
MAT137 - Term 2, Week 12

Last class!

Your last problem set is due Wednesday, April 5 at 3pm.

Course evaluations are now available.
Please fill one out. It’s important to me.

Today we will:

Remind ourselves a bit about Taylor series
Use Taylor series to do cool things.
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A word I didn’t define last time

There’s a word I forgot to define last time, that you may have seen on
PS10:

Definition

The Taylor series of a function f centred at a = 0 is called its
Maclaurin series.

This is just a name, and doesn’t add any meaning. I always just say
“Taylor series centred at 0”.
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Taylor series we know so far

Here are the six most important Taylor series we know so far.

ex =
∞∑
n=0

1

n!
xn (R =∞)

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n (R =∞)

sin(x) =
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1 (R =∞)

1

1− x
=

∞∑
n=0

xn (R = 1)

log(1 + x) =
∞∑
n=1

(−1)n+1

n
xn (R = 1)

arctan(x) =
∞∑
n=0

(−1)n

2n + 1
x2n+1 (R = 1)
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Some pictures

Here is a graph of sin(x), and some of its Taylor polynomials.
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Some pictures

Here is a graph of log(1 + x), and some of its Taylor polynomials.
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Some pictures

Here is a graph of arctan(x), and some of its Taylor polynomials.

Ivan Khatchatourian MAT137 March 30, 2017 6 / 23



Some pictures

Here is a graph of 1
1−x , and some of its Taylor polynomials.
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Some pictures

Notice how you can see in the last three graphs that the function is only
approximated by its Taylor polynomials between −1 and 1.

As we know, the Taylor series of these functions don’t even converge
outside [−1, 1].
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Using Taylor series to evaluate limits

Taylor series are very, very useful for evaluating limits.

This is the thing your instructors and TAs usually do in their head when
given a tricky limit.

Example: Compute the following limit:

lim
x→0

cos(x)− 1 + 1
2 x

2ex

x3
.

This can be done with L’Hôpital’s rule, but it’s much easier with Taylor
series.

Ivan Khatchatourian MAT137 March 30, 2017 9 / 23



Using Taylor series to evaluate limits

lim
x→0

cos(x)− 1 + 1
2 x

2ex

x3
.

Taylor series of the numerator:(
1− x2

2
+

x4

4!
− · · ·

)
− 1 +

1

2
x2
(

1 + x +
x2

2
+

x3

3!
+ · · ·

)
After distributing the coefficient in front of the last pair of brackets, this
looks like:(

1− x2

2
+

x4

4!
− · · ·

)
− 1 +

(
x2

2
+

x3

2
+

x4

2 · 2
+

x5

2 · 3!
+ · · ·

)
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Using Taylor series to evaluate limits

(
1− x2

2
+

x4

4!
− · · ·

)
− 1 +

(
x2

2
+

x3

2
+

x4

2 · 2
+

x5

2 · 3!
+ · · ·

)
We notice that the constant and quadratic terms cancel out to leave:

x3

2
+

(
1

24
+

1

4

)
x4 + higher degree terms (which won’t matter)

As a matter of convention, we “gather up” higher degree terms that don’t
matter like this:

x3

2
+

7

24
x4 + (CONSTANT)x5 + · · · =

x3

2
+

7

24
x4 + O(x5)
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Using Taylor series to evaluate limits

So we’ve determined that the Taylor series of the numerator starts off like
this:

x3

2
+

7

24
x4 + O(x5)

Of course, what we’re actually trying to do is calculate the limit of this
over x3 at zero.

So the Taylor series of the whole quotient is:

cos(x)− 1 + 1
2 x

2ex

x3
=

x3

2 + 7
24 x

4 + O(x5)

x3
=

1

2
+

7

24
x + O(x2)

Once we know this, it’s easy to simply read off the limit:

lim
x→0

cos(x)− 1 + 1
2 x

2ex

x3
= lim

x→0

1

2
+

7

24
x + O(x2) =

1

2
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Another example

Example: Compute the following limit:

lim
x→0

cos(x)− 1 + 1
2x sin(x)

(log(1 + x))4
.

This is a tiny bit trickier. Before we could easily tell that we only needed
the x3 term in the numerator, because the denominator was x3.

