MAT137 - Term 2, Week 12

- Last class!
- Your last problem set is due Wednesday, April 5 at 3pm.
- Course evaluations are now available. Please fill one out. It's important to me.
- Today we will:
- Remind ourselves a bit about Taylor series
- Use Taylor series to do cool things.

A word I didn't define last time

There's a word I forgot to define last time, that you may have seen on PS10:

Definition

The Taylor series of a function f centred at $a=0$ is called its Maclaurin series.

This is just a name, and doesn't add any meaning. I always just say "Taylor series centred at 0".

Taylor series we know so far

Here are the six most important Taylor series we know so far.

$$
\begin{array}{llll}
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} & (R=\infty) & \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} & (R=1) \\
\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} & (R=\infty) & \log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n} & (R=1) \\
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} & (R=\infty) & \arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} & (R=1)
\end{array}
$$

Some pictures

Here is a graph of $\sin (x)$, and some of its Taylor polynomials.

Some pictures

Here is a graph of $\log (1+x)$, and some of its Taylor polynomials.

Some pictures

Here is a graph of $\arctan (x)$, and some of its Taylor polynomials.

Some pictures

Here is a graph of $\frac{1}{1-x}$, and some of its Taylor polynomials.

Some pictures

Notice how you can see in the last three graphs that the function is only approximated by its Taylor polynomials between -1 and 1 .

As we know, the Taylor series of these functions don't even converge outside $[-1,1]$.

Using Taylor series to evaluate limits

Taylor series are very, very useful for evaluating limits.
This is the thing your instructors and TAs usually do in their head when given a tricky limit.

Example: Compute the following limit:

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x^{2} e^{x}}{x^{3}}
$$

This can be done with L'Hôpital's rule, but it's much easier with Taylor series.

Using Taylor series to evaluate limits

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x^{2} e^{x}}{x^{3}}
$$

Taylor series of the numerator:

$$
\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\cdots\right)-1+\frac{1}{2} x^{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots\right)
$$

After distributing the coefficient in front of the last pair of brackets, this looks like:

$$
\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\cdots\right)-1+\left(\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{2 \cdot 2}+\frac{x^{5}}{2 \cdot 3!}+\cdots\right)
$$

Using Taylor series to evaluate limits

$$
\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\cdots\right)-1+\left(\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{2 \cdot 2}+\frac{x^{5}}{2 \cdot 3!}+\cdots\right)
$$

We notice that the constant and quadratic terms cancel out to leave:

$$
\frac{x^{3}}{2}+\left(\frac{1}{24}+\frac{1}{4}\right) x^{4}+\text { higher degree terms (which won't matter) }
$$

As a matter of convention, we "gather up" higher degree terms that don't matter like this:

$$
\frac{x^{3}}{2}+\frac{7}{24} x^{4}+(\text { CONSTANT }) x^{5}+\cdots=\frac{x^{3}}{2}+\frac{7}{24} x^{4}+O\left(x^{5}\right)
$$

Using Taylor series to evaluate limits

So we've determined that the Taylor series of the numerator starts off like this:

$$
\frac{x^{3}}{2}+\frac{7}{24} x^{4}+O\left(x^{5}\right)
$$

Of course, what we're actually trying to do is calculate the limit of this over x^{3} at zero.

So the Taylor series of the whole quotient is:

$$
\frac{\cos (x)-1+\frac{1}{2} x^{2} e^{x}}{x^{3}}=\frac{\frac{x^{3}}{2}+\frac{7}{24} x^{4}+O\left(x^{5}\right)}{x^{3}}=\frac{1}{2}+\frac{7}{24} x+O\left(x^{2}\right)
$$

Once we know this, it's easy to simply read off the limit:

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x^{2} e^{x}}{x^{3}}=\lim _{x \rightarrow 0} \frac{1}{2}+\frac{7}{24} x+O\left(x^{2}\right)=\frac{1}{2}
$$

Another example

Example: Compute the following limit:

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x \sin (x)}{(\log (1+x))^{4}}
$$

This is a tiny bit trickier. Before we could easily tell that we only needed the x^{3} term in the numerator, because the denominator was x^{3}.

In this case we can first determine the lowest-degree term in the denominator.

$$
(\log (1+x))^{4}=\left(x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots\right)^{4}=x^{4}+O\left(x^{5}\right)
$$

So all we need in the numerator are the terms up to degree 4.

