MAT137 - Week 5

- The deadline to drop to MAT135 is tomorrow. (Details on course website.)
- The deadline to let us know you have a scheduling conflict with Test 1 is also tomorrow. (Details on the course website.)
- Today's lecture is about continuity.
- The definition, and some "continuity laws".
- Types of discontinuities.
- The Squeeze Theorem.
- Two "special limits".
- The IVT and EVT.

Continuity

Earlier, we talked about predictions. We said that if

$$
\lim _{x \rightarrow a} f(x)=L
$$

then we're making a prediction for how f should act near a. Specifically, that $f(a)$ "should equal" L.

We saw that sometimes our predictions are wrong, but that was no concern to us.

Continuous functions are functions which actually do what we predict they will do.

Continuity

Definition

Let $a \in \mathbb{R}$, and let f be defined on an open interval containing a.
(Note that we do require the function to be defined at a.)
We say \underline{f} is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Continuity

We can also translate this into an $\epsilon-\delta$ definition as follows:

Definition

Let $a \in \mathbb{R}$, and let f be defined on an open interval containing a.
We say $\underline{f \text { is continuous at } a}$ if

$$
\forall \epsilon>0, \exists \delta>0 \text { such that } 0<|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\epsilon
$$

The benefit of knowing f is continuous at a: you can evaluate $\lim _{x \rightarrow a} f(x)$ simply by plugging in a.

Some trickier proofs

We have already shown that:

- $f(x)=2 x+1$ is continuous at 2 .
- In fact, we've shown that all lines are continuous at all real numbers:

$$
\lim _{x \rightarrow a}(m x+b)=m a+b
$$

- In fact, we've shown that all polynomials are continuous at all real numbers. (Last class, as a corollary of the limit laws.)

Continuity

Other functions:

- $f(x)=\sqrt{x}$ is continuous at all positive real numbers.
(Proof that it's continuous at 4 is in the textbook, section 2.2. The general proof is more or less the same.)
Question: Is it continuous at 0?
- $g(x)=|x|$ is continuous at all real numbers.
(Proof is in the textbook, section 2.2.)
- The sine and cosine functions are both continuous at all real numbers.
(Proof is in the textbook, section 2.5.)

Combining continuous functions.

Corollary (...of the Limit Laws)

Suppose f and g are functions, $a \in \mathbb{R}$, and both f and g are continuous at a.

Then:
(1) cf is continuous at a for any real number c.
(2) $f+g$ is continuous at a.
(3) fg is continuous at a.
(9) $\frac{f}{g}$ is continuous at a, provided that $g(a) \neq 0$.

All of these results follow immediately from the Limit Laws. Try to prove them yourself.

Notable uses of this corollary.

The previous result gets us some useful things:

- $f(x)=\tan (x)$ is continuous at every point where it is defined.
- The same is true for the other three trigonometric functions:

$$
\sec (x), \quad \csc (x), \quad \cot (x)
$$

What about compositions?

Suppose you know that

- $\lim _{x \rightarrow a} f(x)=L$
- $\lim _{x \rightarrow b} g(x)=M$

Can you say anything about $\lim _{x \rightarrow a} g(f(x))$?
What would you need to know in order to be able to say something?

What about compositions?

Suppose we know a little more.

- $\lim _{x \rightarrow a} f(x)=L$
- $\lim _{x \rightarrow L} g(x)=M$

Now can you say anything about $\lim _{x \rightarrow a} g(f(x))$?

Compositions of continuous functions.

Theorem

Suppose that:

- a is a real number,
- f is continuous at a,
- g is continuous at $f(a)$.

Then $g \circ f$ is continuous at a.
In other words, under these hypotheses:

$$
\lim _{x \rightarrow a} g(f(x))=g(f(a))
$$

This is Theorem 2.4.4 in the book, and the proof is there.

Example

These are very powerful tools. As an example, consider:

$$
f(x)=\sqrt{\frac{3|x|^{3}+\pi|x|}{\left(1-x^{2}\right)^{3}}} .
$$

At what points is this function continuous?

Two more simple definitions

We'll need these two definitions shortly. They're not tricky.

Definition

Let a be a real number.

- Suppose f is a function defined on an open interval to the left of a.

We say \underline{f} is continuous from the left at a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

- Suppose f is a function defined on an open interval to the right of a.

We say $\underline{f \text { is continuous from the right at } a \text { if }}$

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

Discontinuities

We saw that f is continuous at a means $\lim _{x \rightarrow a} f(x)=f(a)$.
We can break this down into three parts:

- f is defined at a. In other words, $f(a)$ exists.
- $\lim _{x \rightarrow a} f(x)$ exists.
- The previous two things are equal.

The Squeeze theorem

Problem 5 on your PS2 is sort of like a version of the following theorem.
This theorem is easy to understand with a picture, so draw one.

Theorem

Let a be a real number, and suppose f, g, and h are all functions defined on an open interval containing a, except possibly at a.

Moreover, suppose they have the following relationship on that interval:

$$
f(x) \leq g(x) \leq h(x)
$$

Finally, suppose that $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$.
Then $\lim _{x \rightarrow a} g(x)=L$ as well.

Example

Show that $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$.

Two useful limits

Your textbook uses the Squeeze Theorem to do two important things:

- Prove that sine and cosine are continuous.
- Prove the following two limits.

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=0
$$

A small, useful result

The following result is intuitively clear, and useful.

> Theorem
> If $\lim _{x \rightarrow 0} f(x)=L$ and $c \neq 0$, then $\lim _{x \rightarrow 0} f(c x)=L$.

The proof is left as an easy exercise.

Examples

Evaluate $\lim _{x \rightarrow 0} \frac{\sin (7 x)}{x}$.

Evaluate $\lim _{x \rightarrow 0} \frac{x^{3} \sin (x)}{\sin ^{4}(7 x)}$.

Two important theorems

Theorem (Intermediate Value Theorem)

Suppose f is continuous on an interval of the form $[a, b]$, and let V be any number strictly between $f(a)$ and $f(b)$.

Then there exists a $c \in(a, b)$ such that $f(c)=V$.

With this theorem again, the picture tells the whole story.

Example: Show that there are at least two solutions to the equation

$$
x^{2}-1=\sin (x)
$$

Two important theorems

Theorem (Extreme Value Theorem)

Suppose f is continuous on an interval of the form $[a, b]$.
Then f attains both a maximum value M and a minimum value m.

There are not many interesting applications of this theorem alone, but it will be very important for us later.

