MAT137 - Week 3

- Problem Set 1 is due tomorrow, at 3 pm . The deadline is firm.
- You should have received an email with a personal link to submit it. You must use that link, and should not share it.
- If you haven't seen that email, check your spam folder.
- If you still can't find it, contact Alfonso. All of this is on the course website.
- Do not leave the submission to the last minute.
- Today's lecture is about limits.
- The intuitive idea of a limit.
- Some review material about absolute values.
- The formal definition of a limit.

Informal definition of a limit

This definition is not precise, but it will guide us to write the precise definition later.

Definition

Let f be a function, and let a and L be real numbers. We say the limit of f as x approaches a is L
if $f(x)$ can be made arbitrarily close to L simply by making x sufficiently close to (but not equal to) a.

If this definition is satisfied, we will write:

$$
\lim _{x \rightarrow a} f(x)=L
$$

Limits from a graph

Find the value of
(1) $\lim _{x \rightarrow 2} f(x)$
(2) $\lim _{x \rightarrow 0} f(f(x))$

Towards the precise definition of a limit

Let's take our informal definition earlier, and translate it into mathematical notation.

Definition

$\lim _{x \rightarrow a} f(x)=L$ means

$$
\forall \epsilon>0 \exists \delta>0 \text { such that } 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Towards the precise definition of a limit

Translation into normal English:

$\forall \epsilon>0$	"No matter how close you require me to get, ..."
$\exists \delta>0$ such that	"...there is a distance δ such that..."
$0<\|x-a\|<\delta \Longrightarrow$	"...if x is within δ of (but not equal to) a, then..."
$\|f(x)-L\|<\epsilon$	"...f(x) is closer to L than you required."

The correct definition of a limit

Our last definition still isn't good enough, because it doesn't say what a or L or f are. Here's the final, correct definition.

Definition

Let f be a function defined on an open interval containing a real number a, except possibly at a. Let L be a real number. Then $\lim _{x \rightarrow a} f(x)=L$ means

$$
\forall \epsilon>0 \exists \delta>0 \text { such that } 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

