MAT137 - Week 11

- Your second test is on Friday, 1 December, 4-6pm. See the course website for details.
- Today's lecture is primarily about limits at infinity, and l'Hôpital's rule.
- You have homework from this lecture. See slide 17.

A problem from last class

Last class I left you with this problem for homework.
Problem 3. Find the area of the smallest circle centred at the point $(1,4)$ which intersects the parabola $y^{2}=2 x$.

Limits at infinity

So far we've defined limits at a point, which are written like

$$
\lim _{x \rightarrow a} f(x)=L
$$

(if they exist). We've also defined

$$
\lim _{x \rightarrow a} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow a} f(x)=-\infty
$$

Today we'll talk about limits at infinity:

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { and } \lim _{x \rightarrow-\infty} f(x)=L
$$

Motivation

When discussing limits at a point, our intuition was that

$$
\lim _{x \rightarrow a} f(x)=L
$$

means something like
$f(x)$ can be made arbitrarily close to L by making x sufficiently close to a.

Now, consider the function $g(x)=\frac{1}{x}$.
Exercise: Convince yourself that you can make $g(x)$ as close as you want to 0 by making x sufficiently large.

Limits at infinity

Intuitively, the notation

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

should mean something like
$f(x)$ can be made arbitrarily close to L by making x sufficiently large.

Exercise: Suppose f is a function defined on an interval of the form (p, ∞) for some real number p. Write down a definition for the statement

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

Limits at infinity

Definition

Suppose f is a function defined on an interval of the form (p, ∞) for some real number p. Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means

$$
\forall \epsilon>0 \exists M \in \mathbb{R} \text { such that } x>M \Longrightarrow|f(x)-L|<\epsilon
$$

Exercise: Write down a similar definition for the statement $\lim _{x \rightarrow-\infty} f(x)=L$.

Examples

1. Prove that $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0$.
2. Prove that $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x^{2}}=0$.
(This reminds us of the Squeeze Theorem, which does also apply to limits at infinity.)
3. Prove that $\lim _{x \rightarrow \infty} \cos (x)$ does not exist.

Examples

1. Evaluate $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}+7}$.
2. Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{2}+7 x+1}{8 x^{2}+4}$.

The moral of Problem 2 is that we found the fastest-growing term, and divided by them to "cancel out" the growth.

Exercise. Evaluate $\lim _{x \rightarrow \infty} \frac{7 e^{7 x}+\sin (x)}{e^{7 x}+7}$.

Be careful

What's wrong with this solution? Compute: $\lim _{x \rightarrow-\infty} x-\sqrt{x^{2}+x}$.

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} x-\sqrt{x^{2}+x} & =\lim _{x \rightarrow-\infty} x-\sqrt{x^{2}+x} \cdot \frac{x+\sqrt{x^{2}+x}}{x+\sqrt{x^{2}+x}} \\
& =\lim _{x \rightarrow-\infty} \frac{x^{2}-\left(x^{2}+x\right)}{x+\sqrt{x^{2}+x}} \\
& =\lim _{x \rightarrow-\infty} \frac{-x}{x\left(1+\sqrt{1+\frac{1}{x}}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{-1}{1+\sqrt{1+\frac{1}{x}}}=-\frac{1}{2}
\end{aligned}
$$

Indeterminate forms

Recall that if we know

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=M
$$

(and $M \neq 0$), then the limit law for quotients tells us that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}
$$

In other words, by knowing the limits of f and g, we can determine the limit of $\frac{f}{g}$ from the form of the function alone.

Indeterminate forms

The same is not true if $L=M=0$.

Exercise. For each part, find a pair of functions f and g such that

$$
\lim _{x \rightarrow 0} f(x)=0=\lim _{x \rightarrow 0} g(x)
$$

but such that...
(1) $\ldots \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=7$.
(2) $\ldots \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0$.
(3) $\ldots \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\infty$.
(9) $\ldots \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$ doesn't exist, and doesn't equal $\pm \infty$.

Indeterminate forms

For this reason, if

$$
\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)
$$

we say that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is indeterminate of type $\frac{0}{0}$.
The same is true if

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

In this case, we say that $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$ is indeterminate of type $\frac{\infty}{\infty}$.
L'Hôpital's rule is a tool for dealing with limits of these two types.

Some intuition

Here's some intuition for the statement of L'Hôpital's rule.
Suppose L_{1} and L_{2} are lines with slopes m_{1} and m_{2}, respectively. Also suppose they both have zeros at $x=7$.