Another example

Example: Compute the following limit:

$$
\lim _{x \rightarrow 0} \frac{\left(x e^{x}+\sin (3 x)-x^{2}\right)(\cos (x)-1)}{2 \sin \left(x^{2}\right)\left(e^{\pi x}-1\right)}
$$

Examples

What function is this the Taylor series of?

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)} x^{2 n+2}
$$

We notice that $\frac{(-1)^{n}}{(2 n+1)(2 n+2)} x^{2 n+2}$ is an antiderivative of

$$
\frac{(-1)^{n}}{(2 n+1)} x^{2 n+1}
$$

These are the terms in the Taylor series of $\arctan (x)$. So our original series is the Taylor series of

$$
\int \arctan (x) d x=x \arctan (x)-\frac{1}{2} \log \left(x^{2}+1\right)
$$

(The constant of integration here is 0 .)

Example

Now what about the following series:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)} x^{2 n+7}
$$

Well if we factor out x^{5}, we get the previous series:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)} x^{2 n+7}=x^{5} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)} x^{2 n+2}
$$

So this is the Taylor series of the function:

$$
x^{5} \int \arctan (x) d x=x^{5}\left(x \arctan (x)-\frac{1}{2} \log \left(x^{2}+1\right)\right)
$$

Example

These are the sorts of manipulation we use to compute the sums of series using Taylor series.

Example: Compute the value of the sum: $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)}$.
We can see that this series can be obtained by substituting $x=1$ into the Taylor series from earlier:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)}(1)^{2 n+2}
$$

Since we know what function the Taylor series represents, we can compute:
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)}(1)^{2 n+2}=(1) \arctan (1)-\frac{1}{2} \log \left((1)^{2}+1\right)=\frac{\pi}{4}-\frac{\log (2)}{2}$

Examples of summing series

Example: Compute: $\sum_{n=1}^{\infty} \frac{n}{3^{n+1}}$.
Example: Compute $\sum_{n=1}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{4^{n}(2 n+1)!}$.

Integrating with Taylor series

You've probably heard that the function $e^{-x^{2}}$ has no "elementary" antiderivative.

With Taylor series, we can approximate this function with a polynomial to whatever precision we want though:

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}
$$

So if you want to know the value of $\int_{0}^{10} e^{-x^{2}} d x$, you can approximate it as well as you want, since:

$$
\int_{0}^{x} e^{-t^{2}} d t=\int_{0}^{x}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{2 n}\right) d t=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) n!} x^{2 n+1}
$$

So the answer to your question is the value of this series at $x=10$, and you can get a bound on the error because it's an alternating series.

Integrating with Taylor series

By the way, here's an astonishing fact:

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Integrating with Taylor series

Example: Compute $\int \frac{x^{5}+7 x^{3}+2 x^{2}+x+1}{(x-1)^{4}} d x$.
I like this example because it makes use of the trivial-seeming fact that polynomials are analytic.

What about tangent?

The Taylor series for tangent is very difficult to write down in a nice, closed form.

Example: Write down the first few terms of the Taylor series for $\tan (x)$ at 0 .

From the definition of tangent, we know that $\sin (x)=\tan (x) \cos (x)$. If we assume $\tan (x)$ can be written as a Taylor series $\sum_{n=0}^{\infty} a_{n} x^{n}$, then this equation can be written:
$\left(x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots\right)=\left(a_{0}+a_{1} x+\cdots\right)\left(1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}-\cdots\right)$.

What about tangent?

$$
\left(x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots\right)=\left(a_{0}+a_{1} x+\cdots\right)\left(1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}-\cdots\right) .
$$

The two power series on the right can then be multiplied together to form a single power series. Doing this for every term is complicated, but the first few are easy. You get:

$$
a_{0}+a_{1} x+\left(a_{2}-\frac{a_{0}}{2}\right) x^{2}+\left(a_{3}+\frac{a_{1}}{2}\right) x^{3}+\left(a_{4}+\frac{a_{0}}{4!}+\frac{a_{2}}{2}\right) x^{4}+\cdots
$$

Equating this to the Taylor series for cosine allows us to solve for some of the a_{i} 's:

$$
a_{0}=0, \quad a_{1}=1, \quad a_{2}=0, \quad a_{3}=\frac{1}{3}, \quad a_{4}=0, \ldots
$$

