Welcome to MAT137!

(Section L5201, Thursdays 6-9pm in MS3153)

Instructor Ivan Khatchatourian
Email ivan@math.toronto.edu
Office hours
Thursdays 1-3, location TBA

Welcome to MAT137!

- Course website: http://uoft.me/MAT137
- Make sure you have read the syllabus/course outline.
- Make sure you check your mail.utoronto.ca email regularly for announcements.
- Join Piazza, our online help forum.
- Precalculus review: http://uoft.me/precalc
- Homework before next week's class: Watch all of the remaining videos.

How did students do last year? (or, Do your homework!)

MAT137 results from 2015-2016:
(among students who wrote the final exam)

\# of submitted problem sets	A	A or B	F
10	35%	58%	4%
9	19%	41%	9%
8	5%	22%	22%
5 to 7	1%	9%	45%
Fewer than 5	2%	2%	79%

Proofs are important

- Pick 4 points at random on a circle (not necessarily evenly spaced).
- Join every pair of points.
- Into how many regions is the circle divided?

Proofs are important

Proofs are important

Actual formula: $\frac{1}{24}\left(n^{4}-6 n^{3}+23 n^{2}-18 n+24\right)$.
(Proving this is hard.)

Another famous example

Consider the function

$$
\pi(x)=\# \text { of prime numbers less than or equal to } x .
$$

For example:

$$
\begin{array}{lc}
\pi(2)=1 & \pi(10)=4 \\
\pi(3)=2 & \pi(11)=5 \\
\pi(4)=2 & \pi(100)=25
\end{array}
$$

This function is extremely important to number theorists, but it is not very well understood. A much simpler function, called $\mathrm{li}(x)$ was proved to approximate $\pi(x)$ quite well in 1896.

Another famous example

For all integers n that anyone has ever checked (even to this day), we have found that

$$
\pi(n)-\mathrm{li}(n)<0
$$

In other words, li(n) always seems to overestimate $\pi(n)$.
There is literally no numerical evidence that $\mathrm{li}(n)$ ever underestimates $\pi(n)$, even for a single value of n.

However, Littlewood proved in 1914 that $\pi(n)-\mathrm{li}(n)$ switches sign infinitely many times as n increases!

The earliest estimate (made in 1955) for the first place the sign changes was on the order of $10^{10^{10^{964}}}$. We've since improved this to about 1.4×10^{316}.

Sets

Describe the following sets in the simplest terms you can.
(1) $[2,4] \cup(3,10)$
(2) $[2,4] \cap(3,10)$
(3) $(\pi, 3)$
(9) $[7,7]$
(5) $(7,7)$
(1) $A=\left\{x \in \mathbb{R}: x^{2}<7\right\}$
(1) $B=\left\{x \in \mathbb{Z}: x^{2}<7\right\}$
(3) $C=\left\{x \in \mathbb{N}: x^{2}<7\right\}$

Some more notation for sets

Given two sets A and B, we define:

- $A \backslash B=\{x \in A: x \notin B\}$.

We usually read this as " A without B " or similar. It's the set consisting of all things in A that are not in B.

- $A \triangle B=(A \backslash B) \cup(B \backslash A)$. We usually read this as "the symmetric difference between A and B ". It's the set of all things in A or B but not both.

To check your understanding of notation, convince yourself that

$$
A \triangle B=(A \cup B) \backslash(A \cap B)
$$

Some set problems

Problem 1. Define the following two sets:

- $A=$ \{male students in this class $\}$
- $B=\{$ students sitting in the first two rows $\}$

What are the sets $A \backslash B, B \backslash A$, and $A \triangle B$?

Problem 2. A real number that is not rational is called irrational.

Let A be the set of all negative, rational numbers and positive, irrational numbers.

Write a definition of A using only mathematical notation. (There is more than one way to do this.)

Sets defined with quantifiers

Problem 1. Describe the following sets in the simplest terms you can.
(1) $A=\{x \in \mathbb{R}: \forall y \in[5,7], x<y\}$.
(2) $B=\{x \in \mathbb{R}: \exists y \in[5,7]$ such that $x<y\}$
(3) $C=\{x \in[5,7]: \forall y \in[5,7], x<y\}$.
(9) $D=\{x \in[5,7]: \exists y \in[5,7]$ such that $x<y\}$
(3) $E=\{x \in[5,7]: \exists y \in \mathbb{R}$ such that $x<y\}$
(6) $F=\{x \in[5,7]: y \in \mathbb{R}, x<y\}$

Quantifiers and the empty set

Are the following statements true or false?

- There is a purple giraffe in this room.
- All giraffes in this room are purple.

