
MAT137 - Week 10

Remember that Problem Set 4 is due tomorrow at 3pm.

Today we’re talking about:

Limits at infinity.
L’Hôpital’s Rule
Introduction to the Mean Value Theorem.
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Limits at infinity

So far we’ve defined limits at a point, which look like

lim
x→a

f (x) = L

if they exist. We’ve also defined

lim
x→a

f (x) =∞ and lim
x→a

f (x) = −∞.

Today we’ll talk about limits at infinity:

lim
x→∞

f (x) = L and lim
x→−∞

f (x) = L.

Ivan Khatchatourian MAT137 November 17, 2016 2 / 1



Motivation

When discussing limits at a point, our intuition was that

lim
x→a

f (x) = L

means that f (x) can be made arbitrarily close to L by making x
sufficiently close to a.

Now consider the function g(x) = 1
x .

Exercise: Convince yourself that you can make g(x) arbitrarily close to 0
by making x sufficiently large.
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Limits at infinity

Exercise: Suppose f is a function defined on an interval of the form (p,∞)
for some p ∈ R. Write down a definition for the statement

lim
x→∞

f (x) = L.
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Limits at infinity

Definition

Suppose f is a function defined on an interval of the form (p,∞) for some
p ∈ R. Then

lim
x→∞

f (x) = L.

means

∀ε > 0 ∃M ∈ R such that x > M =⇒ |f (x)− L| < ε.

Exercise: Write down a similar definition for the statement
lim

x→−∞
f (x) = L.
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Examples

1. Prove that lim
x→∞

1

x2
= 0.

2. Prove that lim
x→∞

sin(x)

x2
= 0. (This reminds us of the Squeeze Theorem,

which does generalize to this sort of situation.)

3. Prove that lim
x→∞

cos(x) does not exist.
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Examples

1. Evaluate lim
x→∞

x −
√

x2 + 7.

2. Evaluate lim
x→∞

3x2 + 7x + 1

8x2 + 4
.

3. Evaluate lim
x→∞

3x2 + 7x + 1

8x3 + 4
.

4. Evaluate lim
x→∞

7e7x + sin(x)

e7x + 7
.
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Indeterminate forms

Recall that if we know

lim
x→a

f (x) = L and lim
x→a

g(x) = M,

(and M 6= 0), then the limit law for quotients tells us that

lim
x→a

f (x)

g(x)
=

L

M
.

Knowing the limits of f and g , we can determine the limit of f
g from the

form of the function alone.
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Indeterminate forms

The same is not true if L = M = 0.

Exercise: For each part, find a pair of functions f and g such that

lim
x→0

f (x) = 0 = lim
x→0

g(x),

but such that...

1 ... lim
x→0

f (x)

g(x)
= 7.

2 ... lim
x→0

f (x)

g(x)
= 0.

3 ... lim
x→0

f (x)

g(x)
=∞.

4 ... lim
x→0

f (x)

g(x)
doesn’t exist, and doesn’t equal ±∞.
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Indeterminate forms

For this reason, if
lim
x→a

f (x) = 0 = lim
x→a

g(x),

we say that lim
x→a

f (x)

g(x)
is indeterminate of type 0

0 .
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Indeterminate forms

The same is true if

lim
x→0

f (x) = ±∞ and lim
x→0

g(x) = ±∞.

In this case, we say that lim
x→0

f (x)

g(x)
is indeterminate of type ∞∞ .

L’Hôpital’s rule is a tool for dealing with limits of these two types.
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Some intuition

Here’s some intuition for the statement of L’Hôpital’s rule.

Suppose L1 and L2 are lines with slopes m1 and m2, respectively. Also
suppose they both have zeros at 7.

Then lim
x→7

L1(x)

L2(x)
is indeterminate of type 0

0 .

Of course, we can just write down their equations easily:

L1(x) = m1(x − 7) and L2(x) = m2(x − 7).

and evaluate the limit easily:

lim
x→7

L1(x)

L2(x)
= lim

x→7

m1

m2
=

m1

m2
= lim

x→7

L′1(x)

L′2(x)
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Some intuition

For more general functions (not all functions though), if

lim
x→a

f (x) = 0 = lim
x→a

g(x),

and in addition f and g are differentiable near (and at) a, and g ′(a) 6= 0,
then f and g are closely-approximated by their tangent lines at a:

f ′(a)(x − a) and g ′(a)(x − a).

So we might expect to get:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(a)(x − a)

g ′(a)(x − a)
=

f ′(a)

g ′(a)
.

!!!THIS IS NOT A PROOF!!! ...I secretly assumed many things.
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L’Hôpital’s rule

This theorem is tricky to state, because there are many cases.