Then $\lim _{x \rightarrow 7} \frac{L_{1}(x)}{L_{2}(x)}$ is indeterminate of type $\frac{0}{0}$.
Of course, we can just write down their equations easily:

$$
L_{1}(x)=m_{1}(x-7) \quad \text { and } \quad L_{2}(x)=m_{2}(x-7)
$$

and we can evaluate the limit easily:

$$
\lim _{x \rightarrow 7} \frac{L_{1}(x)}{L_{2}(x)}=\lim _{x \rightarrow 7} \frac{m_{1}}{m_{2}}=\frac{m_{1}}{m_{2}}=\lim _{x \rightarrow 7} \frac{L_{1}^{\prime}(x)}{L_{2}^{\prime}(x)}
$$

Some intuition

For more general functions (not all functions though), if

$$
\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)
$$

and in addition f and g are differentiable near (and at) a, and $g^{\prime}(a) \neq 0$, then f and g are closely-approximated by their tangent lines at a :

$$
L_{1}(x)=f^{\prime}(a)(x-a) \quad \text { and } \quad L_{2}(x)=g^{\prime}(a)(x-a)
$$

So we might expect to get:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(a)(x-a)}{g^{\prime}(a)(x-a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

THIS IS NOT A PROOF!!! ...I secretly assumed many things.

L'Hôpital's rule

This theorem is tricky to state, because there are many cases.

Theorem

Let $a \in \mathbb{R}$, and let f and g be functions defined at and near a.

Suppose that

- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is indeterminate of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
- f and g are differentiable near a (except possibly at a).
- g is never 0 near a (except possibly at a).
- g^{\prime} is never 0 near a (except possibly at a).
- $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, or is $\pm \infty$.

Then:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

L'Hôpital's rule

In the theorem we just stated, "near a" means "on an open interval containing $a^{\prime \prime}$.

The theorem also holds for limits as $x \rightarrow \infty$ or $x \rightarrow-\infty$, in which case "near a " is replaced with "on an interval of the form (p, ∞) or $(-\infty, p)$ for some $p \in \mathbb{R}$ ", respectively.

Examples

1. Use L'Hôpital's rule to compute $\lim _{x \rightarrow 0} \frac{x^{2}-7 x}{e^{x}-1}$.
2. Compute $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$.
3. Compute $\lim _{x \rightarrow 0} \frac{2 x-\sin (2 x)}{x \sin (x)}$. (We didn't see this one in lecture.)

Homework: Show that for any natural number $N, \lim _{x \rightarrow \infty} \frac{x^{N}}{e^{x}}=0$.

Warnings

L'Hôpital's rule is very powerful, but with great power comes great responsibility.

Warning 1: The hypotheses are all important.
Example: Evaluate $\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x}$.

INCORRECT PROOF.

The top and bottom both $\rightarrow \infty$, so this is indeterminate of type $\frac{\infty}{\infty}$. So:

$$
\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{1+\cos (x)}{1}=\lim _{x \rightarrow \infty}[1+\cos (x)]
$$

The last limit doesn't exist, so $\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x}$ doesn't exist.
(It's easy to check that the original limit does exist and equal 1.)

Warnings

Warning 2: L'Hôpital's rule doesn't always help.
Example: Evaluate $\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.
The top and bottom both $\rightarrow \infty$, so this is indeterminate of type $\frac{\infty}{\infty}$. So:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \stackrel{\mathrm{~L}^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \stackrel{\mathrm{~L}^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \stackrel{\mathrm{~L}^{\prime} H}{=} \ldots .
$$

These equalities are all true, they just don't go anywhere.
L'Hôpital's rule is just another tool you can use; it doesn't magically solve all problems.
(Exercise: Compute this limit.)

Warnings

Warning 3: Don't blindly apply it without simplifying things if you can.
[Contrived] Example: Compute $\lim _{x \rightarrow 0^{+}} \frac{\log (x)}{\left(\frac{1}{x}\right)}$.
$\lim _{x \rightarrow 0^{+}} \frac{\log (x)}{\left(\frac{1}{x}\right)} \stackrel{\mathrm{L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0^{+}} \frac{\left(\frac{1}{x}\right)}{\left(-\frac{1}{x^{2}}\right)} \stackrel{\mathrm{L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0^{+}} \frac{\left(-\frac{1}{x^{2}}\right)}{\left(\frac{2}{x^{3}}\right)} \stackrel{\mathrm{L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow 0^{+}} \frac{\left(\frac{2}{x^{3}}\right)}{\left(\frac{-6}{x^{4}}\right)} \stackrel{\mathrm{L}^{\prime} \mathrm{H}}{=} \ldots .$.

