A proof that e is irrational

Ivan Khatchatourian

31 March, 2017

The purpose of this note is to outline a proof that e is irrational that is accessible to anyone who knows some basic facts about series. I believe this proof is due to Joseph Fourier, from somewhere around 1790-1800.

We assume the reader is familiar with the following two identities, both of which should be known to a student who has studied Taylor series:

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!} \quad \text { and } \quad 1=\sum_{n=1}^{\infty} \frac{1}{2^{n}}
$$

The former fact can be obtained simply by substituting $x=1$ into the Taylor series of e^{x} centred at 0 , and the latter fact can be obtained from the well-known geometric series formula.

First, we examine the series on the left and establish a bound for the difference between e and a partial sum of the series. We let S_{n} denote the nth partial sum of the series:

$$
S_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}+\frac{1}{n!}
$$

Note that $S_{n}<e$ for all n, since every term in the infinite series is positive.
Claim. For all $n>0, e-S_{n}<\frac{1}{n!}$.
Proof.

$$
\begin{aligned}
e-S_{n} & =\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\cdots \\
& =\frac{1}{n!\cdot(n+1)}+\frac{1}{n!\cdot(n+1)(n+2)}+\frac{1}{n!\cdot(n+1)(n+2)(n+3)}+\cdots \\
& =\frac{1}{n!}\left(\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots\right) \\
& <\frac{1}{n!}\left(\frac{1}{2}+\frac{1}{2 \cdot 2}+\frac{1}{2 \cdot 2 \cdot 2}+\cdots\right) \\
& =\frac{1}{n!}\left(\sum_{n=1}^{\infty} \frac{1}{2^{n}}\right) \\
& =\frac{1}{n!}
\end{aligned}
$$

This claim is of independent interest, of course. The speed with which the factorial sequence grows tell us that the partial sums of the series for e approximate its value quite quickly. 10 is the smallest integer whose factorial is greater than one million, and therefore this number:

$$
1+1+\frac{1}{2!}+\cdots+\frac{1}{9!}+\frac{1}{10!}
$$

differs from e by less than 10^{-6}. Adding just three more terms of the series can get the difference to smaller than 10^{-9}, and so on.

Theorem 1. e is irrational.
Proof. This is a proof by contradiction. So, assume $e=\frac{p}{q}$, where p and q are positive integers.
By the claim above, we must have that $\frac{p}{q}-S_{q}<\frac{1}{q!}$. However, we can take the quantity on the left and combine it into a single fraction with denominator q !

$$
\begin{aligned}
\frac{p}{q}-S_{q} & =\frac{p}{q}-\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{q!}\right) \\
& =\frac{p(q-1)!}{q!}-\frac{q!}{q!}-\frac{q!}{q!}-\frac{(q)(q-1) \cdots(4)(3)}{q!}-\frac{(q)(q-1) \cdots(5)(4)}{q!}-\cdots-\frac{q}{q!}-\frac{1}{q!} \\
& =\frac{C}{q!}
\end{aligned}
$$

where

$$
C=p(q-1)!-2 q!-(q)(q-1) \cdots(4)(3)-(q)(q-1) \cdots(5)(4)-\cdots-q-1
$$

This number C is a bit daunting to compute, but all that matters for us is that it's an integer.

According to the claim, we must therefore have that $\frac{C}{q!}<\frac{1}{q!}$, or in other words that $C \leq 0$. However, if this is true, we would have:

$$
e-S_{q}=\frac{p}{q}-S_{q}=\frac{C}{q!} \leq 0 \quad \Longrightarrow e \leq S_{q}
$$

This contradicts the fact that $e>S_{n}$ for all n, finishing the proof.

