
MAT137 - Week 8

Your third problem set is due Thursday, 2 November.

Today’s lecture is about inverse functions (including inverse trig
functions).

For next week’s lecture, watch the first six videos on Playlist 5.

You have two homework problems on the last slide.
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More logarithmic differentiation

We’ll warm up today by doing some differentiation.

Problem 1. Let f be the function defined by f (x) = log(x2)(x + 1).

That is, f (x) is the base-x2 logarithm of x + 1.

Compute f ′(x).

Problem 2. Consider the equation yx + xy = x . Compute dy
dx .

(This isn’t particularly interesting, but it shows how you can now
differentiate most things you write down.)
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Exercise
Let f be the following function:

1 What is the largest interval containing −1 on which f has an inverse?
2 What is the largest interval containing 0 on which f has an inverse?

Sketch the graphs of these two inverses.
Ivan Khatchatourian MAT137 26 October, 2017 3 / 17



The arcsin function

In one of the videos, we defined the function arcsin as the inverse of the
function

g(x) = sin x , restricted to the interval
[
−π2 ,

π

2

]
.

In other words,

arcsin(x) = θ ⇐⇒
{
θ ∈

[
−π

2 ,
π
2
]

sin θ = x
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The arcsin function

Remember that the interval
[
−π

2 ,
π
2
]

is simply a choice we make in order
to obtain an injective function from sin.

This is just like how we choose to define
√

x as the positive number whose
square is x .

We can restricte sin x to another interval, like[
π

2 ,
3π
2

]
or
[

0, π2

]
∪
[3π

2 , 2π
]
.

and define an inverse for those restrictions as well.

Those would be perfectly well-defined functions, but none of them would
be arcsin.
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Doing computations with arcsin

Using this definition from above...

arcsin(x) = θ ⇐⇒
{
θ ∈

[
−π

2 ,
π
2
]

sin θ = x

...compute the following:
1 sin(arcsin(1

2)), cos(arcsin(1
2)), tan(arcsin(1

2)).
(Do these three without computing arcsin(1

2).)

2 sin(arcsin(2))

3 arcsin(sin(1))

4 arcsin(sin(7)) (Hint: The answer is not 7.)

5 arcsin(sin(6))
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The derivative of arcsin(x)

Recall that to compute d
dx arcsin(x), we use implicit differentiation.

By definition, we know that

sin(arcsin(x)) = x

for all x ∈ [−1, 1].

Differentiate both sides of this expression with respect to x . Then
rearrange to obtain:

d
dx arcsin(x) = 1

cos(arcsin(x)) =
1√

1− x2
.
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A different restriction of sin
Consider the following restriction g (in red) of the graph of f (x) = sin x :

Problem 1. Does g have an inverse? If so, what are its domain and
range?
Problem 2. Sketch the graph of g−1. What do you notice about it?
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The arctan function
Here’s the graph of (part of) the tangent function.

Does this function have an inverse?
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The arctan function
No! We have to restrict it. Any of the following would do:
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The arctan function
By convention, we use the first one. That is, we define arctan to be the
inverse of the function with this graph:
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The arctan function

In symbols, that means we define the function arctan as the inverse of the
function

g(x) = tan x , restricted to the interval
(
−π2 ,

π

2

)
.

In other words,

arctan(x) = θ ⇐⇒
{
θ ∈

(
−π

2 ,
π
2
)

tan θ = x
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The arctan function

Here’s the definition of arctan again:

arctan(x) = θ ⇐⇒
{
θ ∈

(
−π

2 ,
π
2
)

tan θ = x

Problem 1. What are the domain and range of arctan?

Problem 2. Sketch the graph of arctan.

Problem 3. Compute the following values:
1 tan(arctan(12)).
2 arctan(tan(0)).
3 arctan(tan(π)).
4 arctan(tan(7)).

Problem 4. Compute the derivative of arctan.
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A different inverse for tan
We said that any of a number of restrictions of tan would be injective, so
let’s see what happens with one of them. Let’s use this one:
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A different inverse for tan

We define the function g as the inverse of the function

f (x) = tan x , restricted to the interval
(
π

2 ,
3π
2

)
.

In other words,

g(x) = θ ⇐⇒

θ ∈
(

π
2 ,

3π
2

)
tan θ = x
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A different inverse for tan
Here’s the definition of g again:

g(x) = θ ⇐⇒

θ ∈
(

π
2 ,

3π
2

)
tan θ = x

Problem 1. What are the domain and range of g?

Problem 2. Sketch the graph of g .

Problem 3. Compute the following values (and compare your answers to
the ones you obtained for arctan):

1 tan(g(12)).
2 g(tan(0))
3 g(tan(π)).
4 g(tan(7)).

Problem 4. Compute the derivative of g .
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Exercises on inverses

HOMEWORK PROBLEMS

Problem 1. Suppose f is a function that is differentiable and injective on
all of R.

What would you need to be true in order for f −1 to have a vertical
tangent line at x = 7? Sketch the graph of such a function.

Problem 2. Sketch the graph of y = g(x) for a function g that satisfies
all of the following properties:

The domain of g is R.
g is continuous everywhere except at −2.
g is differentiable everywhere except at −2 and 1.
g is injective (on its entire domain).(
g−1)′ (−4) = 2.
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