later term in terms of the previous
terms.

Certainly the most famous recursively defined sequence is the Fibonacci
sequence, which was mentioned in one of the videos:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

For this sequence we specify that f1 = f2 = 1, and then say that for any
n > 2,

fn = fn−1 + fn−2.
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More recursive sequences

Example: Consider the sequence defined by

a1 = 1 and an+1 = log(an + 1).

Example: Consider the sequence defined by

b1 = 1 and bn+1 = 3
√

bn + 6.

Example: Consider the sequence defined by

c1 = 1 and cn+1 = 1 +
1

cn + 1
.

Exercise: Write out the first few terms of each of these sequences.
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Increasing and decreasing sequences

Definition

A sequence {an}∞n=1 is called

...increasing if an+1 > an for all n (ie. the terms always get bigger).

...decreasing if an+1 < an for all n (ie. the terms always get smaller).

...non-increasing if an+1 ≤ an for all n (ie. the terms never get bigger).

...non-decreasing if an+1 ≥ an for all n (ie. the terms never get
smaller).

A sequence satisfying any of the above four properties is called monotonic
or monotone.
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A better method, continued.

Determine whether the following sequences are monotonic.

7, 7, 7, 7, 7, 7, 7, . . .{
1

n

}∞
n=1

{sin(n)}∞n=1.

{sin(n) + n}∞n=1.{
n2

2n

}∞
n=1

.

You should have noticed that the last sequence is not monotonic, but feels
like it should be somehow. We say that sequences like this are
eventually monotonic, or that a “tail” of the sequence is monotonic.
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Bounded sequences

Another definition that works exactly the same as for functions:

Definition

A sequence {an}∞n=1 is called

...bounded above if ∃M ∈ R such that an ≤ M for all n.

...bounded below if ∃m ∈ R such that an ≥ m for all n.

...bounded if it’s bounded above and below.

...unbounded if it’s not bounded.

Check your understanding: Convince yourself that every non-decreasing
sequence is bounded below.
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Some exercises

Exercise: Show that the sequence given by an = n1/n is bounded, and
decreasing for n ≥ 3.

Hint: Consider the function f (x) = x1/x .

Exercise: Consider the sequence defined recursively by

b1 = 1 and bn+1 = 3
√

bn + 6.

Show that this sequence is bounded and monotonic.

Hint: Prove both of them by induction.
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Monotone sequences

True or false: Suppose f is an increasing function, and we define a
sequence by an = f (n). Then {an}∞n=1 is necessarily an increasing
sequence.

True or false: Suppose f is a function and the sequence an = f (n) is
increasing. Then f is necessarily an increasing function.
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A nice example, that we’ll see again later

Consider the sequence {Hn}∞n=1 of “harmonic numbers” defined recursively
as follows:

H1 = 1 and Hn+1 = Hn +
1

n + 1
.

Write down the first few terms of this sequence.

Convince yourself that this sequence is increasing.

Convince yourself that for each n,

Hn >

∫ n+1

1

1

x
dx .

(draw a picture).

From the previous part, convince yourself that Hn > log(n + 1).

From the previous part, convince yourself that {Hn} is an unbounded
sequence.
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Convergence

Continuing the analogy between sequences and the functions we’ve studied
before, we now define the limit of a sequence. The definition is exactly
analogous to the definition of a limit of a function at infinity.

Recall we had the following definition before:

Definition

We say that lim
x→∞

f (x) = L when

∀ε > 0 ∃M ∈ R such that x > M =⇒ |f (x)− L| < ε.
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Convergence

Here’s our new definition:

Definition (Sequence convergence)

Let L ∈ R. A sequence {an}∞n=1 is said to converge to L if:

∀ε > 0 ∃M ∈ R such that n > M =⇒ |an − L| < ε.

In this case, we write lim
n→∞

an = L or sometimes simply an → L.

If a sequence converges to some L, we say it is convergent.

If no such limit exists, we say it is divergent.
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Convergence

Exercise: Show that lim
n→∞

1

2n
= 0.

Exercise: Show that the sequence {(−1)n}∞n=1 does not converge.

As you should suspect, these limits are closely connected to limits of
functions at infinity in the following way:

Theorem

Let f be a function, L a real number, and suppose lim
x→∞

f (x) = L.

Define a sequence by an = f (n). Then lim
n→∞

an = L as well.

Proof.

Left as an easy exercise.
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Convergence

Exercise: Is the converse of the previous theorem true?

That is, if f is a function and an = f (n) is a sequence defined from f in
the usual way, and

lim
n→∞

an = L,

does it follow that
lim
x→∞

f (x) = L?

Can lim
x→∞

f (x) exist but not equal L?
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Limit laws

We won’t list them all here, but the familiar limit laws you’re aware of for
functions also work here.

For example, if an → L and bn → M, then an + bn → L + M.

This is the analogue of the limit law for sums. The respective analogues
are true for constant multiples, products, and quotients.

