MAT137 - Week 4

- The deadline to drop to MAT135 is October 14. (Details on course website.)
- Read on the website the new, updated instructions for problem set submission.
- Notify us as soon as possible if you have a scheduling conflict with Test 1 (Details on the course website.)
- Today's lecture is about limits.
- More examples of simple $\epsilon-\delta$ proofs.
- The negating the definition to define a limit not existing.
- The limit laws.

The formal definition of a limit

Definition

Let f be a function defined at least on an open interval containing a real number a, except possibly at a. Let L be a real number. Then $\lim _{x \rightarrow a} f(x)=L$ means

$$
\forall \epsilon>0 \exists \delta>0 \text { such that } 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

What about one-sided limits

Try to write down the formal definition of $\lim _{x \rightarrow a^{+}} f(x)=L$.

What about one-sided limits

Try to write down the formal definition of $\lim _{x \rightarrow a^{+}} f(x)=L$.

Definition

Let a be a real number, and let f be a function defined at least on an open interval of the form (a, p) for some $p>a$. Let L be a real number. Then $\lim _{x \rightarrow a^{+}} f(x)=L$ means

$$
\forall \epsilon>0 \exists \delta>0 \text { such that } a<x<a+\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Now try to do the same for left-hand limits.

What about one-sided limits

We mentioned this before defining limits rigorously, but now we can state it:

Theorem

Let f be a function defined at least on an open interval containing a real number a, except possibly at a. Let L be a real number. Then

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if } \lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)
$$

Some trickier proofs

Last class we proved a limit of a linear function. As an exercise, prove the more general result about all linear functions:

That is, prove that for any slope m and any y-intercept b,

$$
\lim _{x \rightarrow a}(m x+b)=m a+b .
$$

Some trickier proofs

Prove that $\lim _{x \rightarrow 4} x^{2}-x=12$.

Negating the definition

What about limits that don't exist? How can we define this?

We can start by negating the definition of the limit we have.

Definition

The statement $\lim _{x \rightarrow a} f(x) \neq L$ means
$\exists \epsilon>0$ such that $\forall \delta>0$,

$$
\text { there is an } x \text { such that } 0<|x-a|<\delta \text { and }|f(x)-L| \geq \epsilon .
$$

Using this definition

Prove that $\lim _{x \rightarrow 0} \frac{x}{|x|} \neq 0$.
Does this prove that $\lim _{x \rightarrow 0} \frac{x}{|x|}$ doesn't exist?

No! It could equal 1. Or π, maybe. Who knows?

Negating the definition

To define the statement

$$
\lim _{x \rightarrow a} f(x) \text { does not exist, }
$$

we need to make sure that $\lim _{x \rightarrow a} f(x)$ doesn't equal anything.
That is, we want to define the statement

$$
\forall L \in \mathbb{R}, \quad \lim _{x \rightarrow a} f(x) \neq L
$$

Negating the definition

Definition

The statement

$$
\lim _{x \rightarrow a} f(x) \text { does not exist }
$$

means
$\forall L \in \mathbb{R}, \exists \epsilon>0$ such that $\forall \delta>0$, there is an x such that $0<|x-a|<\delta$ and $|f(x)-L| \geq \epsilon$.

Using this definition

Prove that $\lim _{x \rightarrow 0} \frac{x}{|x|}$ does not exist.

Uniqueness

This theorem sort of says that limits are a worthwhile thing to define.

> Theorem (Uniqueness of limits)
> If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} f(x)=M$, then $L=M$.

You can find the proof on page 73 of your textbook.

Limit laws

Theorem (Limit Laws)

Let f and g be functions defined on an open interval containing a real number a, except possibly at a. Also, suppose that

$$
\lim _{x \rightarrow a} f(x)=L \text { and } \lim _{x \rightarrow a} g(x)=M
$$

Then

- $\lim _{x \rightarrow a}[c f(x)]=c L$ for all $c \in \mathbb{R}$.
- $\lim _{x \rightarrow a}[f(x)+g(x)]=L+M$.
- $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=L \cdot M$.
- $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{L}{M}$, provided that $M \neq 0$.

Results!

These basic limit laws are already very powerful. For example, they allow us to prove the following very easily:

Corollary

Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial, and let $c \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow c} P(x)=P(c) .
$$

Proof.

Exercise.

