MAT137 - Week 3

- Problem Set 1 is due next week, 28 September, by 11:59pm.
- You will soon receive an email with a personal link to submit it. You must use that link, and should not share it.
- If you don't get such an email, check your spam folder.
- If you still can't find it, contact Alfonso. All of this is on the course website.
- Do not leave the submission process to the last minute.
- If you need to change tutorials, you'll get info on how to do this very soon.
- Today's lecture is about limits. I will assume you have watched videos 2.1 through 2.7.
- For next week's lecture, watch vidoes 2.8 through 2.14.

Some review of absolute values and inequalities

Problem. For what values of x is the following inequality true?

$$
|x-7|<3
$$

In other words, what values of x are within a distance 3 from 7 ?
Notice that thinking about the expression $|x-7|$ as "the distance between x and 7 " makes this problem much easier.

What about the following inequality?

$$
0<|x-7|<3
$$

Some review of absolute values and inequalities

Problem. Suppose x is a real number that satisfies the inequality

$$
|x-2|<1
$$

What bounds, if any, can you put on $|x-7|$?
Here's how you should read this question:
If x is within a distance 1 from 2, how far can x be from 7 ?
Again, I hope you agree that when phrased in terms of distances, this is a straightforward problem.

You have just proved the following conditional:

$$
|x-2|<1 \Longrightarrow 4<|x-7|<6
$$

Some review of absolute values and inequalities

Now we know how to bound values of x with inqualities and absolute values. Let's use bounds on x to find bounds on the values of functions of x.

Problem. Suppose x is a real number that satisfies the inequality

$$
|x+7|<2
$$

How big can $|3 x+21|$ be?
In words:
If x is within a distance 2 from -7 , how far can $3 x$ be from -21 ?

You have just proved the following conditional:

$$
|x+7|<2 \Longrightarrow|3 x+21|<6
$$

A Greek letter!

Learn to write this Greek letter:

Absolute values and conditionals

Now let's reverse idea in the previous exercise.
Problem 1. Find one positive value of δ that makes the following conditional true.

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<6
$$

Problem 2. Find all positive values of δ that make the above conditional true.

Absolute values and conditionals

Now we know that for any $0<\delta \leq \frac{3}{2}$, the following conditional is true:

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<6
$$

We'll work with this idea a bit.

Problem 3. Suppose we want a tighter restriction on $|4 x-12|$ in the conditional above. For example, let's say we want the distance between $4 x$ and 12 to be less than 1 :

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<1
$$

Will all of the same values of δ that worked before work now?

No! To make $4 x$ closer to 12 , we must make x closer to 3 . Which values of δ will work here?

Absolute values and conditionals

Any good mathematical concept is worth generalizing. -Michael Spivak

Problem 4. Let ϵ be a fixed positive real number. Is it possible to find a positive δ that does not depend on ϵ and that makes the following conditional true?

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<\epsilon
$$

No! The smaller ϵ is, the smaller δ should have to be! Just like before.

Problem 5. Let ϵ be a fixed positive real number. Find a value of δ, in terms of ϵ, that makes the following conditional true:

$$
\text { If }|x-3|<\delta, \text { then }|4 x-12|<\epsilon
$$

Absolute values and conditionals

Now we know that for a fixed positive real number ϵ, the following conditional is true:

$$
\text { If }|x-3|<\frac{\epsilon}{4}, \text { then }|4 x-12|<\epsilon
$$

Congratulations! You've just done the "hard part" of proving that $\lim 4 x=12$. $x \rightarrow 3$

Not so bad, right?

Limits, intuitively

Recall the intuitive definition of a limit given in the videos:

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { means }
$$

If x is close to c (but not equal to c), then $f(x)$ is close to L.

Limits, intuitively

Note that a limit never cares about what's happening at c. Only near c.

All of the following functions have the same limit L at c :

$L=f(c)$

$L \neq f(c)$

f is not defined at c

In particular, this means that in principle you can never evaluate a limit simply by plugging $x=c$ into the function. More about this next class.

Limits from a graph

Find the value of
(1) $\lim _{x \rightarrow 2} f(x)$
(2) $\lim _{x \rightarrow 0} f(f(x))$
(3) $\lim _{x \rightarrow-3} f(f(x))$

Designing functions to get certain limits

Problem. Construct two functions f and g such that the following three things are true:

- $\lim _{x \rightarrow 1} f(x)=2$.
- $\lim _{u \rightarrow 2} g(u)=3$.
- $\lim _{x \rightarrow 1} g(f(x))=100$.

The precise definition of a limit

Here's the precise definition of a limit given in the videos.

Definition

Let f be a function defined on an open interval containing a real number c, except possibly at c. Let L be a real number. Then $\lim _{x \rightarrow c} f(x)=L$ means

$$
\forall \epsilon>0 \exists \delta>0 \text { such that } 0<|x-c|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

The precise definition of a limit

$$
\forall \epsilon>0 \exists \delta>0 \text { such that } 0<|x-c|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Translation into normal English:

$\forall \epsilon>0$	"No matter how close you require f to get, ..."
$\exists \delta>0$ such that	"...there is a distance δ such that..."
$0<\|x-c\|<\delta \Longrightarrow$	"...if x is within δ of (but not equal to) c, then..."
$\|f(x)-L\|<\epsilon$	"...f(x) is closer to L than you required."

In pictures

For any positive distance ϵ from $L \ldots$

In pictures

...there is some positive distance δ from c, which may depend on $\epsilon \ldots$

In pictures

...such that $0<|x-c|<\delta \Longrightarrow|f(x)-L|<\epsilon$.

