
MAT137 - Week 6

Your first midterm is tomorrow, 4-6pm. Details are on the course
website.

Make sure you go to the correct room.
Know your UTorID.
Know your @mail.utoronto.ca email address.
Know your student number.

Today’s lecture is about derivatives.

Some intuition.
The definition of the derivative and some examples.
Differentiability vs. continuity.
Some derivative rules.
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Derivatives

Definition

Let a be a real number, and let f be a function defined at least on an
open interval containing a. f is said to be differentiable at a if

lim
x→a

f (x)− f (a)

x − a

exists.

In this case its value is denoted by f ′(a), and called the
derivative of f at a.
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Derivatives

The following two limits are equal, and so they are used interchangeably in
the definition above:

lim
x→a

f (x)− f (a)

x − a
= lim

h→0

f (a + h)− f (a)

h
.
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Derivatives as functions

When we calculate f ′(a) for some different values of a, we often find that
the calculations feel the same.

So we just define the derivative function in general as:

f ′(x) = lim
y→x

f (y)− f (x)

y − x
= lim

h→0

f (x + h)− f (x)

h
.
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Examples

Compute the derivatives of the following functions:

f (x) = x2.

g(x) =
√

x .

h(x) = 1
x .

Any constant function.
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Tangent lines

We know that f ′(a) is the slope of the tangent line to the graph of f at
the point a. What is the equation of this tangent line?

It’s the line with slope f ′(a) that passes through the point (a, f (a)).

Therefore, its equation is

y − f (a) = f ′(a)(x − a).

Example: Find the equation of the tangent line to f (x) = 1
x at x = 2.
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Differentiability vs. continuity

We know that f (x) = |x | is continuous everywhere. Show that it is not
differentiable at 0.

This means that continuity at a point does not imply differentiability at
that point.

The converse is true, however:

Theorem

If f is differentiable at a, then f is continuous at a.
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Notation

There are two major ways of notating derivatives and differentiation.

Lagrange notation: What we’ve been using so far. Given a function
f , its derivative is called f ′

Leibniz notation: Given a function f , suppose y = f (x), and denote
its derivative by dy

dx .

Leibniz notation is often more useful, because you can represent
differentiation as an operation. For example, you can write:

d

dx
f (x) or

d

dx

(
x2 + 7x + 1

2x + 9

)
.
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Notation

The downside of Leibniz notation: It’s harder to express evaluation of
derivatives at a point.

Lagrange notation: f ′(a)

Leibniz notation:
d

dx
f (x)

∣∣∣∣
x=a
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New derivatives from old ones

This should remind you of the limit laws.

Theorem

Let f and g be differentiable at a real number a. Let c be any real number.

then f + g and cf are differentiable at a, and:

1 (cf )′(a) =
d

dx

[
cf (x)

]∣∣∣∣
x=a

= cf ′(a).

2 (f + g)′(a) =
d

dx

[
f (x) + g(x)

]∣∣∣∣
x=a

= f ′(a) + g ′(a).

The proof is an easy exercise in using the limit laws.
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Actual derivatives of actual functions

Enough abstraction. Teach me how to take derivatives of actual functions!

Theorem

For any positive integer n,
d

dx

[
xn

]
= nxn−1.

Key fact for the proof, which is a generalization of “difference of squares”
and “difference of cubes”: for any positive n, and real numbers a and b,

(an − bn) = (a− b)(an−1 + an−2b + an−3b2 + · · ·+ abn−2 + bn−1).
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Example

Compute the derivative of:

f (x) = 3x723 + 2x42 − 17x3 + 1, 000, 000
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What about products?

We saw how to differentiate sums of differentiable functions. For products,
it’s trickier.

Theorem (Product Rule)

If f and g are differentiable at a real number x, then so is fg , and

(fg)′(x) =
d

dx

[
f (x)g(x)

]
= f ′(x)g(x) + f (x)g ′(x).
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Example

Compute the derivative of the following function at x = 1:

f (x) = (3x2 + 2x + 1)(x7 − 2).
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What about quotients?

Quotients are even more tricky.

Theorem (Quotient Rule)

Let f and g be differentiable at a real number x, and suppose g ′(x) 6= 0.
Then f

g is differentiable at x, and(
f

g

)′
(x) =

d

dx

[
f (x)

g(x)

]
=

f ′(x)g(x)− f (x)g ′(x)

(g(x))2
.
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