Theorem

Suppose that

limx→a
f (x)
g(x) is indeterminate of type 0

0 or ∞∞ .

f and g are differentiable near a (except possibly at a).

g is never 0 near a (except possibly at a).

g ′ is never 0 near a (except possibly at a).

lim
x→a

f ′(x)

g ′(x)
exists, or is ±∞.

Then:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)
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L’Hôpital’s rule

In the previous theorem, “near a” means “on an open interval containing
a”.

The theorem also holds for limits as x →∞ or x → −∞, in which case
“near a” is replaced with “on an interval of the form (p,∞) or (−∞, p)
for some p ∈ R, respectively.
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Examples

1. Use L’Hôpital’s rule to compute lim
x→0

x2 − 7x

ex − 1
.

2. Compute lim
x→∞

x2

ex
.

3. Compute lim
x→0

2x − sin(2x)

x sin(x)
.

Homework: Show that for any natural number N, lim
x→∞

xN

ex
= 0.
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Warnings

L’Hôpital’s rule is very powerful, but with great power comes great
responsibility.

Warning 1: The hypotheses are important.

Example: Evaluate lim
x→∞

x + sin(x)

x
.

INCORRECT SOLUTION: The top and bottom both →∞, so this is
indeterminate of type ∞∞ . So:

lim
x→∞

x + sin(x)

x
L’H
= lim

x→∞

1 + cos(x)

1
= lim

x→∞
cos(x).

The last limit doesn’t exist, so lim
x→∞

x + sin(x)

x
doesn’t exist.
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Warnings

Warning 2: It doesn’t always help.

Example: Evaluate lim
x→∞

ex − e−x

ex + e−x
.

The top and bottom both →∞, so this is indeterminate of type ∞∞ . So:

lim
x→∞

ex − e−x

ex + e−x
L’H
= lim

x→∞

ex + e−x

ex − e−x
L’H
= lim

x→∞

ex − e−x

ex + e−x
L’H
= · · · · · ·

These equalities are all true, they just don’t go anywhere.
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Warnings

Warning 3: Don’t blindly apply it without simplifying things if you can.

Example: Compute lim
x→0+

log(x)
1
x

.

lim
x→0+

log(x)
1
x

L’H
= lim

x→0+

1
x

− 1
x2

L’H
= lim

x→0+

− 1
x2

2
x3

L’H
= lim

x→0+

2
x3

−6
x4

L’H
= · · · · · ·
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Indeterminate products

There are other indeterminate forms, all of which eventually reduce to one
of the ones we’ve seen.

1. Products of the form 0 · ∞.

If
lim
x→a

f (x) = 0 and lim
x→a

g(x) = ±∞,

then
lim
x→a

f (x)g(x) = ???

This is called indeterminate of type 0 · ∞.
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Indeterminate products

Solution: If lim
x→a

f (x)g(x) is indeterminate of type 0 · ∞, then

lim
x→a

f (x)
1

g(x)

is indeterminate of type 0
0 .

lim
x→a

g(x)
1

f (x)

is indeterminate of type ∞∞ .

Example: Compute lim
x→0

x log(x).
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Indeterminate exponents

2. Exponents of the form 00. If

lim
x→a

f (x) = 0 = lim
x→a

g(x),

then
lim
x→a

f (x)g(x) = ???

This is called indeterminate of type 00.
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Indeterminate exponents

Solution: If lim
x→a

f (x)g(x) is indeterminate of type 00, then

lim
x→a

log
(

f (x)g(x)
)

= lim
x→a

g(x) log (f (x))

is indeterminate of type 0 · ∞.
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Other indeterminate exponents

3. Exponents of the form 1∞ and ∞0.

These are dealt with similarly to those of form 00.

4. Limits of the form ∞−∞.

There is no special trick to these.
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Examples

1. Compute lim
x→∞

(1 + x)1/x .

2. Compute lim
x→0+

(tan(x))x .

3. Compute lim
x→0+

csc(x)− cot(x).

4. Compute lim
x→1

(
x

x − 1
− 1

log(x)

)
.
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Be careful

What’s wrong with this proof? Compute: lim
x→−∞

x −
√

x2 + x .

Proof.

lim
x→−∞

x −
√

x2 + x = lim
x→−∞

x −
√

x2 + x · x +
√

x2 + x

x +
√

x2 + x

= lim
x→−∞

x2 − (x2 + x)

x +
√

x2 + x

= lim
x→−∞

−x

x

(
1 +

√
1 + 1

x

)
= lim

x→−∞

−1

1 +
√

1 + 1
x

= −1

2
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