
MAT137 - Week 9

Today we’re talking about:

Inverse trig functions (continued from last time).
Derivatives of inverse functions.
Exponentials and logarithms.
Logarithmic differentiation.
(If there’s time) the Mean Value Theorem.
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Inverse functions

Last class we determined that only injective functions have inverses.

Many functions, like f (x) = x2, are not injective. However we can restrict
them to intervals like (−∞, 0] or [0,∞) on which they are injective, and
which can’t be expanded any further while maintaining injectivity.
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Exercise

Let f be the following function:

1 What is the largest interval containing −1 on which f has an inverse?

2 What is the largest interval containing 0 on which f has an inverse?

Sketch the graphs of these inverses.
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arcsin

Last time, we defined the function arcsin(x) as the inverse of the function

g(x) = sin(x) for x ∈
[
−π

2
,
π

2

]
.

In other words,

arcsin(x) = θ ⇔ θ ∈
[
−π

2
,
π

2

]
and sin(θ) = x .
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arcsin

Remember that the interval
[
−π

2 ,
π
2

]
is simply a choice we make in order

to obtain an injective function.

This is just like how we choose to define
√

x as the positive number whose
square is x .

We can restricte sin(x) to another interval, like[
π

2
,

3π

2

]
or
[
0,
π

2

]
∪
[

3π

2
, 2π

]
.

and define an inverse for those restrictions as well. Those wouldn’t be
arcsin though.
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arccos and arctan

cos(x) and tan(x) are also not injective, so we also need to restrict their
domains to be able to define inverses.

By convention, we...

...restrict cos(x) to the interval [0, π];

...restrict tan(x) to the interval
(
−π

2 ,
π
2

)
.

There is a convenient table with this information for all six trig functions
in Tyler’s notes, page 75.
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Exercise

Using this definition from above...

arcsin(x) = θ ⇔ θ ∈
[
−π

2
,
π

2

]
and sin(θ) = x .

...compute the following:

1 sin(arcsin(12)), cos(arcsin(12)), tan(arcsin(12)). (Do these without
computing arcsin(12).)

2 sin(arcsin(2))

3 arcsin(sin(1))

4 arcsin(sin(7)) (Hint: The answer is not 7.)

5 arcsin(sin(6))
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The derivative of arcsin(x)

To compute
d

dx
arcsin(x), we use implicit differentiation.

By definition, we know that

sin(arcsin(x)) = x

for all x ∈ [−1, 1].

Differentiate both sides of this expression with respect to x . Then
rearrange to obtain:

d

dx
arcsin(x) =

1

cos(arcsin(x))
=

1√
1− x2

.
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Exercise

Repeat this analysis but for arctan. That is, find...

...its domain.

...its range.

...a sketch of its graph.

...its derivative.
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The rest of the inverse trig functions

Here are the derivatives of the remaining inverse trig functions.

d

dx
arccos(x) =

−1√
1− x2

.

d

dx
arcsec(x) =

1

|x |
√

x2 − 1
.

d

dx
arccsc(x) =

−1

|x |
√

x2 − 1
.

d

dx
arccot(x) =

−1

1 + x2

(Don’t memorize these.)
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Derivatives of inverse functions in general

The same analysis we did for arcsin(x) can work for any inverse function.

Let f be an injective function. We’d like to compute (f −1)′.

By definition, we know that

f (f −1(x)) = x .

Differentiate both sides of this expression with respect to x . Then
rearrange to obtain:

(f −1)′(x) =
1

f ′(f −1(x))
.

(I think Tyler’s notes call this the “Inverse Function Theorem”.)
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Exercise

Suppose f is an injective function such that:

f (0) = 7

f ′(0) = π

Compute (f −1)′(7).
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Exercise

Let f (x) = −2x + 7.

1 Sketch the graph of f , and convince yourself that f is injective on its
whole domain.

2 Sketch the graph of f −1 by reflecting your previous graph.

3 Using the general formula from earlier, derive a formula for (f −1)′(x).

4 Derive a formula for f −1(x).

5 Differentiate the formula you obtained, and confirm that the result
agrees with your earlier answer.
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Exponentials and Logarithms

Recall from the videos:

An exponential function is a function of the form f (x) = ax for some fixed
a > 0.

Given an a > 0, the base a logarithm loga is defined to be the inverse of
ax . That is,

y = loga(x) ⇔ ay = x

or in other words

aloga(x) = x = loga(ax).
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Exponentials and Logarithms

e is a special number which is defined to be the unique number such that

d

dx
ex = ex .

Because e is so important, we call the base e logarithm the “natural
logarithm”, and denote it simply by log or ln. (I tend to use log.)

For a general a > 0, we have:

d

dx
ax = log(a) ax
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Exercises

1. Solve the following equation for x .

logx(x + 6) = 2.

2. Compute f ′(x) if f (x) = tan(7x
7
).

3. Let a > 0. Compute
d

dx
loga(x).

(Hint: Remember that loga(x) is the inverse of ax .)

4. Compute g ′(x) if g(x) = log |x |.
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Logarithmic differentiation

Idea: Logarithms simplify things.

Multiplication → addition: log(xy) = log(x) + log(y).

Division → subtraction: log(x/y) = log(x)− log(y).

Exponentiation → multiplication: log(xy ) = y log(x).

We can use this to make complicated functions look simpler, so we can
differentiate them.
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Examples

Example: Compute f ′(x) if f (x) = xx .

Answer: f ′(x) = xx(log(x) + 1).

Example: Let f , g , and h all be differentiable functions. Use logarithmic
differentiation to differentiate f (x)g(x)h(x).

Example: Compute g ′(x) if g(x) = logx(x + 2).
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Logarithmic differentiation

Logarithmic differentiation allowed us to extend the power rule to its final
form:

d

dx
xa = axa−1 for any real number a.

With this new tool, you can essentially differentiate any function you write
down.
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