MAT137 - Week 9

- Today we're talking about:
- Inverse trig functions (continued from last time).
- Derivatives of inverse functions.
- Exponentials and logarithms.
- Logarithmic differentiation.
- (If there's time) the Mean Value Theorem.

Inverse functions

Last class we determined that only injective functions have inverses.
Many functions, like $f(x)=x^{2}$, are not injective. However we can restrict them to intervals like $(-\infty, 0]$ or $[0, \infty)$ on which they are injective, and which can't be expanded any further while maintaining injectivity.

Exercise

Let f be the following function:

(1) What is the largest interval containing -1 on which f has an inverse?
(2) What is the largest interval containing 0 on which f has an inverse?

Sketch the graphs of these inverses.

\arcsin

Last time, we defined the function $\arcsin (x)$ as the inverse of the function

$$
g(x)=\sin (x) \text { for } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

In other words,

$$
\arcsin (x)=\theta \quad \Leftrightarrow \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text { and } \sin (\theta)=x
$$

\arcsin

Remember that the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is simply a choice we make in order to obtain an injective function.

This is just like how we choose to define \sqrt{x} as the positive number whose square is x.

We can restricte $\sin (x)$ to another interval, like

$$
\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right] \text { or }\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]
$$

and define an inverse for those restrictions as well. Those wouldn't be arcsin though.

arccos and arctan

$\cos (x)$ and $\tan (x)$ are also not injective, so we also need to restrict their domains to be able to define inverses.

By convention, we...

- ...restrict $\cos (x)$ to the interval $[0, \pi]$;
- ...restrict $\tan (x)$ to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

There is a convenient table with this information for all six trig functions in Tyler's notes, page 75 .

Exercise

Using this definition from above...

$$
\arcsin (x)=\theta \quad \Leftrightarrow \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text { and } \sin (\theta)=x
$$

...compute the following:
(1) $\sin \left(\arcsin \left(\frac{1}{2}\right)\right), \cos \left(\arcsin \left(\frac{1}{2}\right)\right), \tan \left(\arcsin \left(\frac{1}{2}\right)\right)$. (Do these without computing $\arcsin \left(\frac{1}{2}\right)$.)
(2) $\sin (\arcsin (2))$
(3) $\arcsin (\sin (1))$
(9) $\arcsin (\sin (7))$ (Hint: The answer is not 7.)
(6) $\arcsin (\sin (6))$

The derivative of $\arcsin (x)$

To compute $\frac{d}{d x} \arcsin (x)$, we use implicit differentiation.
By definition, we know that

$$
\sin (\arcsin (x))=x
$$

for all $x \in[-1,1]$.
Differentiate both sides of this expression with respect to x. Then rearrange to obtain:

$$
\frac{d}{d x} \arcsin (x)=\frac{1}{\cos (\arcsin (x))}=\frac{1}{\sqrt{1-x^{2}}}
$$

Exercise

Repeat this analysis but for arctan. That is, find...

- ...its domain.
- ...its range.
- ...a sketch of its graph.
- ...its derivative.

The rest of the inverse trig functions

Here are the derivatives of the remaining inverse trig functions.

- $\frac{d}{d x} \arccos (x)=\frac{-1}{\sqrt{1-x^{2}}}$.
- $\frac{d}{d x} \operatorname{arcsec}(x)=\frac{1}{|x| \sqrt{x^{2}-1}}$.
- $\frac{d}{d x} \operatorname{arccsc}(x)=\frac{-1}{|x| \sqrt{x^{2}-1}}$.
- $\frac{d}{d x} \operatorname{arccot}(x)=\frac{-1}{1+x^{2}}$
(Don't memorize these.)

Derivatives of inverse functions in general

The same analysis we did for $\arcsin (x)$ can work for any inverse function.
Let f be an injective function. We'd like to compute $\left(f^{-1}\right)^{\prime}$.

By definition, we know that

$$
f\left(f^{-1}(x)\right)=x
$$

Differentiate both sides of this expression with respect to x. Then rearrange to obtain:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

(I think Tyler's notes call this the "Inverse Function Theorem".)

Exercise

Suppose f is an injective function such that:

- $f(0)=7$
- $f^{\prime}(0)=\pi$

Compute $\left(f^{-1}\right)^{\prime}(7)$.

Exercise

Let $f(x)=-2 x+7$.
(1) Sketch the graph of f, and convince yourself that f is injective on its whole domain.
(2) Sketch the graph of f^{-1} by reflecting your previous graph.
(3) Using the general formula from earlier, derive a formula for $\left(f^{-1}\right)^{\prime}(x)$.
(c) Derive a formula for $f^{-1}(x)$.
(6) Differentiate the formula you obtained, and confirm that the result agrees with your earlier answer.

Exponentials and Logarithms

Recall from the videos:

An exponential function is a function of the form $f(x)=a^{x}$ for some fixed $a>0$.

Given an $a>0$, the base a logarithm $\log _{a}$ is defined to be the inverse of a^{x}. That is,

$$
y=\log _{a}(x) \quad \Leftrightarrow \quad a^{y}=x
$$

or in other words

$$
a^{\log _{a}(x)}=x=\log _{a}\left(a^{x}\right) .
$$

Exponentials and Logarithms

e is a special number which is defined to be the unique number such that

$$
\frac{d}{d x} e^{x}=e^{x}
$$

Because e is so important, we call the base e logarithm the "natural logarithm", and denote it simply by log or In. (I tend to use log.)

For a general $a>0$, we have:

$$
\frac{d}{d x} a^{x}=\log (a) a^{x}
$$

Exercises

1. Solve the following equation for x.

$$
\log _{x}(x+6)=2 .
$$

2. Compute $f^{\prime}(x)$ if $f(x)=\tan \left(7^{x^{7}}\right)$.
3. Let $a>0$. Compute $\frac{d}{d x} \log _{a}(x)$.
(Hint: Remember that $\log _{a}(x)$ is the inverse of a^{x}.)
4. Compute $g^{\prime}(x)$ if $g(x)=\log |x|$.

Logarithmic differentiation

Idea: Logarithms simplify things.
Multiplication \rightarrow addition: $\log (x y)=\log (x)+\log (y)$.
Division \rightarrow subtraction: $\log (x / y)=\log (x)-\log (y)$.
Exponentiation \rightarrow multiplication: $\log \left(x^{y}\right)=y \log (x)$.
We can use this to make complicated functions look simpler, so we can differentiate them.

Examples

Example: Compute $f^{\prime}(x)$ if $f(x)=x^{x}$.
Answer: $f^{\prime}(x)=x^{x}(\log (x)+1)$.

Example: Let f, g, and h all be differentiable functions. Use logarithmic differentiation to differentiate $f(x) g(x) h(x)$.

Example: Compute $g^{\prime}(x)$ if $g(x)=\log _{x}(x+2)$.

Logarithmic differentiation

Logarithmic differentiation allowed us to extend the power rule to its final form:

$$
\frac{d}{d x} x^{a}=a x^{a-1} \text { for any real number } a .
$$

With this new tool, you can essentially differentiate any function you write down.

