# Welcome to MAT137!

(Section L5201, Thursdays 6-9pm in MS3153)

| Instructor   | Ivan Khatchatourian         |  |  |
|--------------|-----------------------------|--|--|
| Email        | ivan@math.toronto.edu       |  |  |
| Office hours | Thursdays 1-3, location TBA |  |  |

- Course website: http://uoft.me/MAT137
- Make sure you have read the syllabus/course outline.
- Make sure you check your mail.utoronto.ca email regularly for announcements.
- Join Piazza, our online help forum.
- Precalculus review: http://uoft.me/precalc
- Homework before next week's class: Watch all of the remaining videos.

#### MAT137 results from 2015 - 2016:

#### (among students who wrote the final exam)

| # of submitted problem sets | A   | A or B | F   |
|-----------------------------|-----|--------|-----|
| 10                          | 35% | 58%    | 4%  |
| 9                           | 19% | 41%    | 9%  |
| 8                           | 5%  | 22%    | 22% |
| 5 to 7                      | 1%  | 9%     | 45% |
| Fewer than 5                | 2%  | 2%     | 79% |

## Proofs are important

- Pick 4 points at random on a circle (not necessarily evenly spaced).
- Join every pair of points.
- Into how many regions is the circle divided?



## Proofs are important



### Proofs are important



Actual formula:  $\frac{1}{24}(n^4 - 6n^3 + 23n^2 - 18n + 24)$ . (Proving this is hard.)

#### Consider the function

 $\pi(x) = \#$  of prime numbers less than or equal to x.

For example:

$$\begin{aligned} \pi(2) &= 1 & \pi(10) = 4 \\ \pi(3) &= 2 & \pi(11) = 5 \\ \pi(4) &= 2 & \pi(100) = 25 \end{aligned}$$

This function is *extremely important* to number theorists, but it is not very well understood. A much simpler function, called li(x) was proved to approximate  $\pi(x)$  quite well in 1896.

For all integers n that anyone has ever checked (even to this day), we have found that

 $\pi(n)-\mathsf{li}(n)<0.$ 

In other words, li(n) always seems to *overestimate*  $\pi(n)$ .

There is literally no numerical evidence that li(n) ever underestimates  $\pi(n)$ , even for a single value of n.

However, Littlewood proved in 1914 that  $\pi(n) - \text{li}(n)$  switches sign *infinitely many times* as *n* increases!

The earliest estimate (made in 1955) for the first place the sign changes was on the order of  $10^{10^{10^{964}}}$ . We've since improved this to about  $1.4 \times 10^{316}$ .

Describe the following sets in the simplest terms you can.

 $[2,4] \cup (3,10)$  $[2,4] \cap (3,10)$ 3  $(\pi,3)$ 4 [7,7]5 (7,7) $A = \{ x \in \mathbb{R} : x^2 < 7 \}$  $B = \{ x \in \mathbb{Z} : x^2 < 7 \}$  $C = \{ x \in \mathbb{N} : x^2 < 7 \}$  Given two sets A and B, we define:

• 
$$A \setminus B = \{ x \in A : x \notin B \}.$$

We usually read this as "A without B" or similar. It's the set consisting of all things in A that are not in B.

•  $A \triangle B = (A \setminus B) \cup (B \setminus A).$ 

We usually read this as "the symmetric difference between A and B". It's the set of all things in A or B but not both.

To check your understanding of notation, convince yourself that

$$A \triangle B = (A \cup B) \setminus (A \cap B).$$

**Problem 1.** Define the following two sets:

- $A = \{ male students in this class \}$
- *B* = {students sitting in the first two rows}

What are the sets  $A \setminus B$ ,  $B \setminus A$ , and  $A \triangle B$ ?

Problem 2. A real number that is not rational is called *irrational*.

Let A be the set of all negative, rational numbers and positive, irrational numbers.

Write a definition of A using only mathematical notation. (There is more than one way to do this.)

**Problem 1.** Describe the following sets in the simplest terms you can.

• 
$$A = \{ x \in \mathbb{R} : \forall y \in [5,7], x < y \}.$$

**2**  $B = \{ x \in \mathbb{R} : \exists y \in [5, 7] \text{ such that } x < y \}$ 

**3** 
$$C = \{ x \in [5,7] : \forall y \in [5,7], x < y \}.$$

• 
$$D = \{ x \in [5,7] : \exists y \in [5,7] \text{ such that } x < y \}$$

- **●**  $E = \{ x \in [5,7] : \exists y \in \mathbb{R} \text{ such that } x < y \}$
- **6**  $F = \{ x \in [5,7] : y \in \mathbb{R}, x < y \}$

Are the following statements true or false?

- There is a purple giraffe in this room.
- All giraffes in this room are purple.