In this case we can first determine the lowest-degree term in the
denominator.

(log(1 + x))4 =

(
x − 1

2
x2 +

1

3
x3 − · · ·

)4

= x4 + O(x5)

So all we need in the numerator are the terms up to degree 4.
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Another example

Example: Compute the following limit:

lim
x→0

(
x ex + sin(3x)− x2

)
(cos(x)− 1)

2 sin(x2)(eπ x − 1)
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Examples

What function is this the Taylor series of?

∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
x2n+2

We notice that (−1)n
(2n+1)(2n+2) x

2n+2 is an antiderivative of

(−1)n

(2n + 1)
x2n+1.

These are the terms in the Taylor series of arctan(x). So our original series
is the Taylor series of∫

arctan(x) dx = x arctan(x)− 1

2
log(x2 + 1).

(The constant of integration here is 0.)
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Example

Now what about the following series:

∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
x2n+7

Well if we factor out x5, we get the previous series:

∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
x2n+7 = x5

∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
x2n+2

So this is the Taylor series of the function:

x5
∫

arctan(x) dx = x5
(
x arctan(x)− 1

2
log(x2 + 1)

)
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Example

These are the sorts of manipulation we use to compute the sums of series
using Taylor series.

Example: Compute the value of the sum:
∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
.

We can see that this series can be obtained by substituting x = 1 into the
Taylor series from earlier:

∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
=
∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
(1)2n+2

Since we know what function the Taylor series represents, we can compute:

∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
(1)2n+2 = (1) arctan(1)−1

2
log
(

(1)2+1
)

=
π

4
− log(2)

2
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Examples of summing series

Example: Compute:
∞∑
n=1

n

3n+1
.

Example: Compute
∞∑
n=1

(−1)n
π2n

4n (2n + 1)!
.
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Integrating with Taylor series

You’ve probably heard that the function e−x
2

has no “elementary”
antiderivative.

With Taylor series, we can approximate this function with a polynomial to
whatever precision we want though:

e−x
2

=
∞∑
n=0

(−1)n

n!
x2n.

So if you want to know the value of
∫ 10
0 e−x

2
dx , you can approximate it

as well as you want, since:∫ x

0
e−t

2
dt =

∫ x

0

( ∞∑
n=0

(−1)n

n!
t2n

)
dt =

∞∑
n=0

(−1)n

(2n + 1) n!
x2n+1.

So the answer to your question is the value of this series at x = 10, and
you can get a bound on the error because it’s an alternating series.
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Integrating with Taylor series

By the way, here’s an astonishing fact:∫ ∞
−∞

e−x
2
dx =

√
π.

Ivan Khatchatourian MAT137 March 30, 2017 20 / 23



Integrating with Taylor series

Example: Compute

∫
x5 + 7x3 + 2x2 + x + 1

(x − 1)4
dx .

I like this example because it makes use of the trivial-seeming fact that
polynomials are analytic.
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What about tangent?

The Taylor series for tangent is very difficult to write down in a nice,
closed form.

Example: Write down the first few terms of the Taylor series for tan(x) at
0.

From the definition of tangent, we know that sin(x) = tan(x) cos(x). If we

assume tan(x) can be written as a Taylor series
∞∑
n=0

an x
n, then this

equation can be written:(
x − 1

3!
x3 +

1

5!
x5 − · · ·

)
= (a0 + a1x + · · · )

(
1− 1

2
x2 +

1

4!
x4 − · · ·

)
.
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What about tangent?

(
x − 1

3!
x3 +

1

5!
x5 − · · ·

)
= (a0 + a1x + · · · )

(
1− 1

2
x2 +

1

4!
x4 − · · ·

)
.

The two power series on the right can then be multiplied together to form
a single power series. Doing this for every term is complicated, but the
first few are easy. You get:

a0 + a1x +
(
a2 −

a0
2

)
x2 +

(
a3 +

a1
2

)
x3 +

(
a4 +

a0
4!

+
a2
2

)
x4 + · · ·

Equating this to the Taylor series for cosine allows us to solve for some of
the ai ’s:

a0 = 0, a1 = 1, a2 = 0, a3 =
1

3
, a4 = 0, . . .
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