The Squeeze Theorem also works in this context, and its proof is
essentially the same.
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Two main theorems

There are two very important theorems about sequences you learned in the
videos.

These results describe how boundedness, monotonicity, and convergence
relate to one another.

Theorem

Every convergent sequence is bounded.

The contrapositive of this theorem is useful enough to be worth stating:

Remark

Every unbounded sequence diverges.
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Monotone sequence theorem

The second theorem is more important, and more “deep”.

Theorem (Monotone Sequence Theorem)

If {an}∞n=1 is a bounded, monotonic sequence, then it converges.

More specifically, if the sequence is non-decreasing, then it converges to
sup { an : n ∈ N }.

Similarly, if the sequence is non-increasing, then it converges to
inf { an : n ∈ N }.

Ivan Khatchatourian MAT137 February 8, 2017 20 / 29



Using the MST

Note that the MST doesn’t really help you compute limits. It just tells you
limits exist sometimes.

It does tell you what value the limit should equal (a supremum or
infimum), but computing that value usually amounts to doing the same
work as proving the limit would involve.

The MST is a very important theorem, and its value is largely theoretical.
On the next slide we’ll see an example of its use.
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Using the MST

Recall that we proved earlier that the sequence defined recursively by

b1 = 1 and bn+1 = 3
√

bn + 6.

is bounded and monotonic.

What can we conclude about this sequence now?

Suppose it converges to L. Take the limit of both sides of the equation
that defines the sequence:

bn+1 = 3
√

bn + 6.

What do you get? Be sure to explicitly justify every step of your
computation.
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You really need the MST there

Without knowing the sequence {bn} converges (by the MST), the proof
above doesn’t work. Here’s an example to illustrate that.

Recursively define a sequence by

a1 = 1 and an+1 = 1− an.

Apply the same methodology from the previous example to this. In other
words, assume the limit exists and equals L, and take a limit of both sides.
What do you get?

This all seems fine, but if you pay attention to the actual sequence, its
values are

1, 0, 1, 0, 1, 0, 1, 0, . . .

which obviously doesn’t converge.
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The Big Theorem

Of all the things we learn about sequences, this will probably be the most
useful.

This theorem allows us to compute many limits very easily.

For example, recall this sort of limit from the first term:

lim
x→∞

7ex + 12x4 + π log(x)

10x7 + 2ex
.

This looks complex, but we learned that the exponential function
f (x) = ex grows much faster than any polynomial or any logarithm. That
is, we were able to prove (with l’Hopital’s rule) that:

lim
x→∞

xn

ex
= 0 for any positive n, and lim

x→∞

log(x)

ex
= 0.
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The Big Theorem

Using these two facts, computing the scary-looking limit from before is
easy:

lim
x→∞

7ex + 12x4 + π log(x)

10x7 + 2ex
= lim

x→∞

ex
(

7 + 12 x4

ex + π log(x)
ex

)
ex
(

10 x7

ex + 2
) =

7

2
.

The sort of calculation we did above works just as well for sequences
involving logarithms, exponentials, and polynomials. So for example, the
same proof will show that:

lim
n→∞

7en + 12n4 + π log(n)

10n7 + 2en
= 0.

The “Big Theorem” generalizes this result a bit, to take into account
sequences like n! and nn that either aren’t possible with functions, or
rarely come up with functions.
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Some notation before The Big Theorem

Recall this notation that was introduced in one of the videos:

Definition

Let {an}∞n=1 and {bn}∞n=1 be sequences of positive numbers.

We say that an is much smaller than bn, or bn grows much faster than an,
if

lim
n→∞

an
bn

= 0.

If bn grows much faster than an, we denote it by writing

an << bn.

Computer scientists may be familiar with “little-o notation”:

an << bn ⇐⇒ an ∈ o(bn).
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Preliminaries

Here’s a rather obvious fact that we should get out of the way, by proving
it:

Proposition

Let {an}∞n=1, {bn}∞n=1, and {cn}∞n=1 be sequences of positive numbers.

If an << bn and bn << cn, then an << cn.

Proof.

Exercise.

A mathematician would express this result by saying “the relation << is
transitive”.
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The Big Theorem

Theorem

For any positive number a, and any real number c > 1,

log(n) << na << cn << n! << nn.

Note: I’ve used a natural logarithm in the statement above, but any base
larger than 1 will work since for any b > 1

logb(n) =
log(n)

log(b)
.
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Using the Big Theorem

Having proved this result, many horrific-looking limits are now essentially
trivial to compute.

Exercise: Compute lim
n→∞

7n12 log88(n2) n!

5(n + 1)π (3n)n
.

Another interesting question is whether you can “split” the gaps between
the types of sequences in the Big Theorem.

Exercise: Can you find a sequence {an}∞n=1 such that:

lim
n→∞

nc

an
= 0 and lim

n→∞

an
bn

= 0,

for any positive real number c , and any b > 1?

In other words, can you find a sequence that grows much faster than any
polynomial, but grows much slower than any exponential?
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